
Alexander Drilon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/864461/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	NTRK fusion-positive cancers and TRK inhibitor therapy. Nature Reviews Clinical Oncology, 2018, 15, 731-747.	27.6	975
2	Safety and Antitumor Activity of the Multitargeted Pan-TRK, ROS1, and ALK Inhibitor Entrectinib: Combined Results from Two Phase I Trials (ALKA-372-001 and STARTRK-1). Cancer Discovery, 2017, 7, 400-409.	9.4	647
3	Larotrectinib in patients with TRK fusion-positive solid tumours: a pooled analysis of three phase 1/2 clinical trials. Lancet Oncology, The, 2020, 21, 531-540.	10.7	608
4	NTRK fusion detection across multiple assays and 33,997 cases: diagnostic implications and pitfalls. Modern Pathology, 2020, 33, 38-46.	5.5	373
5	Cabozantinib in patients with advanced RET -rearranged non-small-cell lung cancer: an open-label, single-centre, phase 2, single-arm trial. Lancet Oncology, The, 2016, 17, 1653-1660.	10.7	365
6	Selective RET kinase inhibition for patients with RET-altered cancers. Annals of Oncology, 2018, 29, 1869-1876.	1.2	304
7	Targeting MET in Lung Cancer: Will Expectations Finally Be MET?. Journal of Thoracic Oncology, 2017, 12, 15-26.	1.1	299
8	High Yield of RNA Sequencing for Targetable Kinase Fusions in Lung Adenocarcinomas with No Mitogenic Driver Alteration Detected by DNA Sequencing and Low Tumor Mutation Burden. Clinical Cancer Research, 2019, 25, 4712-4722.	7.0	292
9	Antitumor activity of crizotinib in lung cancers harboring a MET exon 14 alteration. Nature Medicine, 2020, 26, 47-51.	30.7	255
10	Broad, Hybrid Capture–Based Next-Generation Sequencing Identifies Actionable Genomic Alterations in Lung Adenocarcinomas Otherwise Negative for Such Alterations by Other Genomic Testing Approaches. Clinical Cancer Research, 2015, 21, 3631-3639.	7.0	236
11	PD-L1 expression, tumor mutational burden, and response to immunotherapy in patients with MET exon 14 altered lung cancers. Annals of Oncology, 2018, 29, 2085-2091.	1.2	221
12	MET-dependent solid tumours — molecular diagnosis and targeted therapy. Nature Reviews Clinical Oncology, 2020, 17, 569-587.	27.6	165
13	Response to ERBB3-Directed Targeted Therapy in <i>NRG1</i> -Rearranged Cancers. Cancer Discovery, 2018, 8, 686-695.	9.4	149
14	Resistance to TRK inhibition mediated by convergent MAPK pathway activation. Nature Medicine, 2019, 25, 1422-1427.	30.7	144
15	Frequency of Brain Metastases and Multikinase Inhibitor Outcomes in Patients With RET–Rearranged Lung Cancers. Journal of Thoracic Oncology, 2018, 13, 1595-1601.	1.1	137
16	ROS1-dependent cancers — biology, diagnostics and therapeutics. Nature Reviews Clinical Oncology, 2021, 18, 35-55.	27.6	134
17	Activating mutations in CSF1R and additional receptor tyrosine kinases in histiocytic neoplasms. Nature Medicine, 2019, 25, 1839-1842.	30.7	122
18	Colorectal Carcinomas Containing Hypermethylated MLH1 Promoter and Wild-Type BRAF/KRAS Are Enriched for Targetable Kinase Fusions. Cancer Research, 2019, 79, 1047-1053.	0.9	112

ALEXANDER DRILON

#	Article	IF	CITATIONS
19	TRK Fusions Are Enriched in Cancers with Uncommon Histologies and the Absence of Canonical Driver Mutations. Clinical Cancer Research, 2020, 26, 1624-1632.	7.0	103
20	Clinical outcomes with pemetrexed-based systemic therapies in RET-rearranged lung cancers. Annals of Oncology, 2016, 27, 1286-1291.	1.2	92
21	A Phase I/Ib Trial of the VEGFR-Sparing Multikinase RET Inhibitor RXDX-105. Cancer Discovery, 2019, 9, 384-395.	9.4	88
22	Overcoming MET-Dependent Resistance to Selective RET Inhibition in Patients with RET Fusion–Positive Lung Cancer by Combining Selpercatinib with Crizotinib. Clinical Cancer Research, 2021, 27, 34-42.	7.0	87
23	Entrectinib: an orally available, selective tyrosine kinase inhibitor for the treatment of NTRK , ROS1 , and ALK fusion-positive solid tumors. Therapeutics and Clinical Risk Management, 2018, Volume 14, 1247-1252.	2.0	84
24	Therapeutic Implications of Germline Testing in Patients With Advanced Cancers. Journal of Clinical Oncology, 2021, 39, 2698-2709.	1.6	83
25	Updated Integrated Analysis of the Efficacy and Safety of Entrectinib in Locally Advanced or Metastatic <i>ROS1</i> Fusion–Positive Non–Small-Cell Lung Cancer. Journal of Clinical Oncology, 2021, 39, 1253-1263.	1.6	74
26	Updated Integrated Analysis of the Efficacy and Safety of Entrectinib in Patients With <i>NTRK</i> Fusion-Positive Solid Tumors. Clinical Cancer Research, 2022, 28, 1302-1312.	7.0	74
27	Efficacy and safety of larotrectinib in TRK fusion-positive primary central nervous system tumors. Neuro-Oncology, 2022, 24, 997-1007.	1.2	72
28	Repotrectinib Exhibits Potent Antitumor Activity in Treatment-NaÃ⁻ve and Solvent-Front–Mutant ROS1-Rearranged Non–Small Cell Lung Cancer. Clinical Cancer Research, 2020, 26, 3287-3295.	7.0	66
29	Intracranial Efficacy of Selpercatinib in <i>RET</i> Fusion-Positive Non–Small Cell Lung Cancers on the LIBRETTO-001 Trial. Clinical Cancer Research, 2021, 27, 4160-4167.	7.0	64
30	Spectrum of Mechanisms of Resistance to Crizotinib and Lorlatinib in <i>ROS1</i> Fusion–Positive Lung Cancer. Clinical Cancer Research, 2021, 27, 2899-2909.	7.0	62
31	Antitumor Activity of RXDX-105 in Multiple Cancer Types with <i>RET</i> Rearrangements or Mutations. Clinical Cancer Research, 2017, 23, 2981-2990.	7.0	61
32	Zenocutuzumab, a HER2xHER3 Bispecific Antibody, Is Effective Therapy for Tumors Driven by <i>NRG1</i> Gene Rearrangements. Cancer Discovery, 2022, 12, 1233-1247.	9.4	60
33	Immunogenicity and therapeutic targeting of a public neoantigen derived from mutated PIK3CA. Nature Medicine, 2022, 28, 946-957.	30.7	50
34	The evolution of RET inhibitor resistance in RET-driven lung and thyroid cancers. Nature Communications, 2022, 13, 1450.	12.8	47
35	Comprehensive Molecular and Clinicopathologic Analysis of 200 Pulmonary Invasive Mucinous Adenocarcinomas Identifies Distinct Characteristics of Molecular Subtypes. Clinical Cancer Research, 2021, 27, 4066-4076.	7.0	45
36	<i>MET</i> Exon 14 Alterations in Lung Cancer: Exon Skipping Extends Half-Life. Clinical Cancer Research, 2016, 22, 2832-2834.	7.0	44

ALEXANDER DRILON

#	Article	IF	CITATIONS
37	Progresses Toward Precision Medicine in <i>RET</i> -altered Solid Tumors. Clinical Cancer Research, 2020, 26, 6102-6111.	7.0	39
38	A Performance Comparison of Commonly Used Assays to Detect RET Fusions. Clinical Cancer Research, 2021, 27, 1316-1328.	7.0	39
39	Characterization of on-target adverse events caused by TRK inhibitor therapy. Annals of Oncology, 2020, 31, 1207-1215.	1.2	39
40	MAPK Pathway Alterations Correlate with Poor Survival and Drive Resistance to Therapy in Patients with Lung Cancers Driven by <i>ROS1</i> Fusions. Clinical Cancer Research, 2020, 26, 2932-2945.	7.0	35
41	<i>MET</i> Exon 14–altered Lung Cancers and MET Inhibitor Resistance. Clinical Cancer Research, 2021, 27, 799-806.	7.0	35
42	Molecular Characteristics of Repotrectinib That Enable Potent Inhibition of TRK Fusion Proteins and Resistant Mutations. Molecular Cancer Therapeutics, 2021, 20, 2446-2456.	4.1	35
43	NTRK kinase domain mutations in cancer variably impact sensitivity to type I and type II inhibitors. Communications Biology, 2020, 3, 776.	4.4	34
44	TRK xDFG Mutations Trigger a Sensitivity Switch from Type I to II Kinase Inhibitors. Cancer Discovery, 2021, 11, 126-141.	9.4	34
45	Clinicopathologic Features and Response to Therapy of <i>NRG1</i> Fusion–Driven Lung Cancers: The eNRGy1 Global Multicenter Registry. Journal of Clinical Oncology, 2021, 39, 2791-2802.	1.6	32
46	The METeoric rise of MET in lung cancer. Cancer, 2020, 126, 4826-4837.	4.1	29
47	Efficacy and Safety of Larotrectinib in Patients With Tropomyosin Receptor Kinase Fusion–Positive Lung Cancers. JCO Precision Oncology, 2022, 6, e2100418.	3.0	29
48	A Phase Ib/II Study of Ramucirumab in Combination with Emibetuzumab in Patients with Advanced Cancer. Clinical Cancer Research, 2019, 25, 5202-5211.	7.0	26
49	NTRK fusions in lung cancer: From biology to therapy. Lung Cancer, 2021, 161, 108-113.	2.0	24
50	<i>KRAS</i> G12C Mutation Is Associated with Increased Risk of Recurrence in Surgically Resected Lung Adenocarcinoma. Clinical Cancer Research, 2021, 27, 2604-2612.	7.0	20
51	NTRK1 Fusions identified by non-invasive plasma next-generation sequencing (NGS) across 9 cancer types. British Journal of Cancer, 2022, 126, 514-520.	6.4	19
52	Crizotinib in patients with tumors harboring ALK or ROS1 rearrangements in the NCI-MATCH trial. Npj Precision Oncology, 2022, 6, 13.	5.4	18
53	Larotrectinib Treatment for Patients With TRK Fusion-Positive Salivary Gland Cancers. Oncologist, 2022, , .	3.7	18
54	TRK inhibitor activity and resistance in TRK fusion-positive cancers in adults. Cancer Genetics, 2022, 264-265, 33-39.	0.4	16

ALEXANDER DRILON

#	Article	IF	CITATIONS
55	Beyond the doseâ€limiting toxicity period: Dermatologic adverse events of patients on phase 1 trials of the Cancer Therapeutics Evaluation Program. Cancer, 2016, 122, 1228-1237.	4.1	10
56	CT features of HER2-mutant lung adenocarcinomas. Clinical Imaging, 2018, 51, 279-283.	1.5	9
57	Spectrum of <i>BRAF</i> Mutations and Gene Rearrangements in Ovarian Serous Carcinoma. JCO Precision Oncology, 2021, 5, 1480-1492.	3.0	8
58	Immune biomarkers and response to checkpoint inhibition of BRAFV600 and BRAF non-V600 altered lung cancers. British Journal of Cancer, 2022, 126, 889-898.	6.4	8
59	ALK Inhibitors in Patients With ALK Fusion–Positive GI Cancers: An International Data Set and a Molecular Case Series. JCO Precision Oncology, 2022, 6, e2200015.	3.0	8
60	<i>MYC</i> Promotes Tyrosine Kinase Inhibitor Resistance in <i>ROS1</i> -Fusion-Positive Lung Cancer. Molecular Cancer Research, 2022, 20, 722-734.	3.4	6
61	Selpercatinib-Induced Hypothyroidism Through Off-Target Inhibition of Type 2 lodothyronine Deiodinase. JCO Precision Oncology, 2022, , .	3.0	5
62	Complete Pathological Response to Crizotinib in a Patient with ALK-rearranged Lung Adenocarcinoma. Clinical Lung Cancer, 2020, 21, e25-e29.	2.6	1
63	An Ascendant Challenge: Central Nervous System Metastases in <i>ALK</i> + Lung Cancers. Clinical Cancer Research, 2022, 28, 2477-2479.	7.0	1