Erik Smolders

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8643111/publications.pdf

Version: 2024-02-01

17440 33894 14,018 316 63 citations h-index papers

g-index 323 323 323 12791 docs citations times ranked citing authors all docs

99

#	Article	IF	CITATIONS
1	Trace metal accumulation in agricultural soils from mineral phosphate fertiliser applications in <scp>European</scp> longâ€term field trials. European Journal of Soil Science, 2022, 73, .	3.9	6
2	Iron rich glauconite sand as an efficient phosphate immobilising agent in river sediments. Science of the Total Environment, 2022, 811, 152483.	8.0	8
3	Cadmium migration from nib to testa during cacao fermentation is driven by nib acidification. LWT - Food Science and Technology, 2022, 157, 113077.	5.2	4
4	Estimation of the natural background of phosphate in a lowland river using tidal marsh sediment cores. Biogeosciences, 2022, 19, 763-776.	3.3	3
5	Gypsum application lowers cadmium uptake in cacao in soils with high cation exchange capacity only: A soil chemical analysis. European Journal of Soil Science, 2022, 73, .	3.9	4
6	Combining a Standardized Batch Test with the Biotic Ligand Model to Predict Copper and Zinc Ecotoxicity in Soils. Environmental Toxicology and Chemistry, 2022, 41, 1540-1554.	4.3	3
7	The phosphate desorption rate in soil limits phosphorus bioavailability to crops. European Journal of Soil Science, 2021, 72, 221-233.	3.9	14
8	Impact of Mineral Ions and Their Concentrations on Pasting and Gelation of Potato, Rice, and Maize Starches and Blends Thereof. Starch/Staerke, 2021, 73, 2000110.	2.1	1
9	Field-scale demonstration of in situ immobilization of heavy metals by injecting iron oxide nanoparticle adsorption barriers in groundwater. Journal of Contaminant Hydrology, 2021, 237, 103741.	3.3	22
10	Dynamics of soil phosphorus measured by ammonium lactate extraction as a function of the soil phosphorus balance and soil properties. Geoderma, 2021, 385, 114855.	5.1	3
11	Farm yard manure application mitigates aluminium toxicity and phosphorus deficiency for different upland rice genotypes. Journal of Agronomy and Crop Science, 2021, 207, 148-162.	3.5	6
12	Microâ€dose placement of phosphorus induces deep rooting of upland rice. Plant and Soil, 2021, 463, 187-204.	3.7	8
13	The concentration and size distribution of ironâ€rich colloids in pore waters are related to soil organic matter content and pore water calcium concentration. European Journal of Soil Science, 2021, 72, 2199-2214.	3.9	15
14	Mineral bio-accessibility and intrinsic saccharides in breakfast flakes manufactured from sprouted wheat. LWT - Food Science and Technology, 2021, 143, 111079.	5.2	12
15	Characterisation of the highly selective caesium sorption on glauconite rich sands of contrasting geological formations. Applied Geochemistry, 2021, 128, 104926.	3.0	4
16	Bioavailability and Ecotoxicity of Lead in Soil: Implications for Setting Ecological Soil Quality Standards. Environmental Toxicology and Chemistry, 2021, 40, 1948-1961.	4.3	16
17	Correlated Ni, Cu, and Zn Sensitivities of 8 Freshwater Algal Species and Consequences for Lowâ€Level Metal Mixture Effects. Environmental Toxicology and Chemistry, 2021, 40, 2013-2023.	4.3	10
18	Millimetre-resolution mapping of citrate exuded from soil-grown roots using a novel, low-invasive sampling technique. Journal of Experimental Botany, 2021, 72, 3513-3525.	4.8	8

#	Article	IF	CITATIONS
19	Internal loading of phosphate in rivers reduces at higher flow velocity and is reduced by iron rich sand application: an experimental study in flumes. Water Research, 2021, 198, 117160.	11.3	8
20	Contamination of water and food crops by trace elements in the African Copperbelt: A collaborative cross-border study in Zambia and the Democratic Republic of Congo. Environmental Advances, 2021, 6, 100103.	4.8	14
21	Mitigating the level of cadmium in cacao products: Reviewing the transfer of cadmium from soil to chocolate bar. Science of the Total Environment, 2021, 781, 146779.	8.0	43
22	Physico-chemical Characteristics and Nitrogen Use Efficiency of Nine Human Urine-Based Fertilizers in Greenhouse Conditions. Journal of Soil Science and Plant Nutrition, 2021, 21, 2847-2856.	3.4	3
23	Interactive Metal Mixture Toxicity to <i>Daphnia magna</i> Populations as an Emergent Property in a Dynamic Energy Budget Individualâ€Based Model. Environmental Toxicology and Chemistry, 2021, 40, 3034-3048.	4.3	12
24	The sorption of caesium to glauconite sands obeys local equilibrium at environmentally relevant water flow rates. Applied Geochemistry, 2021, 133, 105073.	3.0	1
25	Exposure of humic acid-coated goethite colloids to groundwater does not affect their adsorption of metal(loid)s and their impact on Daphnid mobility. Science of the Total Environment, 2021, 797, 149153.	8.0	3
26	Suwannee River Natural Organic Matter concentrations affect the size and phosphate uptake of colloids formed by iron oxidation. Geochimica Et Cosmochimica Acta, 2021, 312, 375-391.	3.9	8
27	Population collapse or human resilience in response to the 9.3 and 8.2Åka cooling events: A multi-proxy analysis of Mesolithic occupation in the Scheldt basin (Belgium). Journal of Anthropological Archaeology, 2021, 64, 101348.	1.6	8
28	Limited effects of the soluble organic phosphorus fraction on the root phosphorus uptake efficiency of upland rice genotypes grown in acid soil. Soil Science and Plant Nutrition, 2021, 67, 120-129.	1.9	3
29	Layered Double Hydroxides as Slow-Release Fertilizer Compounds for the Micronutrient Molybdenum. Journal of Agricultural and Food Chemistry, 2021, 69, 14501-14511.	5.2	8
30	Antimonate sorption in soils increases with ageing. European Journal of Soil Science, 2020, 71, 55-59.	3.9	8
31	The impact of fermentation on the distribution of cadmium in cacao beans. Food Research International, 2020, 127, 108743.	6.2	23
32	Sediment respiration contributes to phosphate release in lowland surface waters. Water Research, 2020, 168, 115168.	11.3	37
33	Soil organic matter affects arsenic and antimony sorption in anaerobic soils. Environmental Pollution, 2020, 257, 113566.	7.5	56
34	Metal mining and birth defects: a case-control study in Lubumbashi, Democratic Republic of the Congo. Lancet Planetary Health, The, 2020, 4, e158-e167.	11.4	42
35	Surface soil liming reduces cadmium uptake in cacao seedlings but subsurface uptake is enhanced. Journal of Environmental Quality, 2020, 49, 1359-1369.	2.0	12
36	Validating the Use of a Toxicity Database for Prediction of Plant Cover and Biodiversity in Multiâ€Metal Miningâ€Impacted Soils. Environmental Toxicology and Chemistry, 2020, 39, 1826-1838.	4.3	1

#	Article	IF	Citations
37	Anaerobic Respiration in the Unsaturated Zone of Agricultural Soil Mobilizes Phosphorus and Manganese. Environmental Science &	10.0	32
38	Sub-millimeter distribution of labile trace element fluxes in the rhizosphere explains differential effects of soil liming on cadmium and zinc uptake in maize. Science of the Total Environment, 2020, 738, 140311.	8.0	16
39	A functional–structural model of upland rice root systems reveals the importance of laterals and growing root tips for phosphate uptake from wet and dry soils. Annals of Botany, 2020, 126, 789-806.	2.9	28
40	Trace element concentrations in mineral phosphate fertilizers used in Europe: A balanced survey. Science of the Total Environment, 2020, 712, 136419.	8.0	39
41	The labile fractions of metals and arsenic in miningâ€impacted soils are explained by soil properties and metal source characteristics. Journal of Environmental Quality, 2020, 49, 417-427.	2.0	6
42	Can Diffusive Gradients in Thin Films (DGT) Technique and Chemical Extraction Methods Successfully Predict both Zn Bioaccumulation Patterns in Plant and Leaching to Groundwater in Soils Amended with Engineered ZnO Nanoparticles?. Journal of Soil Science and Plant Nutrition, 2020, 20, 1714-1731.	3.4	8
43	In-stream oxygenation to mitigate internal loading of phosphorus in lowland streams. Journal of Hydrology, 2020, 590, 125536.	5.4	9
44	Occupational Exposure to Metals in Shooting Ranges: A Biomonitoring Study. Safety and Health at Work, 2019, 10, 87-94.	0.6	16
45	Metals and Metalloid Removal by Colloidal Humic Acid–Goethite: Column Experiments and Geochemical Modeling. Vadose Zone Journal, 2019, 18, 1-9.	2.2	10
46	Phosphorus recycling from urine using layered double hydroxides: A kinetic study. Applied Clay Science, 2019, 182, 105255.	5.2	10
47	The elemental composition of chocolates is related to cacao content and origin: A multi-element fingerprinting analysis of single origin chocolates. Journal of Food Composition and Analysis, 2019, 83, 103277.	3.9	42
48	Steeping and germination of wheat (Triticum aestivum L.). I. Unlocking the impact of phytate and cell wall hydrolysis on bio-accessibility of iron and zinc elements. Journal of Cereal Science, 2019, 90, 102847.	3.7	12
49	Unprecedentedly High Dust Ingestion Estimates for the General Population in a Mining District of DR Congo. Environmental Science & Environmental Scien	10.0	21
50	Optimization of phosphate recovery from urine by layered double hydroxides. Science of the Total Environment, 2019, 682, 437-446.	8.0	38
51	A systematic evaluation of Flow Field Flow Fractionation and single-particle ICP-MS to obtain the size distribution of organo-mineral iron oxyhydroxide colloids. Journal of Chromatography A, 2019, 1599, 203-214.	3.7	17
52	Combining phosphorus placement and water saving technologies enhances rice production in phosphorus-deficient lowlands. Field Crops Research, 2019, 236, 177-189.	5.1	25
53	Soil organic matter increases antimonate mobility in soil: An Sb(OH)6 sorption and modelling study. Applied Geochemistry, 2019, 104, 33-41.	3.0	23
54	Fate and bioavailability of phosphorus loaded to iron oxyhydroxide nanoparticles added to weathered soils. Plant and Soil, 2019, 438, 297-311.	3.7	13

#	Article	IF	CITATIONS
55	Effects of Soil Properties on the Toxicity and Bioaccumulation of Lead in Soil Invertebrates. Environmental Toxicology and Chemistry, 2019, 38, 1486-1494.	4.3	34
56	Steeping and germination of wheat (Triticum aestivum L.). II. Changes in spatial distribution and speciation of iron and zinc elements using pearling, synchrotron X-ray fluorescence microscopy mapping and X-ray absorption near-edge structure imaging. Journal of Cereal Science, 2019, 90, 102843.	3.7	4
57	Soil properties and agronomic factors affecting cadmium concentrations in cacao beans: A nationwide survey in Ecuador. Science of the Total Environment, 2019, 649, 120-127.	8.0	108
58	Solid-state speciation of interlayer anions in layered double hydroxides. Journal of Colloid and Interface Science, 2019, 537, 151-162.	9.4	17
59	Investigation on the control of phosphate leaching by sorption and colloidal transport: Column studies and multi-surface complexation modelling. Applied Geochemistry, 2019, 100, 371-379.	3.0	18
60	Assessing the ability of soil tests to estimate labile phosphorus in agricultural soils: Evidence from isotopic exchange. Geoderma, 2019, 337, 350-358.	5.1	18
61	The isotopic exchangeability of phosphate in Mg-Al layered double hydroxides. Journal of Colloid and Interface Science, 2018, 520, 25-32.	9.4	21
62	Transformationâ€dissolution reactions partially explain adverse effects of metallic silver nanoparticles to soil nitrification in different soils. Environmental Toxicology and Chemistry, 2018, 37, 2123-2131.	4.3	8
63	Efficient removal of arsenate from oxic contaminated water by colloidal humic acid-coated goethite: Batch and column experiments. Journal of Cleaner Production, 2018, 189, 510-518.	9.3	32
64	Farmyard manure application in weathered upland soils of Madagascar sharply increase phosphate fertilizer use efficiency for upland rice. Field Crops Research, 2018, 222, 94-100.	5.1	31
65	Model-based rationalization of sulphur mineralization in soils using 35S isotope dilution. Soil Biology and Biochemistry, 2018, 120, 1-11.	8.8	13
66	The impact of steeping, germination and hydrothermal processing of wheat (Triticum aestivum L.) grains on phytate hydrolysis and the distribution, speciation and bio-accessibility of iron and zinc elements. Food Chemistry, 2018, 264, 367-376.	8.2	49
67	Modelling heterogeneous phosphate sorption kinetics on iron oxyhydroxides and soil with a continuous distribution approach. European Journal of Soil Science, 2018, 69, 475-487.	3.9	17
68	Environmental Toxicity Assessment of Complex Inorganic Materials., 2018,, 97-125.		1
69	A framework for ecological risk assessment of metal mixtures in aquatic systems. Environmental Toxicology and Chemistry, 2018, 37, 623-642.	4.3	58
70	Uncertainty analysis in risk assessments of chemicals have equal principles for protecting either human health or the ecosystem. Toxicology Letters, 2018, 295, S42.	0.8	0
71	Pronounced Antagonism of Zinc and Arsenate on Toxicity to Barley Root Elongation in Soil. Environments - MDPI, 2018, 5, 83.	3.3	9
72	Sustainability of artisanal mining of cobalt in DR Congo. Nature Sustainability, 2018, 1, 495-504.	23.7	289

#	Article	IF	Citations
73	Zinc toxicity to <i>Daphnia magna</i> in a twoâ€species microcosm can be predicted from singleâ€species test data: The effects of phosphorus supply and pH. Environmental Toxicology and Chemistry, 2018, 37, 2153-2164.	4.3	4
74	Radiocaesium bioavailability to flooded paddy rice is related to soil solution radiocaesium and potassium concentrations. Plant and Soil, 2018, 428, 415-426.	3.7	3
75	Failures in agricultural innovation due to poor understanding of farmers' predispositions. Development in Practice, 2018, 28, 691-704.	1.3	8
76	Rejoinder to the comment on: S. Nawara, T. van Dael, R. Merckx, F. Amery, A. Elsen, W. Odeurs, H. Vandendriessche, S. McGrath, C. Roisin, C. Jouany, S. Pellerin, P. Denoroy, B. Eichlerâ€ŁÃ¶bermann, G. Börjesson, P. Goos, W. Akkermans & E. Smolders. A comparison of soil tests for available phosphorus in longâ€term field experiments in Europe. European Journal of Soil Science, 2018, 69, 749-751.	3.9	1
77	The combined and interactive effects of zinc, temperature, and phosphorus on the structure and functioning of a freshwater community. Environmental Toxicology and Chemistry, 2018, 37, 2413-2427.	4.3	11
78	Limited Dissolved Phosphorus Runoff Losses from Layered Double Hydroxide and Struvite Fertilizers in a Rainfall Simulation Study. Journal of Environmental Quality, 2018, 47, 371-377.	2.0	39
79	Stoichiometric responses to nano ZnO under warming are modified by thermal evolution in Daphnia magna. Aquatic Toxicology, 2018, 202, 90-96.	4.0	6
80	Testing soil phosphorus in a depleting P scenario: an accelerated soil mining experiment. European Journal of Soil Science, 2018, 69, 804-815.	3.9	6
81	Utilization of XANES Imaging in Assessing Radiation Damage in Wheat Microscopy and Microanalysis, 2018, 24, 486-487.	0.4	0
82	Challenges of Reducing Phosphorus Based Water Eutrophication in the Agricultural Landscapes of Northwest Europe. Frontiers in Marine Science, 2018, 5, .	2.5	91
83	Congenital Malformations and Trace Metals: A Case-Control Study from Lubumbashi, DR Congo. ISEE Conference Abstracts, 2018, 2018, .	0.0	0
84	Mixture toxicity of copper, cadmium, and zinc to barley seedlings is not explained by antioxidant and oxidative stress biomarkers. Environmental Toxicology and Chemistry, 2017, 36, 220-230.	4.3	44
85	Foliar uptake of radiocaesium from irrigation water by paddy riceÂ(<i>Oryza sativa</i>): an overlooked pathway in contaminated environments. New Phytologist, 2017, 214, 820-829.	7.3	9
86	Phosphorus resource partitioning shapes phosphorus acquisition and plant species abundance in grasslands. Nature Plants, 2017, 3, 16224.	9.3	63
87	Internal Loading and Redox Cycling of Sediment Iron Explain Reactive Phosphorus Concentrations in Lowland Rivers. Environmental Science & Environmenta	10.0	69
88	Additive toxicity of zinc and arsenate on barley (<i>Hordeum vulgare</i>) root elongation. Environmental Toxicology and Chemistry, 2017, 36, 1556-1562.	4.3	6
89	Systematic Evaluation of Chronic Metal-Mixture Toxicity to Three Species and Implications for Risk Assessment. Environmental Science & Environmental S	10.0	64
90	Long-term presence of charcoal increases maize yield in Belgium due to increased soil water availability. European Journal of Agronomy, 2017, 91, 10-15.	4.1	35

#	Article	lF	CITATIONS
91	A comparison of soil tests for available phosphorus in longâ€term field experiments in Europe. European Journal of Soil Science, 2017, 68, 873-885.	3.9	71
92	Nanospecific Phytotoxicity of CuO Nanoparticles in Soils Disappeared When Bioavailability Factors Were Considered. Environmental Science & Environment	10.0	51
93	Agronomic Effectiveness of Granulated and Powdered P-Exchanged Mg–Al LDH Relative to Struvite and MAP. Journal of Agricultural and Food Chemistry, 2017, 65, 6736-6744.	5.2	59
94	Soil organic matter reduces the sorption of arsenate and phosphate: a soil profile study and geochemical modelling. European Journal of Soil Science, 2017, 68, 678-688.	3.9	24
95	Colloidal-Bound Polyphosphates and Organic Phosphates Are Bioavailable: A Nutrient Solution Study. Journal of Agricultural and Food Chemistry, 2017, 65, 6762-6770.	5.2	21
96	Lower residue decomposition in historically charcoal-enriched soils is related to increased adsorption of organic matter. Soil Biology and Biochemistry, 2017, 104, 1-7.	8.8	22
97	Comparison of chronic mixture toxicity of nickelâ€zincâ€copper and nickelâ€zincâ€copperâ€cadmium mixtures between <i>Ceriodaphnia dubia</i> and <i>Pseudokirchneriella subcapitata</i> Environmental Toxicology and Chemistry, 2017, 36, 1056-1066.	4.3	22
98	Reproductive toxicity of binary and ternary mixture combinations of nickel, zinc, and lead to <i>Ceriodaphnia dubia</i> is best predicted with the independent action model. Environmental Toxicology and Chemistry, 2016, 35, 1796-1805.	4.3	24
99	The effects of zinc on the structure and functioning of a freshwater community: A microcosm experiment. Environmental Toxicology and Chemistry, 2016, 35, 2698-2712.	4.3	14
100	Crop residue management and oxalateâ€extractable iron and aluminium explain longâ€term soil organic carbon sequestration and dynamics. European Journal of Soil Science, 2016, 67, 332-340.	3.9	29
101	Element distribution and iron speciation in mature wheat grains (⟨i⟩Triticum aestivum⟨li⟩ L.) using synchrotron Xâ€ray fluorescence microscopy mapping and Xâ€ray absorption nearâ€edge structure (XANES) imaging. Plant, Cell and Environment, 2016, 39, 1835-1847.	5.7	72
102	DGT and Bioavailability., 2016,, 216-262.		5
103	Longâ€term effect of biochar on the stabilization of recent carbon: soils with historical inputs of charcoal. GCB Bioenergy, 2016, 8, 371-381.	5.6	71
104	Phosphate binding by natural iron-rich colloids in streams. Water Research, 2016, 98, 326-333.	11.3	65
105	Derivation of ecological standards for risk assessment of molybdate in soil. Environmental Chemistry, 2016, 13, 168.	1.5	11
106	Farmyard manure application has little effect on yield or phosphorus supply to irrigated rice growing on highly weathered soils. Field Crops Research, 2016, 198, 61-69.	5.1	17
107	Effects of soil flooding and organic matter addition on plant accessible phosphorus in a tropical paddy soil: an isotope dilution study. Journal of Plant Nutrition and Soil Science, 2016, 179, 765-774.	1.9	23
108	Derivation of ecological criteria for copper in land-applied biosolids and biosolid-amended agricultural soils. Journal of Environmental Management, 2016, 183, 945-951.	7.8	5

#	Article	IF	Citations
109	Long-term application of compost versus other organic fertilizers: effects on phosphorus leaching. Acta Horticulturae, 2016, , 213-220.	0.2	0
110	Polyphosphates and Fulvates Enhance Environmental Stability of PO ₄ -Bearing Colloidal Iron Oxyhydroxides. Journal of Agricultural and Food Chemistry, 2016, 64, 8465-8473.	5.2	17
111	Biochar affects carbon composition and stability in soil: a combined spectroscopy-microscopy study. Scientific Reports, 2016, 6, 25127.	3.3	80
112	Historical soil amendment with charcoal increases sequestration of nonâ€charcoal carbon: a comparison among methods of black carbon quantification. European Journal of Soil Science, 2016, 67, 324-331.	3.9	32
113	Simulating the mobility of meteoric 10 Be in the landscape through a coupled soil-hillslope model (Be2D). Earth and Planetary Science Letters, 2016, 439, 143-157.	4.4	32
114	Iron-rich colloids as carriers of phosphorus in streams: A field-flow fractionation study. Water Research, 2016, 99, 83-90.	11.3	46
115	Phosphate-Exchanged Mg–Al Layered Double Hydroxides: A New Slow Release Phosphate Fertilizer. ACS Sustainable Chemistry and Engineering, 2016, 4, 4280-4287.	6.7	160
116	Mixture toxicity and interactions of copper, nickel, cadmium, and zinc to barley at low effect levels: Something from nothing?. Environmental Toxicology and Chemistry, 2016, 35, 2483-2492.	4.3	31
117	Variability of the soil-to-plant radiocaesium transfer factor for Japanese soils predicted with soil and plant properties. Journal of Environmental Radioactivity, 2016, 153, 51-60.	1.7	18
118	Partitioning of carbon sources among functional pools to investigate short-term priming effects of biochar in soil: A 13C study. Science of the Total Environment, 2016, 547, 30-38.	8.0	28
119	Body distribution of SiO ₂ –Fe ₃ O ₄ core-shell nanoparticles after intravenous injection and intratracheal instillation. Nanotoxicology, 2016, 10, 567-574.	3.0	17
120	Interactions and Toxicity of Cu–Zn mixtures to <i>Hordeum vulgare</i> in Different Soils Can Be Rationalized with Bioavailability-Based Prediction Models. Environmental Science & Environmental Sc	10.0	40
121	The long term use of farmyard manure and compost: Effects on P availability, orthophosphate sorption strength and P leaching. Agriculture, Ecosystems and Environment, 2016, 216, 23-33.	5.3	7 3
122	Seed weight affects shoot and root growth among and within soybean genotypes beyond the seedling stage: implications for low P tolerance screening. Plant and Soil, 2016, 401, 65-78.	3.7	17
123	Reductive Dechlorination of Trichloroethylene (TCE) in Competition with Fe and Mn Oxides—Observed Dynamics in H∢sub>2-dependent Terminal Electron Accepting Processes. Geomicrobiology Journal, 2016, 33, 357-366.	2.0	16
124	Effects of organic matter addition on phosphorus availability to flooded and nonflooded rice in a Pâ€deficient tropical soil: a greenhouse study. Soil Use and Management, 2015, 31, 10-18.	4.9	17
125	Mixture toxicity of nickel and zinc to <i>Daphnia magna</i> is noninteractive at low effect sizes but becomes synergistic at high effect sizes. Environmental Toxicology and Chemistry, 2015, 34, 1091-1102.	4.3	38
126	Biodegradation: Updating the Concepts of Control for Microbial Cleanup in Contaminated Aquifers. Environmental Science & Envir	10.0	211

#	Article	IF	Citations
127	Vanadium bioavailability in soils amended with blast furnace slag. Journal of Hazardous Materials, 2015, 296, 158-165.	12.4	40
128	Oxidation of Iron Causes Removal of Phosphorus and Arsenic from Streamwater in Groundwater-Fed Lowland Catchments. Environmental Science & Environment	10.0	42
129	Phosphorus losses from agricultural land to natural waters are reduced by immobilization in iron-rich sediments of drainage ditches. Water Research, 2015, 71, 160-170.	11.3	72
130	Distribution of Minerals in Wheat Grains (<i>Triticum aestivum</i> L.) and in Roller Milling Fractions Affected by Pearling. Journal of Agricultural and Food Chemistry, 2015, 63, 1276-1285.	5.2	56
131	Predicting radiocaesium sorption characteristics with soil chemical properties for Japanese soils. Science of the Total Environment, 2015, 524-525, 148-156.	8.0	38
132	Bioenhanced dissolution of dense non-aqueous phase of trichloroethylene as affected by iron reducing conditions: Model systems and environmental samples. Chemosphere, 2015, 119, 1113-1119.	8.2	1
133	Nitrogen availability influences phosphorus removal in microalgae-based wastewater treatment. Water Research, 2015, 77, 98-106.	11.3	261
134	Incorporating bioavailability into toxicity assessment of Cu-Ni, Cu-Cd, and Ni-Cd mixtures with the extended biotic ligand model and the WHAM-F tox approach. Environmental Science and Pollution Research, 2015, 22, 19213-19223.	5.3	20
135	Transpiration flow controls Zn transport in Brassica napus and Lolium multiflorum under toxic levels as evidenced from isotopic fractionation. Comptes Rendus - Geoscience, 2015, 347, 386-396.	1.2	28
136	Toxicity in lead salt spiked soils to plants, invertebrates and microbial processes: Unraveling effects of acidification, salt stress and ageing reactions. Science of the Total Environment, 2015, 536, 223-231.	8.0	43
137	Biofilm formation of a bacterial consortium on linuron at micropollutant concentrations in continuous flow chambers and the impact of dissolved organic matter. FEMS Microbiology Ecology, 2014, 88, 184-194.	2.7	22
138	Soil flooding and rice straw addition can increase isotopic exchangeable phosphorus in <scp>P</scp> â€deficient tropical soils. Soil Use and Management, 2014, 30, 189-197.	4.9	16
139	The quantity and quality of dissolved organic matter as supplementary carbon source impacts the pesticide-degrading activity of a triple-species bacterial biofilm. Applied Microbiology and Biotechnology, 2014, 98, 931-943.	3.6	11
140	Residual phosphorus effects and nitrogenÂ×Âphosphorus interactions in soybean–maize rotations on a P-deficient Ferralsol. Nutrient Cycling in Agroecosystems, 2014, 98, 187-201.	2.2	8
141	Testing phosphorus availability for maize with DGT in weathered soils amended with organic materials. Plant and Soil, 2014, 376, 177-192.	3.7	29
142	Deriving siteâ€specific cleanâ€up criteria to protect ecological receptors (plants and soil invertebrates) exposed to metal or metalloid soil contaminants via the direct contact exposure pathway. Integrated Environmental Assessment and Management, 2014, 10, 346-357.	2.9	26
143	Toxicity of Nanoparticles Embedded in Paints Compared with Pristine Nanoparticles in Mice. Toxicological Sciences, 2014, 141, 132-140.	3.1	70
144	Phytotoxicity of trace metals in spiked and fieldâ€contaminated soils: Linking soilâ€extractable metals with toxicity. Environmental Toxicology and Chemistry, 2014, 33, 2479-2487.	4.3	51

#	Article	IF	Citations
145	Base catalytic activity of alkaline earth MOFs: a (micro)spectroscopic study of active site formation by the controlled transformation of structural anions. Chemical Science, 2014, 5, 4517-4524.	7.4	58
146	Motile Geobacter dechlorinators migrate into a model source zone of trichloroethene dense non-aqueous phase liquid: Experimental evaluation and modeling. Journal of Contaminant Hydrology, 2014, 170, 28-38.	3.3	3
147	Mixture toxicity of copper and zinc to barley at low level effects can be described by the Biotic Ligand Model. Plant and Soil, 2014, 381, 131-142.	3.7	39
148	Natural dissolved organic matter mobilizes Cd but does not affect the Cd uptake by the green algae Pseudokirchneriella subcapitata (Korschikov) in resin buffered solutions. Aquatic Toxicology, 2014, 154, 80-86.	4.0	9
149	Pathways of human exposure to cobalt in Katanga, a mining area of the D.R. Congo. Science of the Total Environment, 2014, 490, 313-321.	8.0	90
150	Iron colloids reduce the bioavailability of phosphorus to the green alga Raphidocelis subcapitata. Water Research, 2014, 59, 198-206.	11.3	41
151	Inhibition of iron (III) minerals and acidification on the reductive dechlorination of trichloroethylene. Chemosphere, 2014, 111, 471-477.	8.2	8
152	Sprinkler irrigation of rice fields reduces grain arsenic but enhances cadmium. Science of the Total Environment, 2014, 485-486, 468-473.	8.0	81
153	Factors Controlling the Dissolved Organic Matter Concentration in Pore Waters of Agricultural Soils. Vadose Zone Journal, 2014, 13, 1-9.	2.2	25
154	A resin buffered method for controlling metal speciation in nutrient solutions for plant toxicity tests. Plant and Soil, 2013, 373, 257-267.	3.7	7
155	Isotopic fractionation of Zn in tomato plants suggests the role of root exudates on Zn uptake. Plant and Soil, 2013, 370, 605-613.	3.7	39
156	Root hairs explain P uptake efficiency of soybean genotypes grown in a P-deficient Ferralsol. Plant and Soil, 2013, 369, 269-282.	3.7	53
157	Recovery of Soil Ammonia Oxidation After Long-Term Zinc Exposure Is Not Related to the Richness of the Bacterial Nitrifying Community. Microbial Ecology, 2013, 66, 312-321.	2.8	8
158	Variovorax spmediated biodegradation of the phenyl urea herbicide linuron at micropollutant concentrations and effects of natural dissolved organic matter as supplementary carbon source. Applied Microbiology and Biotechnology, 2013, 97, 9837-9846.	3.6	29
159	Modelling the effects of copper on soil organisms and processes using the free ion approach: Towards a multi-species toxicity model. Environmental Pollution, 2013, 178, 244-253.	7.5	34
160	Characterisation of hydrous ferric oxides derived from iron-rich groundwaters and their contribution to the suspended sediment of streams. Applied Geochemistry, 2013, 39, 59-68.	3.0	26
161	Acidification due to microbial dechlorination near a trichloroethene DNAPL is overcome with pH buffer or formate as electron donor: Experimental demonstration in diffusion-cells. Journal of Contaminant Hydrology, 2013, 147, 25-33.	3.3	13
162	Copper toxicity in soils under established vineyards in Europe: A survey. Science of the Total Environment, 2013, 443, 470-477.	8.0	114

#	Article	IF	Citations
163	Does soil water saturation mobilize metals from riparian soils to adjacent surface water? A field monitoring study in a metal contaminated region. Environmental Sciences: Processes and Impacts, 2013, 15, 1181.	3.5	4
164	Electron donor limitations reduce microbial enhanced trichloroethene DNAPL dissolution: A flux-based analysis using diffusion-cells. Chemosphere, 2013, 91, 7-13.	8.2	9
165	Inhibition of microbial trichloroethylene dechorination by Fe (III) reduction depends on Fe mineralogy: A batch study using the bioaugmentation culture KB-1. Water Research, 2013, 47, 2543-2554.	11.3	26
166	Bioavailability of organic phosphorus to Pseudokirchneriella subcapitata as affected by phosphorus starvation: An isotope dilution study. Water Research, 2013, 47, 3047-3056.	11.3	20
167	An electrostatic model predicting Cu and Ni toxicity to microbial processes in soils. Soil Biology and Biochemistry, 2013, 57, 720-730.	8.8	21
168	Activity of the ammonia oxidising bacteria is responsible for zinc tolerance development of the ammonia oxidising community in soil: A stable isotope probing study. Soil Biology and Biochemistry, 2013, 58, 244-247.	8.8	21
169	Influence of organic matter on flocculation of Chlorella vulgaris by calcium phosphate precipitation. Biomass and Bioenergy, 2013, 54, 107-114.	5.7	63
170	Aging of nickel added to soils as predicted by soil pH and time. Chemosphere, 2013, 92, 962-968.	8.2	49
171	FTIR Analysis of Soil Organic Matter to Link the Turnover of Organic Inputs with Carbon Respiration Rates. , 2013, , 37-42.		2
172	The performance of DGT versus conventional soil phosphorus tests in tropical soilsâ€"maize and rice responses to P application. Plant and Soil, 2013, 366, 49-66.	3.7	83
173	The bioavailability of colloidal and dissolved organic phosphorus to the alga Pseudokirchneriella subcapitata in relation to analytical phosphorus measurements. Hydrobiologia, 2013, 709, 41-53.	2.0	34
174	Inhibition of Geobacter Dechlorinators at Elevated Trichloroethene Concentrations Is Explained by a Reduced Activity Rather than by an Enhanced Cell Decay. Environmental Science & Environmental Scie	10.0	5
175	Inorganic species of arsenic in soil solution determined by microcartridges and ferrihydrite-based diffusive gradient in thin films (DGT). Talanta, 2013, 104, 83-89.	5.5	20
176	Environmental Dissolved Organic Matter Governs Biofilm Formation and Subsequent Linuron Degradation Activity of a Linuron-Degrading Bacterial Consortium. Applied and Environmental Microbiology, 2013, 79, 4534-4542.	3.1	27
177	Cooperative dissolved organic carbon assimilation by a linuron-degrading bacterial consortium. FEMS Microbiology Ecology, 2013, 84, 35-46.	2.7	18
178	Carbon source utilization profiles suggest additional metabolic interactions in a synergistic linuron-degrading bacterial consortium. FEMS Microbiology Ecology, 2013, 84, 24-34.	2.7	18
179	Vanadium bioavailability and toxicity to soil microorganisms and plants. Environmental Toxicology and Chemistry, 2013, 32, 2266-2273.	4.3	90
180	Molecular Composition of Microaggregates from Artificial Soils Based on Organic Wastes and Fe-Rich Mud by FTIR Analysis. , 2013, , 1137-1141.		0

#	Article	IF	CITATIONS
181	Elevated Concentrations of Pesticides and PCBs in Soils at the Southern Caspian Sea (Iran) are Related to Land Use. Soil and Sediment Contamination, 2012, 21, 160-175.	1.9	22
182	Diffusion Limitations in Root Uptake of Cadmium and Zinc, But Not Nickel, and Resulting Bias in the Michaelis Constant Â. Plant Physiology, 2012, 160, 1097-1109.	4.8	65
183	Identifying the cause of soil cadmium contamination with Monte Carlo mass balance modelling: a case study from Potosi, Bolivia. Environmental Technology (United Kingdom), 2012, 33, 555-561.	2.2	11
184	Manganese Toxicity in Barley is Controlled by Solution Manganese and Soil Manganese Speciation. Soil Science Society of America Journal, 2012, 76, 399-407.	2.2	37
185	Cadmium and nickel uptake by tomato and spinach seedlings: plant or transport control?. Environmental Chemistry, 2012, 9, 48.	1.5	21
186	Unlocking fixed soil phosphorus upon waterlogging can be promoted by increasing soil cation exchange capacity. European Journal of Soil Science, 2012, 63, 831-838.	3.9	27
187	Larger bioavailability of soil phosphorus for irrigated rice compared with rainfed rice in Madagascar: results from a soil and plant survey. Soil Use and Management, 2012, 28, 448-456.	4.9	38
188	Dissolved organic carbon concentrations and fluxes correlate with land use and catchment characteristics in a semi-arid drainage basin of Iran. Catena, 2012, 95, 177-183.	5.0	6
189	Ageing of vanadium in soils and consequences for bioavailability. European Journal of Soil Science, 2012, 63, 839-847.	3.9	61
190	Effects of dissolved organic matter (DOM) at environmentally relevant carbon concentrations on atrazine degradation by Chelatobacter heintzii SalB. Applied Microbiology and Biotechnology, 2012, 95, 1333-1341.	3.6	16
191	The performance of DGT versus conventional soil phosphorus tests in tropical soils - An isotope dilution study. Plant and Soil, 2012, 359, 267-279.	3.7	63
192	The Availability of Copper in Soils Historically Amended with Sewage Sludge, Manure, and Compost. Journal of Environmental Quality, 2012, 41, 506-514.	2.0	38
193	Effect of long-term equilibration on the toxicity of molybdenum to soil organisms. Environmental Pollution, 2012, 162, 1-7.	7.5	37
194	Lead phytotoxicity in soils and nutrient solutions is related to lead induced phosphorus deficiency. Environmental Pollution, 2012, 164, 242-247.	7.5	29
195	Distribution of a dechlorinating community in relation to the distance from a trichloroethene dense nonaqueous phase liquid in a model aquifer. FEMS Microbiology Ecology, 2012, 81, 636-647.	2.7	12
196	Labile complexes facilitate cadmium uptake by Caco-2 cells. Science of the Total Environment, 2012, 426, 90-99.	8.0	12
197	Co-tolerance to zinc and copper of the soil nitrifying community and its relationship with the community structure. Soil Biology and Biochemistry, 2012, 44, 75-80.	8.8	16
198	First observation of diffusionâ€limited plant root phosphorus uptake from nutrient solution. Plant, Cell and Environment, 2012, 35, 1558-1566.	5.7	41

#	Article	IF	Citations
199	The Red Mud Accident in Ajka (Hungary): Plant Toxicity and Trace Metal Bioavailability in Red Mud Contaminated Soil. Environmental Science & Environme	10.0	232
200	Metal Complexation Properties of Freshwater Dissolved Organic Matter Are Explained by Its Aromaticity and by Anthropogenic Ligands. Environmental Science & Explained by 2011, 45, 2584-2590.	10.0	188
201	Effect of Organic P Forms and P Present in Inorganic Colloids on the Determination of Dissolved P in Environmental Samples by the Diffusive Gradient in Thin Films Technique, Ion Chromatography, and Colorimetry. Analytical Chemistry, 2011, 83, 5317-5323.	6.5	56
202	Characterization of zinc in contaminated soils: complementary insights from isotopic exchange, batch extractions and XAFS spectroscopy. European Journal of Soil Science, 2011, 62, 318-330.	3.9	45
203	Tracing the source and fate of dissolved organic matter in soil after incorporation of a 13C labelled residue: A batch incubation study. Soil Biology and Biochemistry, 2011, 43, 513-519.	8.8	106
204	Mechanisms of enhanced mobilisation of trace metals by anionic surfactants in soil. Environmental Pollution, 2011, 159, 809-816.	7.5	29
205	A three-layer diffusion-cell to examine bio-enhanced dissolution of chloroethene dense non-aqueous phase liquid. Chemosphere, 2011, 83, 991-996.	8.2	15
206	Phytotoxic doses of boron in contrasting soils depend on soil water content. Plant and Soil, 2011, 342, 73-82.	3.7	9
207	The transfer of radiocesium from soil to plants: Mechanisms, data, and perspectives for potential countermeasures in Japan. Integrated Environmental Assessment and Management, 2011, 7, 379-381.	2.9	36
208	Uptake of Metals from Soil into Vegetables. , 2011, , 325-367.		44
209	Stimulated activity of the soil nitrifying community accelerates community adaptation to Zn stress. Soil Biology and Biochemistry, 2010, 42, 766-772.	8.8	49
210	Dynamics of the nitrous oxide reducing community during adaptation to Zn stress in soil. Soil Biology and Biochemistry, 2010, 42, 1581-1587.	8.8	34
211	Quantitative PCR assays to enumerate Rhizobium leguminosarum strains in soil also target non viable cells and overestimate those detected by the plant infection method. Soil Biology and Biochemistry, 2010, 42, 2342-2344.	8.8	2
212	Extent of copper tolerance and consequences for functional stability of the ammoniaâ€oxidizing community in longâ€term copperâ€contaminated soils. Environmental Toxicology and Chemistry, 2010, 29, 27-37.	4. 3	55
213	Toxicity of the molybdate anion in soil is partially explained by effects of the accompanying cation or by soil pH. Environmental Toxicology and Chemistry, 2010, 29, 1274-1278.	4.3	23
214	The dissociation kinetics of Cu-dissolved organic matter complexes from soil and soil amendments. Analytica Chimica Acta, 2010, 670, 24-32.	5.4	22
215	Mobilization of Zn upon waterlogging riparian Spodosols is related to reductive dissolution of Fe minerals. European Journal of Soil Science, 2010, 61, 1014-1024.	3.9	17
216	Zinc speciation in mining and smelter contaminated overbank sediments by EXAFS spectroscopy. Geochimica Et Cosmochimica Acta, 2010, 74, 3707-3720.	3.9	51

#	Article	IF	Citations
217	Modelling reactive CAH transport using batch experiment degradation kinetics. Water Research, 2010, 44, 2981-2989.	11.3	13
218	Ecological threshold concentrations for antimony in water and soil. Environmental Chemistry, 2009, 6, 116.	1.5	17
219	Plant uptake of radiocaesium from artificially contaminated soil monoliths covering major European soil types. Journal of Environmental Radioactivity, 2009, 100, 439-444.	1.7	8
220	DGT-measured fluxes explain the chloride-enhanced cadmium uptake by plants at low but not at high Cd supply. Plant and Soil, 2009, 318, 127-135.	3.7	31
221	Partitioning of metals (Cd, Co, Cu, Ni, Pb, Zn) in soils: concepts, methodologies, prediction and applications – a review. European Journal of Soil Science, 2009, 60, 590-612.	3.9	313
222	Adapted DAXâ€8 fractionation method for dissolved organic matter (DOM) from soils: development, calibration with test components and application to contrasting soil solutions. European Journal of Soil Science, 2009, 60, 956-965.	3.9	20
223	Bacteria, not archaea, restore nitrification in a zinc-contaminated soil. ISME Journal, 2009, 3, 916-923.	9.8	138
224	Toxicity of Trace Metals in Soil as Affected by Soil Type and Aging After Contamination: Using Calibrated Bioavailability Models to Set Ecological Soil Standards. Environmental Toxicology and Chemistry, 2009, 28, 1633-1642.	4.3	333
225	High human exposure to cobalt and other metals in Katanga, a mining area of the Democratic Republic of Congo. Environmental Research, 2009, 109, 745-752.	7.5	210
226	Inverse modeling of pesticide degradation and pesticide-degrading population size dynamics in a bioremediation system: Parameterizing the Monod model. Chemosphere, 2009, 75, 726-731.	8.2	20
227	Predicting availability of mineral elements to plants with the DGT technique: a review of experimental data and interpretation by modelling. Environmental Chemistry, 2009, 6, 198.	1.5	210
228	Mobilization of Cu and Zn by root exudates of dicotyledonous plants in resin-buffered solutions and in soil. Plant and Soil, 2008, 306, 69-84.	3.7	62
229	Influence of soil properties on copper toxicity for two soil invertebrates. Environmental Toxicology and Chemistry, 2008, 27, 1748-1755.	4.3	74
230	Longâ€term reactions of Ni, Zn and Cd with iron oxyhydroxides depend on crystallinity and structure and on metal concentrations. European Journal of Soil Science, 2008, 59, 706-715.	3.9	39
231	Modelling the effects of ageing on Cd, Zn, Ni and Cu solubility in soils using an assemblage model. European Journal of Soil Science, 2008, 59, 1160-1170.	3.9	56
232	The UVâ€absorbance of dissolved organic matter predicts the fivefold variation in its affinity for mobilizing Cu in an agricultural soil horizon. European Journal of Soil Science, 2008, 59, 1087-1095.	3.9	80
233	Inputs of trace elements in agricultural soils via phosphate fertilizers in European countries. Science of the Total Environment, 2008, 390, 53-57.	8.0	353
234	Solubility and Toxicity of Antimony Trioxide (Sb ₂ O ₃) in Soil. Environmental Science & Environmental Scie	10.0	118

#	Article	IF	Citations
235	Acute Toxicity and Prothrombotic Effects of Quantum Dots: Impact of Surface Charge. Environmental Health Perspectives, 2008, 116, 1607-1613.	6.0	248
236	Dissolved Organic Carbon Fluxes under Bare Soil. Journal of Environmental Quality, 2007, 36, 597-606.	2.0	40
237	The Copper-Mobilizing-Potential of Dissolved Organic Matter in Soils Varies 10-Fold Depending on Soil Incubation and Extraction Procedures. Environmental Science & Environmental Science & 2007, 41, 2277-2281.	10.0	94
238	Zinc Toxicity to Nitrification in Soil and Soilless Culture Can Be Predicted with the Same Biotic Ligand Model. Environmental Science & Environmental	10.0	72
239	Critical Loads of Metals and Other Trace Elements to Terrestrial Environments. Environmental Science &	10.0	35
240	Elevated Cadmium Concentrations in Potato Tubers Due to Irrigation with River Water Contaminated by Mining in PotosÃ, Bolivia. Journal of Environmental Quality, 2007, 36, 1181-1186.	2.0	26
241	Labile lead in polluted soils measured by stable isotope dilution. European Journal of Soil Science, 2007, 58, 1-7.	3.9	47
242	Mobilization of Cd upon acidification of agricultural soils: column study and field modelling. European Journal of Soil Science, 2007, 58, 152-165.	3.9	14
243	Role of soil constituents in fixation of soluble Zn, Cu, Ni and Cd added to soils. European Journal of Soil Science, 2007, 58, 1514-1524.	3.9	76
244	Resistance and resilience of zinc tolerant nitrifying communities is unaffected in long-term zinc contaminated soils. Soil Biology and Biochemistry, 2007, 39, 1828-1831.	8.8	26
245	Does the enhanced P acquisition by maize following legumes in a rotation result from improved soil P availability?. Soil Biology and Biochemistry, 2007, 39, 2555-2566.	8.8	39
246	Zinc toxicity on N2O reduction declines with time in laboratory spiked soils and is undetectable in field contaminated soils. Soil Biology and Biochemistry, 2007, 39, 3167-3176.	8.8	20
247	Leaching and aging decrease nickel toxicity to soil microbial processes in soils freshly spiked with nickel chloride. Environmental Toxicology and Chemistry, 2007, 26, 1130-1138.	4.3	95
248	Hazard Assessment of Inorganic Metals and Metal Substances in Terrestrial Systems. , 2007, , 113-133.		6
249	Terrestrial Biotic Ligand Model. 2. Application to Ni and Cu Toxicities to Plants, Invertebrates, and Microbes in Soil. Environmental Science & Eamp; Technology, 2006, 40, 7094-7100.	10.0	164
250	Labile Cd Complexes Increase Cd Availability to Plants. Environmental Science & Environmental Science	10.0	157
251	Long-term exposure to elevated zinc concentrations induced structural changes and zinc tolerance of the nitrifying community in soil. Environmental Microbiology, 2006, 8, 2170-2178.	3.8	77
252	Mobility of Cd and Zn in polluted and unpolluted Spodosols. European Journal of Soil Science, 2006, 57, 122-133.	3.9	40

#	Article	IF	CITATIONS
253	Yield response of crops amended with sewage sludge in the field is more affected by sludge properties than by final soil metal concentration. European Journal of Soil Science, 2006, 57, 858-867.	3.9	9
254	Speciation of nickel in surface waters measured with the Donnan membrane technique. Analytica Chimica Acta, 2006, 578, 195-202.	5.4	56
255	SOIL PROPERTIES AFFECTING THE TOXICITY OF CuCl2 AND NiCl2 FOR SOIL MICROBIAL PROCESSES IN FRESHLY SPIKED SOILS. Environmental Toxicology and Chemistry, 2006, 25, 836.	4.3	124
256	DISCREPANCY OF THE MICROBIAL RESPONSE TO ELEVATED COPPER BETWEEN FRESHLY SPIKED AND LONG-TERM CONTAMINATED SOILS. Environmental Toxicology and Chemistry, 2006, 25, 845.	4.3	91
257	MODEL STUDIES OF CORROSION-INDUCED COPPER RUNOFF FATE IN SOIL. Environmental Toxicology and Chemistry, 2006, 25, 683.	4.3	13
258	EFFECT OF LEACHING AND AGING ON THE BIOAVAILABILITY OF LEAD TO THE SPRINGTAIL FOLSOMIA CANDIDA. Environmental Toxicology and Chemistry, 2006, 25, 2006.	4.3	45
259	Plant-available P for Maize and Cowpea in P-deficient Soils from the Nigerian Northern Guinea Savanna – Comparison of E- and L-values. Plant and Soil, 2006, 283, 251-264.	3.7	34
260	Phosphorus intensity determines short-term P uptake by pigeon pea (Cajanus cajan L.) grown in soils with differing P buffering capacity. Plant and Soil, 2006, 284, 217-227.	3.7	21
261	Metal complexes increase uptake of Zn and Cu by plants: implications for uptake and deficiency studies in chelator-buffered solutions. Plant and Soil, 2006, 289, 171-185.	3.7	92
262	Mineralization of sulfur from organic residues assessed by inverse isotope dilution. Soil Biology and Biochemistry, 2006, 38, 2278-2284.	8.8	5
263	An Agar Gel Technique Demonstrates Diffusion Limitations to Cadmium Uptake by Higher Plants. Environmental Chemistry, 2006, 3, 419.	1.5	19
264	Fixation of Cadmium and Zinc in Soils. , 2006, , 157-172.		0
265	Reductive dechlorination at high aqueous TCE concentrations. Communications in Agricultural and Applied Biological Sciences, 2006, 71, 165-9.	0.0	0
266	Modelling 137Cs uptake in plants from undisturbed soil monoliths. Journal of Environmental Radioactivity, 2005, 81, 187-199.	1.7	5
267	TOXICITY OF HEAVY METALS IN SOIL ASSESSED WITH VARIOUS SOIL MICROBIAL AND PLANT GROWTH ASSAYS: A COMPARATIVE STUDY. Environmental Toxicology and Chemistry, 2005, 24, 634.	4.3	95
268	Survival of rhizobia in soil is sensitive to elevated zinc in the absence of the host plant. Soil Biology and Biochemistry, 2005, 37, 573-579.	8.8	67
269	Sulphur immobilization and availability in soils assessed using isotope dilution. Soil Biology and Biochemistry, 2005, 37, 635-644.	8.8	17
270	NATURAL OR CHEMICAL GROWTH REGULATION IN PEAR. Acta Horticulturae, 2005, , 503-516.	0.2	11

#	Article	IF	CITATIONS
271	Enhanced sorption and fixation of radiocaesium in soils amended with K-bentonites, submitted to wetting-drying cycles. European Journal of Soil Science, 2004, 55, 513-522.	3.9	24
272	A survey of symbiotic nitrogen fixation by white clover grown on metal contaminated soils. Soil Biology and Biochemistry, 2004, 36, 633-640.	8.8	75
273	SOIL PROPERTIES AFFECTING TOXICITY OF ZINC TO SOIL MICROBIAL PROPERTIES IN LABORATORY-SPIKED AND FIELD-CONTAMINATED SOILS. Environmental Toxicology and Chemistry, 2004, 23, 2633.	4.3	159
274	Radio-labile cadmium and zinc in soils as affected by pH and source of contamination. European Journal of Soil Science, 2004, 55, 113-122.	3.9	71
275	Soil properties affecting solid-liquid distribution of As(V) in soils. European Journal of Soil Science, 2004, 55, 165-173.	3.9	64
276	An anion resin membrane technique to overcome detection limits of isotopically exchanged P in P-sorbing soils. European Journal of Soil Science, 2004, 55, 63-69.	3.9	29
277	Kinetics of Zn Release in Soils and Prediction of Zn Concentration in Plants Using Diffusive Gradients in Thin Films. Environmental Science & Eamp; Technology, 2004, 38, 3608-3613.	10.0	137
278	COMPARISON OF TOXICITY OF ZINC FOR SOIL MICROBIAL PROCESSES BETWEEN LABORATORY-CONTAMINED AND POLLUTED FIELD SOILS. Environmental Toxicology and Chemistry, 2003, 22, 2592.	4.3	60
279	Soil solution concentration of Cd and Zn canbe predicted with a CaCl2 soil extract. European Journal of Soil Science, 2003, 54, 149-158.	3.9	97
280	Potassium bentonites reduce radiocaesium availability to plants. European Journal of Soil Science, 2003, 54, 91-102.	3.9	18
281	Relating Soil Solution Zn Concentration to Diffusive Gradients in Thin Films Measurements in Contaminated Soils. Environmental Science & Environmental	10.0	57
282	Fate and Effect of Zinc from Tire Debris in Soil. Environmental Science & Environmental Science & Science	10.0	203
283	Decomposition of dissolved organic carbon after soil drying and rewetting as an indicator of metal toxicity in soils. Soil Biology and Biochemistry, 2001, 33, 235-240.	8.8	64
284	Potential nitrification rate as a tool for screening toxicity in metalâ€contaminated soils. Environmental Toxicology and Chemistry, 2001, 20, 2469-2474.	4.3	116
285	Background zinc concentrations in soil affect the zinc sensitivity of soil microbial processesâ€"a rationale for a metalloregion approach to risk assessments. Environmental Toxicology and Chemistry, 2001, 20, 2639-2643.	4.3	34
286	Genotypic effects in phytoavailability of radiocaesium are pronounced at low K intensities in soil. Plant and Soil, 2001, 235, 11-20.	3.7	25
287	POTENTIAL NITRIFICATION RATE AS A TOOL FOR SCREENING TOXICITY IN METAL-CONTAMINATED SOILS. Environmental Toxicology and Chemistry, 2001, 20, 2469.	4.3	23
288	Screening willow clones for Radiocesium uptake at varying potassium supply in solution culture. International Journal of Phytoremediation, 2000, 2, 243-253.	3.1	3

#	Article	IF	Citations
289	Radiocesium Uptake by Oneâ€Yearâ€Old Willows Planted as Short Rotation Coppice. Journal of Environmental Quality, 2000, 29, 1384-1390.	2.0	24
290	Fate of Radiocesium in Soil and Rhizosphere. , 2000, , .		7
291	A Statistical Approach for Estimating the Radiocesium Interception Potential of Soils. Journal of Environmental Quality, 1999, 28, 1005-1011.	2.0	35
292	Predicting Soil to Plant Transfer of Radiocesium Using Soil Characteristics. Environmental Science & E	10.0	115
293	Cadmium Fixation in Soils Measured by Isotopic Dilution. Soil Science Society of America Journal, 1999, 63, 78-85.	2.2	125
294	High Plant Uptake of Radiocesium from Organic Soils Due to Cs Mobility and Low Soil K Content. Environmental Science & Environ	10.0	83
295	Title is missing!. Plant and Soil, 1998, 202, 211-216.	3.7	68
296	Effects of sulfate on cadmium uptake by Swiss chard: II. Effects due to sulfate addition to soil. Plant and Soil, 1998, 202, 217-222.	3.7	64
297	Effect of Soil Solution Chloride on Cadmium Availability to Swiss Chard. Journal of Environmental Quality, 1998, 27, 426-431.	2.0	135
298	Concentrations of 137Cs and K in Soil Solution Predict the Plant Availability of 137Cs in Soils. Environmental Science & Envir	10.0	169
299	Cationic interactions in radiocaesium uptake from solution by spinach. Journal of Environmental Radioactivity, 1997, 34, 161-170.	1.7	48
300	Chloride Increases Cadmium Uptake in Swiss Chard in a Resinâ€buffered Nutrient Solution. Soil Science Society of America Journal, 1996, 60, 1443-1447.	2.2	157
301	Modelling the uptake of nitrate by a growing plant with an adjustable root nitrate uptake capacity. Plant and Soil, 1996, 181, 19-23.	3.7	16
302	Effect of Cl on Cd uptake by Swiss chard in nutrient solutions. Plant and Soil, 1996, 179, 57-64.	3.7	109
303	137Cs Uptake in spring wheat (Triticum aestivum L. cv Tonic) at varying K supply. Plant and Soil, 1996, 181, 205-209.	3.7	74
304	137Cs uptake in spring wheat (Triticum aestivum L.cv. Tonic) at varying K supply. Plant and Soil, 1996, 181, 211-220.	3.7	49
305	Changes in radiocaesium uptake and distribution in wheat during plant development: a solution culture study. Plant and Soil, 1995, 176, 1-6.	3.7	41
306	Growth analysis of soil-grown spinach plants at different N-regimes. Plant and Soil, 1993, 154, 73-80.	3.7	11

#	Article	IF	CITATIONS
307	The role of free sugars and amino acids in the regulation of biomass partitioning and plant growth. Plant and Soil, 1993, 155-156, 191-194.	3.7	8
308	Analysis of the genotypic variation in radiocaesium uptake from soil. Plant and Soil, 1993, 155-156, 431-434.	3.7	3
309	Some principles behind the selection of crops to minimize radionucleide uptake from soil. Science of the Total Environment, 1993, 137, 135-146.	8.0	18
310	Application of fertilisers and ameliorants to reduce soil to plant transfer of radiocaesium and radiostrontium in the medium to long term — a summary. Science of the Total Environment, 1993, 137, 173-182.	8.0	52
311	Growth and shoot:root partitioning of spinach plants as affected by nitrogen supply. Plant, Cell and Environment, 1992, 15, 795-807.	5.7	41
312	A statistical thermodynamical description of the cation distribution and ion exchange in zeolites. The Journal of Physical Chemistry, 1991, 95, 9908-9911.	2.9	13
313	Continuous shoot growth monitoring in hydroponics. Physiologia Plantarum, 1991, 83, 83-92.	5.2	8
314	Continuous shoot growth monitoring in hydroponics. Physiologia Plantarum, 1991, 83, 83-92.	5.2	1
315	Simultaneous determination of extractable sulphate and malate in plant extracts using ion chromatography. Journal of Chromatography A, 1990, 514, 371-376.	3.7	9
316	Increasing soil organic carbon content can enhance the longâ€ŧerm availability of phosphorus in agricultural soils. European Journal of Soil Science, 0, , .	3.9	2