Gurgen Adamian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/864309/publications.pdf

Version: 2024-02-01

313 papers

5,472 citations

39 h-index 60 g-index

317 all docs

317 docs citations

317 times ranked

961 citing authors

#	Article	IF	CITATIONS
1	Spontaneous fission hindrance in even-odd nuclei within a cluster approach. Physical Review C, 2022, 105, .	2.9	4
2	Role of spin-orbit strength in the prediction of closed shells in superheavy nuclei. Physical Review C, 2022, 105, .	2.9	3
3	Energy dependent ratios of level-density parameters in superheavy nuclei. Physical Review C, 2022, 105, .	2.9	4
4	Optimal ways to produce heavy and superheavy nuclei. European Physical Journal A, 2022, 58, .	2.5	12
5	Applicability of the absence of equilibrium in quantum system fully coupled to several fermionic and bosonic heat baths. Physical Review E, 2021, 103, 012137.	2.1	1
6	Self-consistent methods for structure and production of heavy and superheavy nuclei. European Physical Journal A, 2021, 57, 1.	2.5	25
7	Rate of decline of the production cross section of superheavy nuclei with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Z</mml:mi><mml:mo>=<td>> 219ml:m</td><td>n<i>></i>114</td></mml:mo></mml:mrow></mml:math>	> 219 ml:m	n <i>></i> 114
8	Simultaneous description of charge, mass, total kinetic energy, and neutron multiplicity distributions in fission of Th and U isotopes. Physical Review C, 2021, 104, .	2.9	10
9	Correlations of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>α</mml:mi></mml:math> -decay properties and isospin-asymmetry. Physical Review C, 2021, 104, .	2.9	5
10	Shaping the archipelago of stability by the competition of proton and neutron shell closures. Physical Review C, 2021, 104, .	2.9	4
11	Application of Regge Theory to Astronomical Objects. Physics, 2021, 3, 669-677.	1.4	O
12	Cluster approach to spontaneous fission of even-even isotopes of U, Pu, Cm, Cf, Fm, No, Rf, Sg, and Hs. Physical Review C, 2021, 104, .	2.9	7
13	Orbital diamagnetism of two-dimensional quantum systems in a dissipative environment: Non-Markovian effect and application to graphene. Physical Review E, 2021, 104, 054120.	2.1	1
14	Landscape of the island of stability with self-consistent mean-field potentials. Physical Review C, 2021, 104, .	2.9	6
15	Non-Markovian modeling of Fermi-Bose systems coupled to one or several Fermi-Bose thermal baths. Physical Review A, 2020, 102, .	2.5	4
16	Production of neutron deficient isotopes in the multinucleon transfer reaction Ca48(Elab=5.63MeV/nucleon)+Cm248. Physical Review C, 2020, 102, .	2.9	4
17	Examination of coexistence of symmetric mass and asymmetric charge distributions of fission fragments. Physical Review C, 2020, 101, .	2.9	12
18	Collective enhancements in the level densities of Dy and Mo isotopes. Physical Review C, 2020, 101, .	2.9	14

#	Article	IF	Citations
19	Non-Markovian dynamics of quantum systems coupled with several mixed fermionic-bosonic heat baths. Physical Review E, 2020, 101, 062115.	2.1	2
20	From Dinuclear Systems to Close Binary Stars and Galaxies. Physics of Atomic Nuclei, 2020, 83, 60-68.	0.4	2
21	Predictions of identification and production of new superheavy nuclei with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Z</mml:mi><mml:mo>=<td>o> 219ml:m</td><td>n>2ld.9</td></mml:mo></mml:mrow></mml:math>	o> 219 ml:m	n> 2ld .9
22	How to extend the chart of nuclides?. European Physical Journal A, 2020, 56, 1.	2.5	68
23	Extended quantum diffusion approach to reactions of astrophysical interests. European Physical Journal A, 2020, 56, 1.	2.5	7
24	Possible production of neutron-rich No isotopes. Physical Review C, 2020, 101, .	2.9	10
25	Effect of the Nucleon-Density Distribution on the Description of Nuclear Decay. Physics of Atomic Nuclei, 2020, 83, 15-23.	0.4	0
26	On the evolution of compact binary black holes. International Journal of Modern Physics E, 2020, 29, 2050094.	1.0	1
27	How Does One Extend the Chart of Nuclides?. Nuclear Physics News, 2020, 30, 22-26.	0.4	1
28	Application of the theory of open quantum systems in nuclear physics. International Journal of Modern Physics Conference Series, 2019, 49, 1960008.	0.7	0
29	Dynamics of a dinuclear system in charge-asymmetry coordinates: <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>$\hat{l} \pm <$mml:mi></mml:mi></mml:math> decay, cluster radioactivity, and spontaneous fission. Physical Review C, 2019, 100, .	2.9	12
30	Close Binary Galaxies: Application to Source of Energy and Expansion in Universe. International Journal of Modern Physics E, 2019, 28, 1950031.	1.0	3
31	Origin of the orbital period change in contact binary stars. International Journal of Modern Physics E, 2019, 28, 1950044.	1.0	3
32	Angular momentum of open quantum systems in external magnetic field. Physical Review A, 2019, 99, .	2.5	4
33	Change of the shape of mass and charge distributions in fission of Cf isotopes with excitation energy. Physical Review C, 2019, 99, .	2.9	13
34	Possible production of neutron-rich Md isotopes in multinucleon transfer reactions with Cf and Es targets. Physical Review C, 2019, 99, .	2.9	13
35	Stability of Macroscopic Binary Systems*. Communications in Theoretical Physics, 2019, 71, 1335.	2.5	3
36	Nonrotational states in isotonic chains of heavy nuclei. Physical Review C, 2018, 97, .	2.9	12

#	Article	IF	CITATIONS
37	Light charged particle multiplicities in fusion and quasifission reactions. European Physical Journal A, 2018, 54, 1.	2.5	2
38	Non-Markovian dynamics of fermionic and bosonic systems coupled to several heat baths. Physical Review E, 2018, 97, 032134.	2.1	6
39	Charge distributions of fission fragments of low- and high-energy fission of Fm, No, and Rf isotopes. Physical Review C, 2018, 97, .	2.9	14
40	From dinuclear systems to close binary stars: Application to source of energy in the universe. International Journal of Modern Physics E, 2018, 27, 1850093.	1.0	5
41	Dinuclear system model in spontaneous fission process. EPJ Web of Conferences, 2018, 194, 06005.	0.3	0
42	Derivation of Maxwell-type equations for open systems. Physical Review A, 2018, 98, .	2.5	1
43	Non-Markovian feature of the classical Hall effect. European Physical Journal B, 2018, 91, 1.	1.5	3
44	Incorporating self-consistent single-particle potentials into the microscopic-macroscopic method. European Physical Journal A, 2018, 54, 1.	2.5	11
45	Suggestion for examination of a role of multi-chance fission. European Physical Journal A, 2018, 54, 1.	2.5	6
46	Toward an understanding of the anomaly in charge yield of Mo and Sn fragments in the fission reaction U238(n,f). Physical Review C, 2018, 98, .	2.9	5
47	From dinuclear systems to close binary stars: Application to mass transfer. International Journal of Modern Physics E, 2018, 27, 1850063.	1.0	8
48	Large-amplitude nuclear motion formulated in terms of dissipation of quantum fluctuations. Physics of Particles and Nuclei, 2017, 48, 158-209.	0.7	5
49	Non-Markovian dynamics of fully coupled fermionic and bosonic oscillators. Physical Review A, 2017, 95, .	2.5	11
50	Ways to produce new superheavy isotopes with Z = 111–117 in charged particle evaporation channels. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2017, 764, 42-48.	4.1	39
51	Examination of production and properties of Hs268–271. Physical Review C, 2017, 96, .	2.9	1
52	Non-Markovian dynamics of mixed fermionic-bosonic systems: Rotating-wave-approximation coupling. Physical Review A, 2017, 96, .	2.5	7
53	Correlation between observed \hat{l}_{\pm} decays and changes in neutron or proton skins from parent to daughter nuclei. Physical Review C, 2017, 96, .	2.9	26
54	Spins of complex fragments in binary reactions within a dinuclear system model. Physical Review C, 2017, 96, .	2.9	4

#	Article	IF	Citations
55	Possibilities of production of transfermium nuclei in complete fusion reactions with radioactive beams. Physical Review C, 2017, 96, .	2.9	6
56	Physical origin of the transition from symmetric to asymmetric fission fragment charge distribution. AIP Conference Proceedings, 2017, , .	0.4	0
57	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mmultiscripts><mml:mi>Ti</mml:mi> /><mml:none></mml:none><mml:mn>48</mml:mn> //mml:mn>48</mml:mmultiscripts></mml:mrow>		
58	/> <mml:none></mml:none> <mml:mn>58</mml:mn> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mmultiscripts> <mml:mi> Ni</mml:mi> <mml:mrow> <mml:mmultiscripts> <mml:mi> Ni</mml:mi> <mml:mi> Ni</mml:mi> <mml:mi> Ni</mml:mi> <mml:mrow> <mml:mrow> <mml:math> and <mml:math xmlns:math="" xmlns:mi=""> Ni <mml:mrow> <mml:m< td=""><td>mml:mpre</td><td>escripts O</td></mml:m<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math></mml:math></mml:mrow></mml:mrow></mml:mmultiscripts></mml:mrow></mml:mmultiscripts></mml:mrow></mml:math>	mml:mpre	escripts O
59	Manifestation of cluster effects in collective octupole and superdeformed states of heavy nuclei Journal of Physics: Conference Series, 2016, 724, 012021.	0.4	O
60	Description of the Fusion-Fission Reactions in the Framework of Dinuclear System Conception. EPJ Web of Conferences, 2016, 117, 08007.	0.3	0
61	Level densities of dinuclear systems. European Physical Journal A, 2016, 52, 1.	2.5	4
62	Manifestation of cluster effects in the structure of actinides. EPJ Web of Conferences, 2016, 107, 03009.	0.3	0
63	Unexpected asymmetry of the charge distribution in the fission of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mmultiscripts><mml:mi>Th</mml:mi><mml:mprescripts><mml:none></mml:none><mml:mrow><mml:mn>222</mml:mn></mml:mrow><td>2.9</td><td>18 ts></td></mml:mprescripts></mml:mmultiscripts></mml:math>	2.9	18 ts>
64	Extraction of potential energy in charge asymmetry coordinate from experimental fission data. European Physical Journal A, 2016, 52, 1.	2.5	17
65	Possibilities of production of neutron-rich Md isotopes in multi-nucleon transfer reactions. European Physical Journal A, 2016, 52, 1.	2.5	4
66	Extraction of pure transfer probabilities from experimental transfer and capture data. Physical Review C, 2016, 94, .	2.9	3
67	Description of alpha decay and cluster radioactivity in the dinuclear system model. Physics of Particles and Nuclei, 2016, 47, 206-235.	0.7	10
68	Application of the theory of open quantum systems to nuclear physics problems. Physics of Particles and Nuclei, 2016, 47, 157-205.	0.7	5
69	Possible origin of transition from symmetric to asymmetric fission. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2016, 760, 800-806.	4.1	30
70	Possibilities of synthesis of unknown isotopes of superheavy nuclei with charge numbers $Z>108$ in asymmetric actinide-based complete fusion reactions. European Physical Journal A, 2016, 52, 1.	2.5	13
71	Effect of properties of superheavy nuclei on their production and decay. Physics of Particles and Nuclei, 2016, 47, 387-455.	0.7	3
72	Asymmetry of fission fragment mass distribution for Po and Ir isotopes. Physical Review C, 2016, 93, .	2.9	19

#	Article	IF	CITATIONS
73	Energy dependence of mass, charge, isotopic, and energy distributions in neutron-induced fission ofU235andPu239. Physical Review C, 2016, 93, .	2.9	29
74	Expected production of new exotic \hat{l} temitters Xe 108 and Ba 112 in complete fusion reactions. Physical Review C, 2016, 93, .	2.9	3
75	Experimental elastic and quasi-elastic angular distributions provide transfer probabilities. Physical Review C, 2016, 93, .	2.9	2
76	Isotopic trends of nuclear surface properties of spherical nuclei. Physical Review C, 2016, 94, .	2.9	16
77	Perspectives of production of superheavy nuclei. AIP Conference Proceedings, 2016, , .	0.4	1
78	Extracting integrated and differential cross sections in low energy heavy-ion reactions from backscattering measurements. AIP Conference Proceedings, 2016, , .	0.4	0
79	Manifestation of the structure of heavy nuclei in their alpha decays. Physics of Atomic Nuclei, 2016, 79, 951-962.	0.4	2
80	Description of alternating-parity bands within the dinuclear-system model. Physics of Atomic Nuclei, 2016, 79, 963-977.	0.4	0
81	Possibilities of production of transfermium nuclei in charged-particle evaporation channels. Physical Review C, 2016, 94, . Quasifission and fusion-fission processes in the reactions <mml:math< th=""><th>2.9</th><th>32</th></mml:math<>	2.9	32
82	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mmultiscripts><mml:mi>Kr</mml:mi><mml:mn>78</mml:mn>Ca<mml:none></mml:none><mml:mn>40</mml:mn></mml:mmultiscripts></mml:mrow> and <th>· ·</th> <th></th>	· ·	
83	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mmultiscripts><mml:mi>Kr</mml:mi>< Description of quasifission reactions in the dinuclear system model. Physics of Particles and Nuclei, 2016, 47, 1-48.</mml:mmultiscripts></mml:mrow>	mml:mpre	•
84	Quasiparticle structure of superheavy nuclei along the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>α</mml:mi></mml:math> -decay chain of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mmultiscripts><mml:mn>115</mml:mn><mml:mpre></mml:mpre><mml:none></mml:none><mml:mn>288</mml:mn></mml:mmultiscripts></mml:math> . Physical Review C, 2015, 92, .	2.9 escripts	6
85	Entrance channel effects on sub-barrier capture. Physical Review C, 2015, 92, .	2.9	0
86	Influence of entrance channel on the production of hassium isotopes. Physical Review C, 2015, 92, .	2.9	23
87	Cluster approach to the structure of minimath xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mmultiscripts><mml:mi mathvariant="normal">Pu</mml:mi><mml:mprescripts></mml:mprescripts><mml:none></mml:none><mml:mrow></mml:mrow></mml:mmultiscripts></mml:mrow> .	2.9	19
88	Physical Review C, 2015, 92, . Origin of termination of negative-parity bands. Physical Review C, 2015, 92, .	2.9	1
89	Isotopic trends in capture reactions with radioactive and stable potassium beams. Physical Review C, 2015, 92, .	2.9	4
90	Toward neutron-rich nuclei via transfer reactions with stable and radioactive beams. Physical Review $C, 2015, 91, .$	2.9	22

#	Article	IF	CITATIONS
91	Derivation of breakup probabilities of weakly bound nuclei from experimental elastic and quasi-elastic scattering angular distributions. Physical Review C, 2015, 92, .	2.9	5
92	Production of 100Sn in fusion reactions via cluster emission channels. EPJ Web of Conferences, 2015, 88, 01009.	0.3	0
93	Level densities and shell corrections of superheavy nuclei. Journal of Physics: Conference Series, 2015, 580, 012026.	0.4	3
94	Analysis of the role of neutron transfer in asymmetric fusion reactions at subbarrier energies. Physics of Atomic Nuclei, 2015, 78, 985-992.	0.4	0
95	Role of the neck degree of freedom in cold fusion reactions. Physical Review C, 2015, 91, .	2.9	6
96	Analysis of the dependence of the few-neutron transfer probability on the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Q</mml:mi></mml:math> -value magnitudes. Physical Review C, 2015, 91, .	2.9	3
97	Examination of the different roles of neutron transfer in the sub-barrier fusion reactionsS32+Zr94,96and40Ca+Zr94,96. Physical Review C, 2015, 91, .	2.9	30
98	Influence of Shell Structure on Level Densities of Superheavy Nuclei. Acta Physica Polonica B, 2015, 46, 563.	0.8	0
99	Description of non-Markovian effect in open quantum system with the discretized environment method. European Physical Journal B, 2015, 88, 1.	1.5	16
100	Population of Strongly Deformed Nuclear States Within the Cluster Approach., 2015, , .		0
101	Possibilities of Production of Heaviest Nuclei. Acta Physica Polonica B, Proceedings Supplement, 2015, 8, 529.	0.1	O
102	Energy-shifting formulae yield reliable reaction and capture probabilities. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2014, 739, 348-351.	4.1	14
103	Production of the doubly magic nucleus $\rm Sn100$ in fusion and quasifission reactions via light particle and cluster emission channels. Physical Review C, 2014, 90, .	2.9	12
104	Dinuclear systems in complete fusion reactions. Physics of Particles and Nuclei, 2014, 45, 848-923.	0.7	12
105	Effects of angular dependence of surface diffuseness in deformed nuclei on Coulomb barrier. Physical Review C, 2014, 90, .	2.9	23
106	Role of neutron transfer in asymmetric fusion reactions at sub-barrier energies. European Physical Journal A, 2014, 50, 1.	2.5	10
107	Extracting integrated and differential cross sections in low-energy heavy-ion reactions from backscattering measurements. European Physical Journal A, 2014, 50, 1.	2.5	9
108	Deriving capture and reaction cross sections from observed quasi-elastic and elastic backscattering. Physical Review C, 2014, 90, .	2.9	10

#	Article	lF	Citations
109	Disagreement between capture probabilities extracted from capture and quasi-elastic backscattering excitation functions. European Physical Journal A, 2014, 50, 1.	2.5	4
110	Impact of nuclear structure on production of superheavy nuclei. Journal of Physics: Conference Series, 2014, 515, 012002.	0.4	4
111	Derivation of breakup probabilities from experimental elastic backscattering data. European Physical Journal A, 2014, 50, 1.	2.5	3
112	Production cross section of neutron-rich isotopes with radioactive and stable beams. Physical Review $C, 2014, 89, .$	2.9	24
113	Non-Markovian dynamics with fermions. Physical Review A, 2014, 90, .	2.5	20
114	Level densities of heaviest nuclei. European Physical Journal A, 2014, 50, 1.	2.5	11
115	Fusion at near-barrier energies within the quantum diffusion approach. EPJ Web of Conferences, 2014, 69, 00015.	0.3	0
116	Cluster approach to the structure of heavy nuclei. Journal of Physics: Conference Series, 2014, 569, 012056.	0.4	2
117	Derivation of capture and reaction cross sections from experimental quasi-elastic and elastic backscattering probabilities. EPJ Web of Conferences, 2014, 69, 00004.	0.3	1
118	Impact of nuclear structure on the production and identification of superheavy nuclei. EPJ Web of Conferences, 2014, 66, 02003.	0.3	0
119	Microscopic-macroscopic method for studying single-particle level density of superheavy nuclei. Journal of Physics: Conference Series, 2014, 503, 012011.	0.4	1
120	Nuclear reactions at near-barrier energies with quantum diffusion approach. Journal of Physics: Conference Series, 2014, 515, 012001.	0.4	1
121	Role of the quasiparticle structure in α-decays of superheavy nuclei. Bulletin of the Russian Academy of Sciences: Physics, 2013, 77, 406-410.	0.6	0
122	Derivation of capture cross sections from quasi-elastic excitation functions. Physical Review C, 2013, 87, .	2.9	13
123	Polarization of the nuclear surface in deformed nuclei. Physical Review C, 2013, 88, .	2.9	30
124	Production of exotic isotopes in complete fusion reactions with radioactive beams. Physical Review C, 2013, 88, .	2.9	8
125	Population of the yrast superdeformed band in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow></mml:mrow><mml:mn>152</mml:mn></mml:msup></mml:math> Dy within a cluster approach. Physical Review C, 2013. 88	2.9	3
126	Study of isotopic chain capture. Bulletin of the Russian Academy of Sciences: Physics, 2013, 77, 803-808.	0.6	O

#	Article	IF	Citations
127	Threshold energy for sub-barrier fusion hindrance phenomenon. European Physical Journal A, 2013, 49, 1.	2.5	13
128	Sub-barrier capture reactions with 16,180 and 40,48Ca beams. European Physical Journal A, 2013, 49, 1.	2.5	18
129	Total and partial capture cross sections in reactions with deformed nuclei at energies near and below the Coulomb barrier. Physics of Atomic Nuclei, 2013, 76, 716-731.	0.4	4
130	Study of Isotopic Effects in Capture Process. Acta Physica Polonica B, 2013, 44, 471.	0.8	0
131	Derivation of reaction cross sections from experimental elastic backscattering probabilities. Physical Review C, 2013, 88, .	2.9	11
132	Neutron-pair transfer in the sub-barrier capture process. Physical Review C, 2013, 88, .	2.9	25
133	Isospin dependence of mass-distribution shape of fission fragments of Hg isotopes. Physical Review C, 2013, 88, .	2.9	44
134	Influence of shell effects on mass asymmetry in fission of different Hg isotopes. EPJ Web of Conferences, 2013, 62, 06007.	0.3	2
135	Cluster aspects of binary fission. Journal of Physics: Conference Series, 2013, 436, 012059.	0.4	0
136	Population and properties of superdeformed bands in A $\hat{a}^{-1}/4$ 150 region. Journal of Physics: Conference Series, 2013, 436, 012062.	0.4	0
137	Formation of strongly deformed states in entrance channels. Journal of Physics: Conference Series, 2013, 436, 012060.	0.4	0
138	ISOMERIC STATES AND COLLECTIVE EXCITATIONS OF HEAVIEST NUCLEI., 2013,,.		0
139	Structures of nuclei inα-decay chains of291,293117. Physical Review C, 2012, 85, .	2.9	6
140	Influence of proton shell closure on production and identification of new superheavy nuclei. Physical Review C, 2012, 85, .	2.9	52
141	Deformation effect in the sub-barrier capture process. Physical Review C, 2012, 85, .	2.9	17
142	Influence of neutron transfer in reactions with weakly and strongly bound nuclei on the sub-barrier capture process. Physical Review C, 2012, 86, .	2.9	29
143	Oblate-prolate deformation effect in capture reactions at sub-barrier energies. Physical Review C, 2012, 85, .	2.9	17
144	Role of neutron transfer in capture processes at sub-barrier energies. Physical Review C, 2012, 85, .	2.9	61

#	Article	IF	Citations
145	Isotopic trends of capture cross section and mean-square angular momentum of the captured system. Physical Review C, 2012, 85, .	2.9	26
146	Role of quasiparticle structure in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>\hat{l} </mml:mi></mml:math> decays of the heaviest nuclei. Physical Review C, 2012, 85, .	2.9	13
147	Role of neutron transfer and deformation effect in capture process at sub-barrier energies. EPJ Web of Conferences, 2012, 38, 09005.	0.3	O
148	Population of rotational bands in superheavy nuclei. EPJ Web of Conferences, 2012, 21, 06002.	0.3	0
149	Description of light charged particle multiplicities in the framework of dinuclear system model. EPJ Web of Conferences, 2012, 38, 09002.	0.3	1
150	Influence of proton shell closure on production of new superheavy nuclei. EPJ Web of Conferences, 2012, 38, 17004.	0.3	0
151	Dipole and quadrupole collectivity in atomic nuclei. Journal of Physics: Conference Series, 2012, 366, 012009.	0.4	1
152	Mass distributions for induced fission of different Hg isotopes. Physical Review C, 2012, 86, .	2.9	55
153	Quasifission at extreme sub-barrier energies. European Physical Journal A, 2012, 48, 1.	2.5	2
154	Emission of heavy clusters in nuclear reactions at low collision energies. Physics of Particles and Nuclei, 2012, 43, 825-866.	0.7	11
155	Search for a systematic behavior of the breakup probability in reactions with weakly bound projectiles at energies around the Coulomb barrier. Physical Review C, 2012, 86, .	2.9	22
156	AstrophysicalSfactor, logarithmic slope of the excitation function, and barrier distribution. Physical Review C, 2012, 86, .	2.9	11
157	Alpha-decay fine structures of U isotopes and systematics for isotopic chains of Po and Rn. European Physical Journal A, 2012, 48, 1.	2.5	23
158	Extreme quadrupole deformation and clusterization. EPJ Web of Conferences, 2012, 38, 16001.	0.3	3
159	Quantum diffusion description of the subbarrier-capture process in heavy-ion reactions. Physics of Atomic Nuclei, 2012, 75, 439-448.	0.4	9
160	Peculiarities of sub-barrier reactions with heavy ions. Journal of Physics: Conference Series, 2011, 282, 012001.	0.4	21
161	Sub-barrier capture with quantum diffusion approach. EPJ Web of Conferences, 2011, 17, 04003.	0.3	17
162	Production of doubly magic nucleus100Sn in72,74,76Kr+40Ca,72,74,76Kr+40Ar and72,74,76Kr+32S reactions at 4 â° 6 MeV/nucleon. EPJ Web of Conferences, 2011, 17, 10004.	0.3	1

#	Article	IF	CITATIONS
163	Decay of excited nuclei produced in the 78,82Kr+40Ca reactions at 5.5 MeV/nucleon. EPJ Web of Conferences, 2011, 17, 10005.	0.3	4
164	Production of exotic nuclei in quasifission-type reactions. Journal of Physics: Conference Series, 2011, 282, 012002.	0.4	2
165	Mechanism of heavy ion fusion to superheavy nuclei. Journal of Physics: Conference Series, 2011, 322, 012009.	0.4	2
166	Super and hyperdeformed states, and reactions to populate them. EPJ Web of Conferences, 2011, 17, 16001.	0.3	1
167	Multiple reflection-asymmetric-type band structures in 220Th and dinuclear model. European Physical Journal A, 2011, 47, 1.	2.5	6
168	Sub-barrier capture with quantum diffusion approach: Actinide-based reactions. European Physical Journal A, 2011, 47, 1.	2.5	35
169	Impact of nuclear structure on production and identification of new superheavy nuclei. European Physical Journal A, 2011, 47, 1.	2.5	12
170	Decay of excited nuclei produced inKr78,82+Ca40reactions at 5.5 MeV/nucleon. Physical Review C, 2011, 83, .	2.9	57
171	Non-Markovian dynamics of an open quantum system with nonstationary coupling. Physical Review E, 2011, 83, 041104.	2.1	5
172	Role of angular momentum in the production of complex fragments in fusion and quasifission reactions. Physical Review C, 2011, 83, .	2.9	33
173	Emission of clusters withZ>2from excited actinide nuclei. Physical Review C, 2011, 84, .	2.9	11
174	Probability of passing through a parabolic barrier and thermal decay rate: Case of linear coupling both in momentum and in coordinate. Physical Review A, 2011, 84, .	2.5	17
175	Peculiarities of parabolic-barrier penetrability and thermal decay rate with the quantum diffusion approach. Physical Review A, 2011, 83, .	2.5	16
176	Population of ground-state rotational bands of superheavy nuclei produced in complete fusion reactions. Physical Review C, 2011, 84, .	2.9	9
177	Effects of nuclear deformation and neutron transfer in capture processes, and fusion hindrance at deep sub-barrier energies. Physical Review C, 2011 , 84 , .	2.9	89
178	Behavior of one-quasiparticle levels in odd isotonic chains of heavy nuclei. Physical Review C, 2011, 84,	2.9	34
179	Role of the entrance channel in the production of complex fragments in fusion-fission and quasifission reactions in the framework of the dinuclear system model. Physical Review C, 2011, 84, .	2.9	36
180	PRODUCTION OF NEUTRON-RICH ISOTOPES IN TRANSFER-TYPE REACTIONS. International Journal of Modern Physics E, 2011, 20, 999-1002.	1.0	1

#	Article	IF	Citations
181	FORMATION OF HYPERDEFORMED STATES FROM DINUCLEAR SYSTEM. International Journal of Modern Physics E, 2011, 20, 919-922.	1.0	O
182	Title is missing!. Acta Physica Polonica B, 2011, 42, 481.	0.8	1
183	Title is missing!. Acta Physica Polonica B, 2011, 42, 487.	0.8	2
184	On the hyperdeformed state of the ^{36 < /sup>Ar nucleus. Journal of Physics: Conference Series, 2010, 239, 012006.}	0.4	4
185	Emission of charged particles from excited compound nucleus. , 2010, , .		2
186	Quantum statistical effects in nuclear reactions, fission, and open quantum systems. Physics of Particles and Nuclei, 2010, 41, 175-229.	0.7	47
187	Isomeric states in heavy nuclei. Physics of Particles and Nuclei, 2010, 41, 1101-1104.	0.7	4
188	Peculiarities of the sub-barrier fusion with the quantum diffusion approach. European Physical Journal A, 2010, 45, 125-130.	2.5	65
189	Possibility of production of new superheavy nuclei in complete fusion reactions. Nuclear Physics A, 2010, 834, 345c-348c.	1.5	13
190	Transfer-induced fission of superheavy nuclei. Physical Review C, 2010, 82, .	2.9	2
191	Formation of hyperdeformed states by neutron emission from a dinuclear system. Physical Review C, 2010, 81, .	2.9	15
192	Production of neutron-rich Ca, Sn, and Xe isotopes in transfer-type reactions with radioactive beams. Physical Review C, 2010, 82, .	2.9	31
193	Emission of charged particles from excited compound nuclei. Physical Review C, 2010, 82, .	2.9	51
194	Possibility of production of neutron-rich Zn and Ge isotopes in multinucleon transfer reactions at low energies. Physical Review C, 2010, 81, as of nuclei with a multinucleon transfer reactions at	2.9	63
195	xmins:mmi="http://www.w3.org/1998/Math/MathMil" display="inline"> <mml:mrow><mml:mi>Z</mml:mi><mml:mo>=</mml:mo><mml:mn>64</mml:mn>in the multinucleon transfer reaction<mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathMil">display="inline"><mml:mrow><mml:mmultiscripts><mml:mi< th=""><th>> 2.9</th><th>ath>–8<mark>0</mark> 42</th></mml:mi<></mml:mmultiscripts></mml:mrow></mml:math></mml:mrow>	> 2.9	ath>–8 <mark>0</mark> 42
196	High-spin isomers in some of the heaviest nuclei: Spectra, decays, and population. Physical Review C, 2010, 81, .	2.9	59
197	Comment on "Ratios of disintegration rates for distinct decay modes of an excited nucleus― Physical Review C, 2010, 81, .	2.9	5
198	Formation of hyperdeformed states in capture reactions at sub-barrier energies. Physical Review C, 2010, 82, .	2.9	10

#	Article	IF	CITATIONS
199	One-quasiparticle states in odd- <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow></mml:mrow></mml:mrow></mml:math> heavy nuclei. Physical Review C, 2010, 82, .	2.9	39
200	Description of light charged particle emission in ternary fission. , 2009, , .		1
201	Capture process in nuclear reactions with a quantum master equation. Physical Review C, 2009, 80, .	2.9	36
202	Interaction times in theXe136+Xe136andU238+U238reactions with a quantum master equation. Physical Review C, 2009, 80, .	2.9	30
203	Stability of superheavy nuclei produced in actinide-based complete fusion reactions: Evidence for the next magic proton number at Zâ @ $\frac{4}{120}$. Physical Review C, 2009, 79, .	2.9	35
204	Feature of production of new superheavy nuclei in actinide-based complete-fusion reactions. European Physical Journal A, 2009, 41, 235-241.	2.5	57
205	Quantum-mechanical description of the initial stage of fusion reaction. Physics of Atomic Nuclei, 2009, 72, 425-438.	0.4	4
206	Isotopic dependence of the cross section for the induced fission of heavy nuclei. Physics of Atomic Nuclei, 2009, 72, 928-937.	0.4	1
207	Application of statistical methods for analysis of heavy-ion reactions in the framework of a dinuclear system model. Physics of Particles and Nuclei, 2009, 40, 847-889.	0.7	34
208	Possibility of Production of New Superheavy Nuclei in Complete Fusion Reactions., 2009,,.		0
209	Isotopic Dependence of Isomeric States in Heavy Nuclei. , 2009, , .		2
210	Isotopic dependence of induced fission cross sections for heavy nuclei., 2009,,.		0
211	Fission transient time with quantum master equation. , 2009, , .		0
212	Spectroscopic factors within the dinuclear-system model. Physics of Atomic Nuclei, 2008, 71, 1756-1768.	0.4	8
213	Quantum non-Markovian Langevin formalism for heavy ion reactions near the Coulomb barrier. Physical Review C, 2008, 77, .	2.9	16
214	CLUSTER ASPECTS OF PRODUCTION AND DECAY OF EXOTIC NUCLEI. International Journal of Modern Physics E, 2008, 17, 2363-2367.	1.0	0
215	CLUSTER FEATURES OF STRONGLY DEFORMED NUCLEI SHAPES. International Journal of Modern Physics E, 2008, 17, 2020-2024.	1.0	9
216	BINARY AND TERNARY FISSION WITHIN THE STATISTICAL MODEL. International Journal of Modern Physics E, 2008, 17, 2014-2019.	1.0	1

#	Article	IF	CITATIONS
217	Possibility of production of neutron-rich isotopes in transfer-type reactions at intermediate energies. Physical Review C, 2008, 78, .	2.9	15
218	Possibilities of production of neutron-deficient isotopes of U, Np, Pu, Am, Cm, and Cf in complete fusion reactions. Physical Review C, 2008, 78, .	2.9	16
219	NUCLEAR MOLECULES., 2008,, 34-43.		O
220	NUCLEAR MOLECULES. International Journal of Modern Physics E, 2007, 16, 1021-1031.	1.0	3
221	Isotopic Dependence of Neutron Emission from Dinuclear System. AIP Conference Proceedings, 2007, , .	0.4	0
222	Dynamics in the production of superheavy elements. AIP Conference Proceedings, 2007, , .	0.4	0
223	Fission rate and transient time with a quantum master equation. Physical Review C, 2007, 76, .	2.9	25
224	Coordinate-dependent diffusion coefficients: Decay rate in open quantum systems. Physical Review A, 2007, 75, .	2.5	21
225	Influence of external magnetic field on dynamics of open quantum systems. Physical Review E, 2007, 75, 031115.	2.1	21
226	NUCLEAR MOLECULAR STRUCTURE. , 2007, , .		0
227	Isotopic dependence of neutron emission from dinuclear system. European Physical Journal A, 2007, 33, 223-230.	2.5	6
228	Decay rate with coordinate-dependent diffusion coefficients. Physica A: Statistical Mechanics and Its Applications, 2007, 386, 36-46.	2.6	5
229	Nuclear structure in the dinuclear model with rotating clusters. Physics of Atomic Nuclei, 2007, 70, 1350-1356.	0.4	2
230	Cluster approach to the structure of nuclei with Z ≥ 96. Physics of Atomic Nuclei, 2007, 70, 1452-1456.	0.4	1
231	Cluster aspects of binary and ternary fission. Physics of Atomic Nuclei, 2007, 70, 1649-1653.	0.4	1
232	Effects of nuclear deformation in dinuclear systems: Application to the fission process. Physics of Atomic Nuclei, 2006, 69, 197-206.	0.4	2
233	Production of neutron-rich Ca isotopes in transfer-type reactions. European Physical Journal A, 2006, 27, 187-190.	2.5	25
234	Ternary fission within statistical approach. European Physical Journal A, 2006, 30, 579-589.	2.5	27

#	Article	IF	CITATIONS
235	Transport coefficients of a quantum system interacting with a squeezed heat bath. Physical Review E, 2006, 74, 011118.	2.1	11
236	Possible alternative parity bands in the heaviest nuclei. Physical Review C, 2006, 74, .	2.9	47
237	DYNAMICS OF MASS ASYMMMETRY IN DINUCLEAR SYSTEMS. , 2006, , .		0
238	Towards neutron drip line via transfer-type reactions. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2005, 621, 119-125.	4.1	45
239	Survival probabilities of superheavy nuclei based on recent predictions of nuclear properties. European Physical Journal A, 2005, 23, 249-256.	2.5	26
240	Bimodality and charge splitting in fission of actinides. European Physical Journal A, 2005, 26, 327-332.	2.5	24
241	Fine Structures by Deformation in the Mass-Energy Distribution of Fission Fragments. Acta Physica Hungarica A Heavy Ion Physics, 2005, 22, 3-11.	0.4	1
242	Spectroscopic factors and barrier penetrabilities in cluster radioactivity. Physics of Atomic Nuclei, 2005, 68, 1443-1452.	0.4	12
243	Quantum non-Markovian Langevin equations and transport coefficients. Physics of Atomic Nuclei, 2005, 68, 2009-2021.	0.4	3
244	Quantum Non-Markovian Stochastic Equations. Theoretical and Mathematical Physics(Russian) Tj ETQq0 0 0 rgBT	· /Oyerlock	10 Tf 50 38
245	Cluster Features of Normal-, Super- and Hyperdeformed nuclei. AIP Conference Proceedings, 2005, , .	0.4	1
246	Isotopic Trends in Production of Superheavies. AIP Conference Proceedings, 2005, , .	0.4	0
247	Transfer-type products accompanying cold fusion reactions. Physical Review C, 2005, 72, .	2.9	14
248	Production of unknown transactinides in asymmetry-exit-channel quasifission reactions. Physical Review C, 2005, 71 , .	2.9	77
249	Non-Markovian dynamics of quantum systems. I. Formalism and transport coefficients. Physical Review E, 2005, 71, 016121.	2.1	50
250	Spectroscopic factors and cluster decay half-lives of heavy nuclei. Physical Review C, 2005, 71, .	2.9	56
251	Non-Markovian dynamics of quantum systems. II. Decay rate, capture, and pure states. Physical Review E, 2005, 71, 016122.	2.1	34
252	Isotopic trends in the production of superheavy nuclei in cold fusion reactions. Physical Review C, 2004, 69, .	2.9	60

#	Article	IF	CITATIONS
253	Possibilities of synthesis of new superheavy nuclei in actinide-based fusion reactions. Physical Review C, 2004, 69, .	2.9	54
254	Unexpected isotopic trends in synthesis of superheavy nuclei. Physical Review C, 2004, 69, .	2.9	60
255	Decay out of superdeformed bands in the mass regionAâ‰^190within a cluster approach. Physical Review C, 2004, 69, .	2.9	23
256	Cluster interpretation of parity doublet rotational bands in odd-mass nuclei. Physical Review C, 2004, 70, .	2.9	32
257	Nuclear structure with the dinuclear model. Physics of Atomic Nuclei, 2004, 67, 1701-1708.	0.4	3
258	Superdeformation as cluster state. Physics of Atomic Nuclei, 2004, 67, 1709-1714.	0.4	1
259	Nontrivial manifestation of clustering in fission of heavy nuclei at low and middle excitations. Physics of Atomic Nuclei, 2004, 67, 1726-1730.	0.4	11
260	Possible explanation of fine structures in mass-energy distribution of fission fragments. European Physical Journal A, 2004, 22, 51-60.	2.5	50
261	Fusion and Quasifission within the Dinuclear System Model. Acta Physica Hungarica A Heavy Ion Physics, 2004, 19, 87-94.	0.4	6
262	Survival Probability of Excited Heavy and Superheavy Nuclei. Acta Physica Hungarica A Heavy Ion Physics, 2004, 19, 147-148.	0.4	0
263	Manifestation of cluster effects in the structure of medium mass and heavy nuclei. Nuclear Physics A, 2004, 734, 433-436.	1.5	6
264	Fusion and Quasifission in a Molecular Model. , 2004, , 447-462.		0
265	CLUSTER EFFECTS IN ALTERNATING PARITY AND SUPERDEFORMED BANDS OF MEDIUM MASS AND HEAVY NUCLEI., 2004, , .		0
266	QUASIFISSION OF THE DINUCLEAR SYSTEM. , 2004, , .		0
267	Cluster Interpretation of Highly Deformed Nuclear States. Acta Physica Hungarica A Heavy Ion Physics, 2003, 18, 311-316.	0.4	4
268	Generation of angular momentum of fission fragments in a cluster model. Physics of Atomic Nuclei, 2003, 66, 206-217.	0.4	4
269	Survivability of excited superheavy nuclei. Physics of Atomic Nuclei, 2003, 66, 218-232.	0.4	8
270	Characteristics of quasifission products within the dinuclear system model. Physical Review C, 2003, 68, .	2.9	190

#	Article	IF	CITATIONS
271	Competition between evaporation channels in neutron-deficient nuclei. Physical Review C, 2003, 68, .	2.9	60
272	Cluster effects in the structure of the ground state and superdeformed bands of 60Zn. Physical Review C, 2003, 67, .	2.9	33
273	Cluster interpretation of properties of alternating parity bands in heavy nuclei. Physical Review C, 2003, 67, .	2.9	93
274	FUSION-FISSION FOR SUPERHEAVY NUCLEI., 2003,,.		1
275	Survival probability of superheavy nuclei. Physical Review C, 2002, 65, .	2.9	91
276	Synthesis of Superheavy Elements in Dinuclear System Model. Progress of Theoretical Physics Supplement, 2002, 146, 536-537.	0.1	0
277	Complete fusion and quasifission in dinuclear system model. AIP Conference Proceedings, 2002, , .	0.4	0
278	The effect of the entrance channel on the synthesis of superheavy elements. AIP Conference Proceedings, 2002, , .	0.4	0
279	Generalization of Kramers formula for open quantum systems. Physica A: Statistical Mechanics and Its Applications, 2002, 316, 297-313.	2.6	17
280	Role of bending mode in generation of angular momentum of fission fragments. Physical Review C, 2002, 65, .	2.9	30
281	FUSION TO SUPERHEAVY NUCLEI AND QUASIFISSION IN THE DINUCLEAR MODEL. , 2002, , .		0
282	Fusion and quasifission in collisions of heavy nuclei. AIP Conference Proceedings, 2001, , .	0.4	3
283	Potential in mass asymmetry and quasifission in a dinuclear system. Nuclear Physics A, 2001, 679, 410-426.	1.5	27
284	Synthesis of superheavy elements and the process of complete fusion of massive nuclei. Physics of Atomic Nuclei, 2001, 64, 1116-1120.	0.4	0
285	How to observe hyperdeformed states populated in heavy ion reactions. Physical Review C, 2001, 64, .	2.9	14
286	Quasifission process in a transport model for a dinuclear system. Physical Review C, 2001, 64, .	2.9	57
287	Fusion to Superheavy Nuclei and Quasifission. Acta Physica Hungarica A Heavy Ion Physics, 2001, 14, 3-12.	0.4	0
288	Fusion and Quasifission of Heavy Nuclei. , 2001, , 163-172.		O

#	Article	IF	Citations
289	Melting or nucleon transfer in fusion of heavy nuclei? Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2000, 481, 228-235.	4.1	42
290	Isotopic dependence of fusion cross sections in reactions with heavy nuclei. Nuclear Physics A, 2000, 678, 24-38.	1.5	185
291	Relationship between dinuclear systems and nuclei in highly deformed states. Nuclear Physics A, 2000, 671, 119-135.	1.5	55
292	Dynamical restriction for a growing neck due to mass parameters in a dinuclear system. Nuclear Physics A, 2000, 671, 233-254.	1.5	38
293	Clustering aspects of nuclei in highly deformed states. Physics of Atomic Nuclei, 2000, 63, 1716-1723.	0.4	0
294	Effect of shell structure on energy dissipation in heavy-ion collisions. European Physical Journal A, 2000, 8, 115-124.	2.5	5
295	Effect of transport coefficients on the time dependence of a density matrix. Journal of Physics A, 2000, 33, 4265-4276.	1.6	20
296	Analysis of survival probability of superheavy nuclei. Physical Review C, 2000, 62, .	2.9	63
297	Friction and diffusion coefficients in coordinate in nonequilibrium nuclear processes. Nuclear Physics A, 1999, 645, 376-398.	1.5	21
298	Problems in description of fusion of heavy nuclei in the two-center shell model approach. Nuclear Physics A, 1999, 646, 29-52.	1.5	64
299	Diffusion coefficients in coordinate in density matrix description of non-equilibrium quantum processes. Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 260, 39-45.	2.1	21
300	Tunneling with dissipation in open quantum systems. Physics Letters, Section A: General, Atomic and Solid State Physics, 1998, 244, 482-488.	2.1	28
301	Fusion cross sections for superheavy nuclei in the dinuclear system concept. Nuclear Physics A, 1998, 633, 409-420.	1.5	220
302	Fusion of massive nuclei and synthesis of superheavy elements in the framework of the DNS concept. , $1998, , .$		0
303	Competition between complete fusion and quasifission in reactions with heavy nuclei., 1998,,.		2
304	Friction coefficient for deep-inelastic heavy-ion collisions. Physical Review C, 1997, 56, 373-380.	2.9	36
305	Process of complete fusion of nuclei within the framework of dinuclear system concept. Il Nuovo Cimento A, 1997, 110, 1127-1135.	0.2	7
306	Competition between complete fusion and quasi-fission in dinuclear system. Il Nuovo Cimento A, 1997, 110, 1143-1148.	0.2	31

#	Article	IF	CITATIONS
307	Neck dynamics at the approach stage of heavy ion collisions. Nuclear Physics A, 1997, 619, 241-260.	1.5	13
308	Treatment of competition between complete fusion and quasifission in collisions of heavy nuclei. Nuclear Physics A, 1997, 627, 361-378.	1.5	153
309	Model of competition between fusion and quasifission in reactions with heavy nuclei. Nuclear Physics A, 1997, 618, 176-198.	1.5	130
310	Effects of shell structure and N/Z ratio of a projectile on the excitation energy distribution between interacting nuclei in deep-inelastic collisions. Physical Review C, 1996, 53, 871-879.	2.9	13
311	Mass parameters for a dinuclear system. Nuclear Physics A, 1995, 584, 205-220.	1.5	52
312	Partition of excitation energy between reaction products in heavy ion collisions. Zeitschrift FÃ $\frac{1}{4}$ r Physik A, 1994, 347, 203-210.	0.9	17
313	Microscopic driving potential for a dinuclear system. Nuclear Physics A, 1993, 551, 321-332.	1.5	26