
Roberto A Perego

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8642707/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Grade-Dependent Metabolic Reprogramming in Kidney Cancer Revealed by Combined Proteomics and Metabolomics Analysis. Cancer Research, 2015, 75, 2541-2552.	0.9	236
2	Integrated multi-omics characterization reveals a distinctive metabolic signature and the role of NDUFA4L2 in promoting angiogenesis, chemoresistance, and mitochondrial dysfunction in clear cell renal cell carcinoma. Aging, 2018, 10, 3957-3985.	3.1	133
3	The glucose and lipid metabolism reprogramming is grade-dependent in clear cell renal cell carcinoma primary cultures and is targetable to modulate cell viability and proliferation. Oncotarget, 2017, 8, 113502-113515.	1.8	95
4	36-kDa Annexin A3 Isoform Negatively Modulates Lipid Storage in Clear Cell Renal Cell Carcinoma Cells. American Journal of Pathology, 2020, 190, 2317-2326.	3.8	53
5	Integration of Lipidomics and Transcriptomics Reveals Reprogramming of the Lipid Metabolism and Composition in Clear Cell Renal Cell Carcinoma. Metabolites, 2020, 10, 509.	2.9	51
6	Primary Cell Cultures from Human Renal Cortex and Renal-Cell Carcinoma Evidence a Differential Expression of Two Spliced Isoforms of Annexin A3. American Journal of Pathology, 2010, 176, 1660-1670.	3.8	44
7	Primary Cell Cultures Arising from Normal Kidney and Renal Cell Carcinoma Retain the Proteomic Profile of Corresponding Tissues. Journal of Proteome Research, 2005, 4, 1503-1510.	3.7	38
8	Major Action of Endogenous Lysyl Oxidase in Clear Cell Renal Cell Carcinoma Progression and Collagen Stiffness Revealed by Primary Cell Cultures. American Journal of Pathology, 2016, 186, 2473-2485.	3.8	36
9	Concentration and microsatellite status of plasma DNA for monitoring patients with renal carcinoma. European Journal of Cancer, 2008, 44, 1039-1047.	2.8	32
10	PKHhigh cells within clonal human nephrospheres provide a purified adult renal stem cell population. Stem Cell Research, 2013, 11, 1163-1177.	0.7	29
11	Nephrosphere-Derived Cells Are Induced to Multilineage Differentiation when Cultured on Human Decellularized Kidney Scaffolds. American Journal of Pathology, 2018, 188, 184-195.	3.8	25
12	Renal cell carcinoma primary cultures maintain genomic and phenotypic profile of parental tumor tissues. BMC Cancer, 2011, 11, 244.	2.6	24
13	<i>De novo UBE2A</i> mutations are recurrently acquired during chronic myeloid leukemia progression and interfere with myeloid differentiation pathways. Haematologica, 2019, 104, 1789-1797.	3.5	21
14	Hepcidin regulation in a mouse model of acute hypoxia. European Journal of Haematology, 2018, 100, 636-643.	2.2	17
15	Arg tyrosine kinase modulates TGF-β1 production in human renal tubular cells under high-glucose conditions. Journal of Cell Science, 2016, 129, 2925-2936.	2.0	11
16	The expression of the non-receptor tyrosine kinases Arg and c-abl is differently modulated in B lymphoid cells at different stages of differentiation. FEBS Letters, 2002, 527, 216-222.	2.8	10
17	Eight fullâ€length abelson related gene (Arg) isoforms are constitutively expressed in cakiâ€1 cell line and cell distribution of two isoforms has been analyzed after transfection. Journal of Cellular Biochemistry, 2008, 105, 1219-1227.	2.6	10
18	The 1ALCTL and 1BLCTL isoforms of Arg/Abl2 induce fibroblast activation and extra cellular matrix remodelling differently. Biology Open, 2019, 8, .	1.2	7

Roberto A Perego

#	Article	IF	CITATIONS
19	DNA Damage in Circulating Hematopoietic Progenitor Stem Cells as Promising Biological Sensor of Frailty. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2022, 77, 1279-1286.	3.6	5
20	PKHhigh/CD133+/CD24â^' Renal Stem-Like Cells Isolated from Human Nephrospheres Exhibit In Vitro Multipotency. Cells, 2020, 9, 1805.	4.1	4
21	CORRELATION BETWEEN FRAILTY AND DNA DAMAGE IN HEMATOPOIETIC STEM CELLS: A PILOT STUDY. Innovation in Aging, 2019, 3, S87-S87.	0.1	1
22	The role of quantitative polymerase chain reaction in the management of follicular lymphoma patients. Tumori, 2005, 91, 59-66.	1.1	1
23	Response to communication of Paola Romagnani and Giuseppe Remuzzi. Stem Cell Research, 2014, 12, 830-831.	0.7	0