Ali Ã**‡**±rpan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8641955/publications.pdf

Version: 2024-02-01

186265 155660 3,487 114 28 55 citations h-index g-index papers 115 115 115 4044 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Selenopheneâ€containing conjugated polymers for supercapacitor electrodes. Journal of Polymer Science, 2022, 60, 109-121.	3.8	6
2	Investigation the effect of π bridge and side chain on photovoltaic properties of benzodithiophene and quinoxaline based conjugated polymers. European Polymer Journal, 2022, 169, 111141.	5.4	6
3	Syntheses of novel fluorinated dibenzo[<i>a</i> , <i>c</i>)]phenazine comprising polymers for electrochromic device applications. New Journal of Chemistry, 2022, 46, 14826-14839.	2.8	2
4	Indenoquinoxalinone based conjugated polymer substrate for laccase biosensor. Materials Chemistry and Physics, 2021, 257, 123788.	4.0	11
5	Effect of thiophene, 3-hexylthiophene, selenophene, and Thieno[3,2-b]thiophene spacers on OPV device performance of novel 2,1,3-benzothiadiazole based alternating copolymers. Journal of Electroanalytical Chemistry, 2021, 895, 115483.	3.8	4
6	Synthesis of selenophene substituted benzodithiophene and fluorinated benzothiadiazole based conjugated polymers for organic solar cell applications. Electrochimica Acta, 2021, 398, 139298.	5.2	8
7	Non-fullerene organic photovoltaics based on thienopyrroledione comprising random copolymers; effect of alkyl chains. Renewable Energy, 2021, 178, 202-211.	8.9	8
8	Electrical characteristics of organic heterojunction with an alternating benzotriazole and fluorene containing copolymer. Journal of Materials Science: Materials in Electronics, 2020, 31, 18816-18831.	2.2	12
9	Analysis of temperature-dependent forward and leakage conduction mechanisms in organic thin film heterojunction diode with fluorine-based PCBM blend. Journal of Materials Science: Materials in Electronics, 2020, 31, 15233-15242.	2.2	9
10	A comprehensive study: Theoretical and experimental investigation of heteroatom and substituent effects on frontier orbitals and polymer solar cell performances. Journal of Polymer Science, 2020, 58, 2792-2806.	3.8	11
11	Synthesis and characterization of optical, electrochemical and photovoltaic properties of selenophene bearing benzodithiophene based alternating polymers. Journal of Electroanalytical Chemistry, 2020, 862, 114014.	3.8	8
12	Narrow band gap benzodithiophene and quinoxaline bearing conjugated polymers for organic photovoltaic applications. Dyes and Pigments, 2020, 180, 108479.	3.7	13
13	Synthesis, electrochromic characterization and solar cell application of thiophene bearing alternating copolymers with azobenzene and coumarin subunits. Journal of Macromolecular Science - Pure and Applied Chemistry, 2020, 57, 589-599.	2.2	4
14	Graphene oxide-doped PEDOT:PSS as hole transport layer in inverted bulk heterojunction solar cell. Journal of Materials Science: Materials in Electronics, 2020, 31, 3576-3584.	2.2	11
15	A biosensor platform based on amine functionalized conjugated benzenediamineâ€benzodithiophene polymer for testosterone analysis. Journal of Applied Polymer Science, 2020, 137, 49332.	2.6	14
16	Novel benzodithiophene type low band gap polymer solar cell application and device stability study with atomic layer deposition encapsulation technique. Materials Research Express, 2019, 6, 105108.	1.6	2
17	A novel multi-electrochromic polymer based on selenophene and benzotriazole via electrochemical and chemical polymerization. Journal of Macromolecular Science - Pure and Applied Chemistry, 2019, 56, 197-205.	2.2	4
18	Conjugated polymers with benzothiadiazole and benzotriazole moieties for polymer solar cells. Renewable Energy, 2019, 139, 1184-1193.	8.9	19

#	Article	IF	Citations
19	Thiadiazoloquinoxaline and benzodithiophene bearing polymers for electrochromic and organic photovoltaic applications. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 937-946.	1.6	5
20	Syntheses and Characterization of Benzotriazole, Thienopyrroledione, and Benzodithiophene Containing Conjugated Random Terpolymers for Organic Solar Cells. Journal of the Electrochemical Society, 2019, 166, H849-H859.	2.9	5
21	Medium band gap polymer based solution-processed high- $\langle i \rangle \hat{l}^2 \langle i \rangle$ composite gate dielectrics for ambipolar OFET. Journal Physics D: Applied Physics, 2018, 51, 125104.	2.8	6
22	Associative behaviour and effect of functional groups on the fluorescence of graphene oxide. Physical Chemistry Chemical Physics, 2018, 20, 7559-7569.	2.8	11
23	High stability of benzotriazole and benzodithiophene containing medium band-gap polymer solar cell. Solar Energy Materials and Solar Cells, 2018, 174, 433-444.	6.2	24
24	A Novel Blue to Transparent Polymer for Electrochromic Supercapacitor Electrodes. Electroanalysis, 2018, 30, 266-273.	2.9	26
25	Alkyl-end phenanthroimidazole modification of benzotriazole based conjugated polymers for optoelectronic applications. Synthetic Metals, 2018, 244, 1-9.	3.9	10
26	Effect of layer thickness on the electrical parameters and conduction mechanisms of conjugated polymerâ€based heterojunction diode. Journal of Applied Polymer Science, 2017, 134, .	2.6	16
27	Multipurpose selenophene containing conjugated polymers for optoelectronic applications. Journal of Macromolecular Science - Pure and Applied Chemistry, 2017, 54, 133-139.	2.2	14
28	Triphenylamine Based Random Copolymers: The Effect of Molecular Weight on Performance of Solar Cell and Optoelectronic Properties. Macromolecular Chemistry and Physics, 2017, 218, 1600544.	2.2	9
29	A new highâ€performance blue to transmissive electrochromic material and use of silver nanowire network electrodes as substrates. Journal of Polymer Science Part A, 2017, 55, 1680-1686.	2.3	24
30	Silver Nanowire/Conducting Polymer Nanocomposite Electrochromic Supercapacitor Electrodes. Journal of the Electrochemical Society, 2017, 164, A721-A727.	2.9	39
31	A triazoloquinoxaline and benzodithiophene bearing low band gap copolymer for electrochromic and organic photovoltaic applications. Synthetic Metals, 2017, 228, 111-119.	3.9	13
32	Benzodithiophene and Benzotriazole Bearing Conjugated Polymers for Electrochromic and Organic Solar Cell Applications. Journal of the Electrochemical Society, 2017, 164, G71-G76.	2.9	13
33	Synthesis of bistriphenylamine―and benzodithiopheneâ€based random conjugated polymers for organic photovoltaic applications. Journal of Polymer Science Part A, 2017, 55, 3705-3715.	2.3	7
34	Efficient benzodithiophene and thienopyrroledione containing random polymers as components for organic solar cells. Polymer, 2017, 133, 60-67.	3.8	11
35	Enhancing the power conversion efficiency of polymer solar cells via selection of quinoxaline substituents. New Journal of Chemistry, 2017, 41, 14635-14645.	2.8	1
36	Effect of substituent groups on quinoxaline-based random copolymers on the optoelectronic and photovoltaic properties. Polymer, 2016, 101, 208-216.	3.8	14

#	Article	IF	CITATIONS
37	2,1,3-Benzooxadiazole, thiophene and benzodithiophene based random copolymers for organic photovoltaics: thiophene versus thieno[3,2-b]thiophene as π-conjugated linkers. New Journal of Chemistry, 2016, 40, 10455-10464.	2.8	19
38	Incorporation of different conjugated linkers into low band gap polymers based on 5,6â€Bis(octyloxy)â€⊋,1,3 benzooxadiazole for tuning optoelectronic properties. Journal of Polymer Science Part A, 2016, 54, 2459-2467.	2.3	9
39	Poly((2-alkylbenzo[1,2,3]triazole-4,7-diyl)vinylene)s for organic solar cells. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 1539-1545.	2.1	5
40	Electrochemical Properties of Perylene Diimide (PDI) and Benzotriazole (Btz) Bearing Conjugated Polymers to Investigate the Effect of π-Bridge on Electrochemical Properties. Journal of Macromolecular Science - Pure and Applied Chemistry, 2015, 52, 1-9.	2.2	10
41	Syntheses and Optical Properties of Perfluorophenyl Containing Benzimidazole Derivatives: The Effect of Donor Units. Journal of Macromolecular Science - Pure and Applied Chemistry, 2015, 52, 510-516.	2.2	3
42	Selenophene as a Bridge in Molecular Architecture of Benzotriazole Containing Conjugated Copolymers to Gain Insight on Optical and Electrochemical Properties of Polymers. Phosphorus, Sulfur and Silicon and the Related Elements, 2015, 190, 1294-1306.	1.6	6
43	Synthesis of a benzotriazole bearing alternating copolymer for organic photovoltaic applications. New Journal of Chemistry, 2015, 39, 6623-6630.	2.8	19
44	Silafluoreneâ€based polymers for electrochromic and polymer solar cell applications. Journal of Polymer Science Part A, 2015, 53, 1541-1547.	2.3	24
45	A Novel Nearâ€IR Effective Pyreneâ€Based Donor–Acceptor Electrochrome. Macromolecular Chemistry and Physics, 2015, 216, 829-836.	2,2	11
46	A novel architecture based on a conducting polymer and calixarene derivative: its synthesis and biosensor construction. RSC Advances, 2015, 5, 35940-35947.	3.6	36
47	A multi-functional fluorescent scaffold as a multi-colour probe: design and application in targeted cell imaging. RSC Advances, 2015, 5, 83361-83367.	3.6	2
48	All-Organic Electrochromic Supercapacitor Electrodes. Journal of the Electrochemical Society, 2015, 162, A2805-A2810.	2.9	39
49	Benzotriazole and benzodithiophene containing medium band gap polymer for bulk heterojunction polymer solar cell applications. Journal of Polymer Science Part A, 2015, 53, 528-535.	2.3	20
50	Synthesis and spectroelectrochemistry of dithieno(3,2â€ <i>b</i> :2′,3′â€ <i>d</i>)pyrrole derivatives. Journa of Applied Polymer Science, 2014, 131, .	2.6	22
51	Structure–property relations in donor–acceptor–donor type benzimidazole containing conjugated polymers. Journal of Materials Science, 2014, 49, 225-231.	3.7	6
52	Leakage current by Frenkel–Poole emission on benzotriazole and benzothiadiazole based organic devices. Materials Science in Semiconductor Processing, 2014, 28, 84-88.	4.0	16
53	A Novel and Effective Surface Design: Conducting Polymer/β-Cyclodextrin Host–Guest System for Cholesterol Biosensor. ACS Applied Materials & Samp; Interfaces, 2014, 6, 18290-18300.	8.0	49
54	Transparent and Flexible Supercapacitors with Single Walled Carbon Nanotube Thin Film Electrodes. ACS Applied Materials & Diterfaces, 2014, 6, 15434-15439.	8.0	131

#	Article	IF	Citations
55	Synthesis and characterization of conducting polymers containing polypeptide and ferrocene side chains as ethanol biosensors. Polymer Chemistry, 2014, 5, 6295-6306.	3.9	52
56	Thieno[3,2-b]thiophene as π-bridge at different acceptor systems for electrochromic applications. Polymer, 2014, 55, 3093-3099.	3.8	28
57	Dielectric and electrical properties of an organic device containing benzotriazole and fluorene bearing copolymer. Journal of Applied Polymer Science, 2013, 128, 1659-1664.	2.6	7
58	Synthesis and electrochromic properties of trans-stilbene bearing copolymers obtained with different repeat unit and chain length. Electrochimica Acta, 2013, 100, 110-117.	5.2	7
59	White light emitting devices by doping polyfluorene with two red emitters. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 253, 45-51.	3.9	14
60	Syntheses, electrochemical and photophysical properties of biphenyl containing conjugated copolymers. Polymer, 2013, 54, 2243-2249.	3.8	5
61	Power conversion efficiency enhancement of organic solar cells by addition of gold nanostars, nanorods, and nanospheres. Organic Electronics, 2013, 14, 1720-1727.	2.6	99
62	Optimizing the organic solar cell efficiency: Role of the active layer thickness. Solar Energy Materials and Solar Cells, 2013, 113, 100-105.	6.2	65
63	Fused structures in the polymer backbone to investigate the photovoltaic and electrochromic properties of donor–acceptorâ€type conjugated polymers. Journal of Polymer Science Part A, 2013, 51, 1933-1941.	2.3	34
64	Photo- and electroluminescence behavior of biphenyl derivative in blends with poly(vinylcarbazole). Turkish Journal of Chemistry, 2013 , , .	1.2	0
65	The Main Electrical and Interfacial Properties of Benzotriazole and Fluorene Based Organic Devices. Journal of Macromolecular Science - Pure and Applied Chemistry, 2013, 50, 168-174.	2.2	13
66	Electrochemical and optical properties of solution processable benzotriazole and benzothiadiazole containing copolymers. Synthetic Metals, 2012, 162, 79-84.	3.9	19
67	Effect of Dithienopyrrole Unit on Electrochromic and Optical Properties of Benzotriazoleâ€Based Conjugated Polymers. Macromolecular Chemistry and Physics, 2012, 213, 1885-1891.	2.2	11
68	Synthesis and electrochemical properties of a new benzimidazole derivative as the acceptor unit in donor–acceptor–donor type polymers. Electrochimica Acta, 2012, 67, 224-229.	5.2	32
69	Solution processable benzotriazole and fluorene containing copolymers for photovoltaic applications. Solar Energy Materials and Solar Cells, 2012, 99, 321-326.	6.2	33
70	Benzotriazole and benzothiadiazole containing conjugated copolymers for organic solar cell applications. Polymer, 2012, 53, 1198-1202.	3.8	23
71	Electrochromic and optical studies of solution processable benzotriazole and fluorene containing copolymers. Organic Electronics, 2011, 12, 202-209.	2.6	49
72	Emission tuning study of RGB blends. Interaction of two EL polymers and a red dye. Current Applied Physics, 2010, 10, 365-369.	2.4	8

#	Article	IF	Citations
73	Electrochemical and optical studies of furan and thieno[3,2â€∢i>b⟨/i>]thiophene end capped benzotriazole derivatives. Journal of Polymer Science Part A, 2010, 48, 5603-5610.	2.3	45
74	Preparation of Metallic Line Patterns from Functional Block Copolymers. Small, 2009, 5, 1343-1348.	10.0	34
75	Highly efficient polymer blends from a polyfluorene derivative and PVK for LEDs. Polymer, 2009, 50, 6057-6064.	3.8	38
76	Donorâ [^] Acceptor Poly(thiophene- <i>block</i> -perylene diimide) Copolymers: Synthesis and Solar Cell Fabrication. Macromolecules, 2009, 42, 1079-1082.	4.8	305
77	Synthesis and photophysical property of well-defined donor–acceptor diblock copolymer based on regioregular poly(3-hexylthiophene) and fullerene. Journal of Materials Chemistry, 2009, 19, 1483.	6.7	125
78	Electroluminescence of (styrene-co-acrylic acid) ionomer/conjugated MEH-PPV blends. Synthetic Metals, 2008, 158, 219-225.	3.9	15
79	Luminescence of fluorenes 2,7-conjugatively extended with pyrenylvinylene and pyrenylvinylene-phenylenevinylene. Journal of Materials Chemistry, 2007, 17, 3030.	6.7	9
80	Novel Poly(phenylene vinylenes) with Well-Defined Poly(Îμ-caprolactone) or Polystyrene as Lateral Substituents:  Synthesis and Characterization. Macromolecules, 2007, 40, 5301-5310.	4.8	28
81	Luminescence of Molecular and Block Copolymeric 2,7-Bis(phenylethenyl)-fluorenones; Identifying Green-Band Emitter Sites in a Fluorene-Based Luminophore. Chemistry of Materials, 2007, 19, 3265-3270.	6.7	18
82	Photo- and electroluminescent behavior of Eu3+ ions in blends with poly(vinyl-carbazole). Journal of the Brazilian Chemical Society, 2007, 18, 330-336.	0.6	10
83	Optimizing OLED Efficacy of 2,7-Diconjugated 9,9-Dialkylfluorenes by Variation of Periphery Substitution and Conjugation Length. Advanced Functional Materials, 2007, 17, 115-122.	14.9	47
84	Synthesis and optical properties of light-emitting π-conjugated polymers containing biphenyl and dithienosilole. Journal of Polymer Science Part A, 2007, 45, 2048-2058.	2.3	27
85	Characteristics of dual-type electrochromic devices based on poly(ethylene oxide) copolymers. Polymer International, 2007, 56, 674-678.	3.1	3
86	Photo- and electroluminescent properties of a π-conjugated copolymer containing 2,2′-bipyridyl units. Polymer International, 2007, 56, 252-257.	3.1	6
87	Construction of electrochromic devices using thiophene based conducting polymers. Journal of Materials Science, 2007, 42, 368-372.	3.7	21
88	Optimizing LED Properties of 2,7-Bis(phenylethenyl)fluorenes. Chemistry of Materials, 2006, 18, 560-566.	6.7	29
89	Conducting polymers of succinic acid bis-(2-thiophen-3-yl-ethyl)ester and their electrochromic properties. Synthetic Metals, 2006, 156, 190-195.	3.9	18
90	New conjugated materials containing cyano substituents for light-emitting diodes. Synthetic Metals, 2006, 156, 282-286.	3.9	11

#	Article	IF	CITATIONS
91	Efficient blue-green-emitting poly[(5-diphenylamino-1,3-phenylenevinylene)] derivatives: Synthesis and optical properties. Journal of Polymer Science Part A, 2006, 44, 2307-2315.	2.3	7
92	Indium tin oxide nanoparticles as anode for light-emitting diodes. Journal of Applied Polymer Science, 2006, 99, 3125-3129.	2.6	12
93	Efficient light emitting diodes from ternary blends of PPV-based copolymers. Journal of Applied Polymer Science, 2006, 102, 2509-2511.	2.6	5
94	Synthesis and characterization of a bifunctional amido-thiophene monomer and its copolymer with thiophene and electrochemical properties. European Polymer Journal, 2005, 41, 967-973.	5.4	26
95	Conducting polymers of octanoic acid 2-thiophen-3-yl-ethyl ester and their electrochromic properties. Materials Chemistry and Physics, 2005, 92, 413-418.	4.0	35
96	Enzyme electrodes for determination of total phenolic capacity of red wines. Journal of Applied Polymer Science, 2005, 98, 521-524.	2.6	5
97	Optical and electroluminescent properties of polyfluorene copolymers and their blends. Polymer, 2005, 46, 811-817.	3.8	36
98	Synthesis and Characterization of Thiophen-3-yl Acetic Acid 4-Pyrrol-1-yl Phenyl Ester and its Conducting Polymers. International Journal of Polymeric Materials and Polymeric Biomaterials, 2005, 54, 713-730.	3.4	3
99	Dual-type electrochromic devices based on conducting copolymers of thiophene-functionalized monomers. Synthetic Metals, 2005, 148, 65-69.	3.9	25
100	Efficient light emitting diodes from polyfluorene copolymer blends. Synthetic Metals, 2005, 150, 195-198.	3.9	18
101	Conducting polymers of decanedioic acid bis-(4-pyrrol-1-yl-phenyl) ester. Materials Chemistry and Physics, 2004, 85, 222-226.	4.0	7
102	Conducting polymers of terepthalic acid bis-(2-thiophen-3-yl-ethyl) ester and their electrochromic properties. Polymer, 2004, 45, 4989-4995.	3.8	35
103	Dual type complementary colored polymer electrochromic devices utilized by 3-ester substituted thiophenes. Journal of Electroanalytical Chemistry, 2004, 572, 61-65.	3.8	34
104	Microporous Patterned Electrodes for Color-Matched Electrochromic Polymer Displays. Chemistry of Materials, 2004, 16, 2386-2393.	6.7	79
105	Spray Coatable Electrochromic Dioxythiophene Polymers with High Coloration Efficiencies. Macromolecules, 2004, 37, 7559-7569.	4.8	324
106	Synthesis and characterization of conducting copolymers of succinic acid bis-(4-pyrrol-1-yl-phenyl) ester and their electrochromic properties. Synthetic Metals, 2004, 143, 49-58.	3.9	15
107			

ALI ÇıRPAN

#	Article	IF	CITATION
109	Immobilization of invertase in conducting copolymers of 3-methylthienyl methacrylate. Bioelectrochemistry, 2003, 59, 29-33.	4.6	42
110	Electrochromic devices based on soluble and processable dioxythiophene polymersElectronic supplementary information (ESI) available: details of the synthesis of PProDOT(CH2OC18H37)2 and PProDOT(CH2OEtHx)2 and their polymerization. See http://www.rsc.org/suppdata/jm/b3/b306365h/. Journal of Materials Chemistry, 2003, 13, 2422.	6.7	156
111	Immobilization of cholesterol oxidase in a conducting copolymer of thiophene-3-yl acetic acid cholesteryl ester with pyrrole. Designed Monomers and Polymers, 2003, 6, 237-243.	1.6	11
112	Conducting graft copolymers of poly(3-methylthienyl methacrylate) with pyrrole and thiophene. Journal of Polymer Science Part A, 2002, 40, 4131-4140.	2.3	51
113	Title is missing!. Journal of Materials Science, 2002, 37, 1767-1775.	3.7	20
114	Synthesis and electroactivity of pyrrole end-functionalized poly(2-methyl-2-oxazoline). European Polymer Journal, 2001, 37, 2225-2229.	5.4	25