Gaio Paradossi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8641722/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spatiotemporal Distribution of Nanodroplet Vaporization in a Proton Beam Using Real-Time Ultrasound Imaging for Range Verification. Ultrasound in Medicine and Biology, 2022, 48, 149-156.	1.5	9
2	Improved hybrid-shelled perfluorocarbon microdroplets as ultrasound- and laser-activated phase-change platform. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641, 128522.	4.7	6
3	Ultrasound-assisted carbon ion dosimetry and range measurement using injectable polymer-shelled phase-change nanodroplets: in vitro study. Scientific Reports, 2022, 12, 8012.	3.3	1
4	Understanding the Temperatureâ€Responsive Selfâ€Assemblies of Amphiphilic Random Copolymers by SANS in D 2 O Solution. Macromolecular Chemistry and Physics, 2021, 222, 2000447.	2.2	6
5	Modulating ultrasound contrast generation from injectable nanodroplets for proton range verification by varying the degree of superheat. Medical Physics, 2021, 48, 1983-1995.	3.0	12
6	Ultrasound-Stimulated PVA Microbubbles for Adhesive Removal from Cellulose-Based Materials: A Groundbreaking Low-Impact Methodology. ACS Applied Materials & Interfaces, 2021, 13, 24207-24217.	8.0	5
7	Effect of 1-MHz ultrasound on the proinflammatory interleukin-6 secretion in human keratinocytes. Scientific Reports, 2021, 11, 19033.	3.3	8
8	Ultrasound-assisted investigation of photon triggered vaporization of poly(vinylalcohol) phase-change nanodroplets: A preliminary concept study with dosimetry perspective. Physica Medica, 2021, 89, 232-242.	0.7	6
9	Ultrasound/radiation-responsive emulsions. Current Opinion in Colloid and Interface Science, 2020, 49, 118-132.	7.4	7
10	Microgel Particles with Distinct Morphologies and Common Chemical Compositions: A Unified Description of the Responsivity to Temperature and Osmotic Stress. Gels, 2020, 6, 34.	4.5	6
11	Assembling patchy plasmonic nanoparticles with aggregation-dependent antibacterial activity. Journal of Colloid and Interface Science, 2020, 580, 419-428.	9.4	24
12	In vitro analysis of the trajectories of adhesive microbubbles approaching endothelial cells. Journal of Colloid and Interface Science, 2020, 578, 758-767.	9.4	5
13	Proton range verification with ultrasound imaging using injectable radiation sensitive nanodroplets: a feasibility study. Physics in Medicine and Biology, 2020, 65, 065013.	3.0	23
14	Evaluating the influence of paper characteristics on the efficacy of new poly(vinyl alcohol) based hydrogels for cleaning modern and ancient paper. Microchemical Journal, 2020, 155, 104716.	4.5	10
15	Polyvinyl alcohol based hydrogels as new tunable materials for application in the cultural heritage field. Colloids and Surfaces B: Biointerfaces, 2020, 188, 110777.	5.0	24
16	In Vivo Biodistribution of Engineered Lipid Microbubbles in Rodents. ACS Omega, 2019, 4, 13371-13381.	3.5	8
17	Ultrasound delivery of Surface Enhanced InfraRed Absorption active gold-nanoprobes into fibroblast cells: a biological study via Synchrotron-based InfraRed microanalysis at single cell level. Scientific Reports, 2019, 9, 11845.	3.3	14
18	Phase Change Ultrasound Contrast Agents with a Photopolymerized Diacetylene Shell. Langmuir, 2019, 35, 10116-10127.	3.5	17

#	Article	IF	CITATIONS
19	In Vivo Toxicity Study of Engineered Lipid Microbubbles in Rodents. ACS Omega, 2019, 4, 5526-5533.	3.5	13
20	The photopolymerization of DC8,9PC in microbubbles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 568, 371-380.	4.7	8
21	Long-term physical evolution of an elastomeric ultrasound contrast microbubble. Journal of Colloid and Interface Science, 2019, 540, 185-196.	9.4	16
22	InÂvivo biological fate of poly(vinylalcohol) microbubbles in mice. Heliyon, 2018, 4, e00770.	3.2	24
23	Performances of a Pristine Graphene–Microbubble Hybrid Construct as Dual Imaging Contrast Agent and Assessment of Its Biodistribution by Photoacoustic Imaging. Particle and Particle Systems Characterization, 2018, 35, 1800066.	2.3	17
24	Prolate and Temperatureâ€Responsive Selfâ€Assemblies of Amphiphilic Random Copolymers with Perfluoroalkyl and Polyoxyethylene Side Chains in Solution. Macromolecular Chemistry and Physics, 2018, 219, 1800210.	2.2	11
25	Biofabrication of genipin-crosslinked peptide hydrogels and their use in the controlled delivery of naproxen. New Biotechnology, 2017, 37, 138-143.	4.4	21
26	Solution behaviour of poly(N-isopropylacrylamide) stereoisomers in water: a molecular dynamics simulation study. Physical Chemistry Chemical Physics, 2017, 19, 11892-11903.	2.8	17
27	Biosynthesis and characterization of a novel Fmoc-tetrapeptide-based hydrogel for biotechnological applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 532, 535-540.	4.7	11
28	Next generation ultrasound platforms for theranostics. Journal of Colloid and Interface Science, 2017, 491, 151-160.	9.4	26
29	Cellular Uptake of Plain and SPION-Modified Microbubbles for Potential Use in Molecular Imaging. Cellular and Molecular Bioengineering, 2017, 10, 537-548.	2.1	12
30	Differential effects on membrane permeability and viability of human keratinocyte cells undergoing very low intensity megasonic fields. Scientific Reports, 2017, 7, 16536.	3.3	9
31	Tacticity-Dependent Interchain Interactions of Poly(N-Isopropylacrylamide) in Water: Toward the Molecular Dynamics Simulation of a Thermoresponsive Microgel. Gels, 2017, 3, 13.	4.5	8
32	Influence of Tacticity on Hydrophobicity of Poly(N-isopropylacrylamide): A Single Chain Molecular Dynamics Simulation Study. Journal of Physical Chemistry B, 2016, 120, 3765-3776.	2.6	45
33	Biological in situ characterization of polymeric microbubble contrast agents. International Journal of Biochemistry and Cell Biology, 2016, 75, 232-243.	2.8	9
34	Investigation of polymer-shelled microbubble motions in acoustophoresis. Ultrasonics, 2016, 70, 275-283.	3.9	15
35	Magnetic resonance and ultrasound contrast imaging of polymer-shelled microbubbles loaded with iron oxide nanoparticles. Royal Society Open Science, 2016, 3, 160063.	2.4	25
36	Quantitative X-ray microscopic analysis of individual thermoresponsive microgel particles in aqueous solution. RSC Advances, 2016, 6, 98228-98233.	3.6	3

#	Article	IF	CITATIONS
37	Graphene Meets Microbubbles: A Superior Contrast Agent for Photoacoustic Imaging. ACS Applied Materials & Interfaces, 2016, 8, 16465-16475.	8.0	47
38	Complex interfaces in "phase-change―contrast agents. Physical Chemistry Chemical Physics, 2016, 18, 8378-8388.	2.8	14
39	Ultrasound contrast agent loaded with nitric oxide as a theranostic microdevice. Drug Design, Development and Therapy, 2015, 9, 2409.	4.3	16
40	Biosynthesis and Characterization of Cross-Linked Fmoc Peptide-Based Hydrogels for Drug Delivery Applications. Gels, 2015, 1, 179-193.	4.5	22
41	Investigation of the elimination process of a multimodal polymer-shelled contrast agent in rats using ultrasound and transmission electron microscopy. Biomedical Spectroscopy and Imaging, 2015, 4, 81-93.	1.2	7
42	"Soft―Confinement of Graphene in Hydrogel Matrixes. Journal of Physical Chemistry B, 2015, 119, 2051-2061.	2.6	20
43	Unique pumping-out fracturing mechanism of a polymer-shelled contrast agent: an acoustic characterization and optical visualization. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2015, 62, 451-462.	3.0	9
44	Temperature-Tunable Nanoparticles for Selective Biointerface. Biomacromolecules, 2015, 16, 1753-1760.	5.4	6
45	Multiresponsive Hyaluronanâ€p(NiPAAm) "Clickâ€â€Łinked Hydrogels. Macromolecular Bioscience, 2014, 14, 1025-1038.	4.1	20
46	DYNAMIC MR IMAGING, BIODISTRIBUTION AND PHARMACOKINETICS OF POLYMER SHELLED MICROBUBBLES CONTAINING SPION. Nano, 2014, 09, 1450069.	1.0	6
47	STXM goes 3D: Digital reconstruction of focal stacks as novel approach towards confocal soft x-ray microscopy. Ultramicroscopy, 2014, 144, 19-25.	1.9	30
48	Collective Dynamics and Transient Behavior of Partially Hydrophobic Hyaluronic Acid Chains. Macromolecular Chemistry and Physics, 2014, 215, 140-147.	2.2	7
49	On the interplay of shell structure with low- and high-frequency mechanics of multifunctional magnetic microbubbles. Soft Matter, 2014, 10, 214-226.	2.7	44
50	Assessment of the Viscoelastic and Oscillation Properties of a Nano-engineered Multimodality Contrast Agent. Ultrasound in Medicine and Biology, 2014, 40, 2476-2487.	1.5	9
51	Endocardial border delineation capability of a novel multimodal polymer-shelled contrast agent. Cardiovascular Ultrasound, 2014, 12, 24.	1.6	4
52	Influence of Surface Concentration on Poly(vinyl alcohol) Behavior at the Water–Vacuum Interface: A Molecular Dynamics Simulation Study. Journal of Physical Chemistry B, 2014, 118, 6946-6955.	2.6	15
53	Multimodality imaging using SPECT/CT and MRI and ligand functionalized 99mTc-labeled magnetic microbubbles. EJNMMI Research, 2013, 3, 12.	2.5	33
54	Thermoresponsive and Biodegradable Dextran Based Microgels: Synthesis and Structural Investigation. Macromolecular Symposia, 2013, 329, 27-34.	0.7	1

#	Article	IF	CITATIONS
55	Visualization of multimodal polymer-shelled contrast agents using ultrasound contrast sequences: an experimental study in a tissue mimicking flow phantom. Cardiovascular Ultrasound, 2013, 11, 33.	1.6	8
56	A general strategy for obtaining biodegradable polymer shelled microbubbles as theranostic devices. Chemical Communications, 2013, 49, 5763.	4.1	19
57	Targeted doxorubicin delivery by chitosan-galactosylated modified polymer microbubbles to hepatocarcinoma cells. Colloids and Surfaces B: Biointerfaces, 2013, 110, 434-442.	5.0	49
58	Dynamic and structural behavior of magnetic PVA-shelled microbubbles: Acoustic characterization. , 2013, , .		0
59	Hydrogels FormedÂby Cross-Linked Poly(VinylÂAlcohol). , 2013, , 37-56.		1
60	Water Dynamics in Physical Hydrogels Based On Partially Hydrophobized Hyaluronic Acid. Journal of Physical Chemistry B, 2012, 116, 12915-12921.	2.6	4
61	Biodegradable dextran based microgels: a study on network associated water diffusion and enzymatic degradation. Soft Matter, 2012, 8, 2494.	2.7	19
62	Magnetite Nanoparticles Can Be Coupled to Microbubbles to Support Multimodal Imaging. Biomacromolecules, 2012, 13, 1390-1399.	5.4	73
63	Optical characterization of an individual polymer-shelled microbubble structure via digital holography. Soft Matter, 2012, 8, 8822.	2.7	20
64	Poly(vinyl alcohol) Oligomer in Dilute Aqueous Solution: A Comparative Molecular Dynamics Simulation Study. Journal of Physical Chemistry B, 2012, 116, 10008-10019.	2.6	26
65	Biointerface Properties of Core–Shell Poly(vinyl alcohol)-hyaluronic Acid Microgels Based on Chemoselective Chemistry. Biomacromolecules, 2012, 13, 3592-3601.	5.4	24
66	Viscoelastic properties and elastic recovery of HYADD ® 4 hydrogel compared to crosslinked HA-based commercial viscosupplements. Osteoarthritis and Cartilage, 2012, 20, S292.	1.3	4
67	A preliminary in vitro assessment of polymer-shelled microbubbles in contrast-enhanced ultrasound imaging. Ultrasonics, 2012, 52, 456-464.	3.9	22
68	Structural Investigation on Thermoresponsive PVA/Poly(methacrylate- <i>co</i> - <i>N</i> -isopropylacrylamide) Microgels across the Volume Phase Transition. Macromolecules, 2011, 44, 4470-4478.	4.8	19
69	Conformation and Dynamics of Poly(<i>N</i> -isopropyl acrylamide) Trimers in Water: A Molecular Dynamics and Metadynamics Simulation Study. Journal of Physical Chemistry B, 2011, 115, 5827-5839.	2.6	30
70	Polymer Shelled Microparticles for a Targeted Doxorubicin Delivery in Cancer Therapy. Biomacromolecules, 2011, 12, 593-601.	5.4	65
71	Polymer and Water Dynamics in Poly(vinyl alcohol)/Poly(methacrylate) Networks. A Molecular Dynamics Simulation and Incoherent Neutron Scattering Investigation. Polymers, 2011, 3, 1805-1832.	4.5	21
72	A new viscosupplement based on partially hydrophobic hyaluronic acid: A comparative study. Biorheology, 2011, 48, 263-275.	0.4	39

#	Article	IF	CITATIONS
73	Targeting Tumor Cells through Chitosan-Folate Modified Microcapsules Loaded with Camptothecin. Bioconjugate Chemistry, 2011, 22, 1066-1072.	3.6	52
74	PVA engineered microcapsules for targeted delivery of camptothecin to HeLa cells. Materials Science and Engineering C, 2011, 31, 1653-1659.	7.3	10
75	In vitro contrast-enhanced ultrasound measurements of capillary microcirculation: Comparison between polymer- and phospholipid-shelled microbubbles. Ultrasonics, 2011, 51, 40-48.	3.9	31
76	Water-dispersible PVA-based dry microballoons with potential for biomedical applications. Materials Science and Engineering C, 2010, 30, 412-416.	7.3	18
77	Toward Modeling Thermoresponsive Polymer Networks: A Molecular Dynamics Simulation Study of <i>N</i> -Isopropyl Acrylamide Co-oligomers. Journal of Physical Chemistry B, 2010, 114, 8301-8312.	2.6	38
78	Structure and Dynamics of a Thermoresponsive Microgel around Its Volume Phase Transition Temperature. Journal of Physical Chemistry B, 2010, 114, 10285-10293.	2.6	29
79	Design of Novel Polymer Shelled Ultrasound Contrast Agents: Towards an Ultrasound Triggered Drug Delivery. , 2010, , 25-39.		4
80	Characterization of Acoustic Properties of PVA-Shelled Ultrasound Contrast Agents. , 2010, , 99-108.		1
81	Adding Chemical Cross-Links to a Physical Hydrogel. Molecules, 2009, 14, 3662-3675.	3.8	12
82	Gelâ€Like Structure of a Hexadecyl Derivative of Hyaluronic Acid for the Treatment of Osteoarthritis. Macromolecular Bioscience, 2009, 9, 646-653.	4.1	33
83	Characterization of Acoustic Properties of PVA-Shelled Ultrasound Contrast Agents: Linear Properties (Part I). Ultrasound in Medicine and Biology, 2009, 35, 1127-1138.	1.5	42
84	Characterization of Acoustic Properties of PVA-Shelled Ultrasound Contrast Agents: Ultrasound-Induced Fracture (Part II). Ultrasound in Medicine and Biology, 2009, 35, 1139-1147.	1.5	29
85	Temperature-Sensitive Poly(vinyl alcohol)/Poly(methacrylate- <i>co</i> - <i>N</i> -isopropyl acrylamide) Microgels for Doxorubicin Delivery. Biomacromolecules, 2009, 10, 1589-1596.	5.4	75
86	Soft X-ray induced modifications of PVA-based microbubbles in aqueous environment: a microspectroscopy study. Physical Chemistry Chemical Physics, 2009, 11, 1098.	2.8	14
87	Novel PVA-Based Hydrogel Microparticles for Doxorubicin Delivery. Biomacromolecules, 2008, 9, 1967-1973.	5.4	91
88	In situ characterization of gas-filled microballoons using soft X-ray microspectroscopy. Soft Matter, 2008, 4, 510.	2.7	47
89	Quantitative Analysis of Scanning Transmission X-ray Microscopy Images of Gas-Filled PVA-Based Microballoons. Langmuir, 2008, 24, 13677-13682.	3.5	18
90	Polymer Microbubbles As Diagnostic and Therapeutic Gas Delivery Device. Chemistry of Materials, 2008, 20, 3254-3258.	6.7	73

#	Article	IF	CITATIONS
91	Water and Polymer Dynamics in Chemically Cross-Linked Hydrogels of Poly(vinyl alcohol):Â A Molecular Dynamics Simulation Study. Journal of Physical Chemistry B, 2007, 111, 2820-2827.	2.6	93
92	Chaperone-like activity of nanoparticles of hydrophobized poly(vinyl alcohol). Soft Matter, 2007, 3, 718.	2.7	27
93	Michael-Type Addition Reactions for the In Situ Formation of Poly(vinyl alcohol)-Based Hydrogels. Biomacromolecules, 2007, 8, 209-214.	5.4	47
94	Tethering Functional Ligands onto Shell of Ultrasound Active Polymeric Microbubbles. Biomacromolecules, 2006, 7, 604-611.	5.4	72
95	Ligands Tethering to Biocompatible Ultrasound Active Polymeric Microbubbles Surface. Macromolecular Symposia, 2006, 234, 94-101.	0.7	10
96	Water, Solute, and Segmental Dynamics in Polysaccharide Hydrogels. Macromolecular Bioscience, 2006, 6, 579-589.	4.1	26
97	Soft Condensed Matter in Pharmaceutical Design. Current Pharmaceutical Design, 2006, 12, 1403-1419.	1.9	3
98	Exopolysaccharides of Two Cyanobacterial Strains from Roman Hypogea. Geomicrobiology Journal, 2006, 23, 301-310.	2.0	25
99	Seasonal succession of phototrophic biofilms in an Italian wastewater treatment plant: biovolume, spatial structure and exopolysaccharides. Aquatic Microbial Ecology, 2006, 45, 301-312.	1.8	28
100	Proton fluctuations and water diffusion in dextran chemical hydrogels studied by incoherent elastic and quasielastic neutron scattering. Carbohydrate Research, 2005, 340, 921-927.	2.3	12
101	Exopolysaccharides in cyanobacterial biofilms from Roman catacombs. Algological Studies, 2005, 117, 117-132.	0.1	7
102	Supercooled Water in PVA Matrixes. II. A Molecular Dynamics Simulation Study and Comparison with QENS Results. Journal of Physical Chemistry B, 2005, 109, 8091-8096.	2.6	27
103	Stable Polymeric Microballoons as Multifunctional Device for Biomedical Uses:Â Synthesis and Characterization. Langmuir, 2005, 21, 8758-8764.	3.5	124
104	Structural fluctuations in cross-linked matrices with narrow pore size distribution. Chemical Physics, 2004, 302, 143-148.	1.9	11
105	Study of Gelling Behavior of Poly(vinyl alcohol)-Methacrylate for Potential Utilizations in Tissue Replacement and Drug Delivery. Biomacromolecules, 2004, 5, 2439-2446.	5.4	74
106	Leptolyngbya strains from Roman hypogea: cytochemical and physico-chemical characterisation of exopolysaccharides. Journal of Applied Phycology, 2003, 15, 193-200.	2.8	33
107	Supercooled Water in PVA Matrixes:Â I. An Incoherent Quasi-Elastic Neutron Scattering (QENS) Study. Journal of Physical Chemistry B, 2003, 107, 8363-8371.	2.6	39
108	Poly(vinyl alcohol) as versatile biomaterial for potential biomedical applications. Journal of Materials Science: Materials in Medicine, 2003, 14, 687-691.	3.6	275

#	Article	IF	CITATIONS
109	Tailoring of Physical and Chemical Properties of Macro- and Microhydrogels Based on Telechelic PVA. Biomacromolecules, 2002, 3, 1255-1262.	5.4	61
110	A Conformational Study on the Algal Polysaccharide Ulvanâ€. Macromolecules, 2002, 35, 6404-6411.	4.8	63
111	Xanthan and Glucomannan Mixtures:Â Synergistic Interactions and Gelation. Biomacromolecules, 2002, 3, 498-504.	5.4	79
112	Chemical and physical hydrogels: two casesystems studied by quasi elastic light scattering. Physica A: Statistical Mechanics and Its Applications, 2002, 304, 119-128.	2.6	35
113	Conformational Dynamics of Hyaluronan in Solution. 1. A 13C NMR Study of Oligomers. Macromolecules, 2001, 34, 99-109.	4.8	21
114	Conformational Study of the Diastereomeric Pairs in Poly(lysine)â^'Pectate Complexes. Macromolecules, 2001, 34, 8179-8186.	4.8	9
115	Incoherent quasi-elastic neutron scattering study of chemical hydrogels based on poly(vinyl) Tj ETQq1 1 0.78431	4 rgBT /O ^v 2.7	verlock 10 Tf
116	High-frequency dielectric study of side-chain dynamics in poly(lysine) aqueous solutions. Biopolymers, 2000, 53, 129-134.	2.4	16
117	A Dynamic Light Scattering Study of Hydrogels Based on Telechelic Poly(vinyl alcohol). Journal of Physical Chemistry B, 2000, 104, 11019-11026.	2.6	44
118	Polysaccharides as a key step in stone bio-erosion. , 2000, , 425-432.		6
119	Study of the interactions ofD- andL-polylysine enantiomers with pectate in aqueous solutions. , 1999, 50, 201-209.		17
120	Physicochemical characterization of chemical hydrogels based on PVA. , 1999, 37, 1225-1233.		18
121	Structural and thermodynamic features of the polyhydroxybutyrate physical gels. Macromolecular Symposia, 1999, 138, 165-174.	0.7	9
122	Electrical Conductivity of Dilute and Semidilute Aqueous Polyelectrolyte Solutions. A Scaling Theory Approach. Journal of Physical Chemistry B, 1999, 103, 5092-5099.	2.6	31
123	Side-chain dynamics in poly(α-glutamate) and poly(γ-glutamate) aqueous solutions: a high-frequency dielectric investigation. Physical Chemistry Chemical Physics, 1999, 1, 1555-1561.	2.8	15
124	A physico-chemical study on the polysaccharide ulvan from hot water extraction of the macroalga Ulva. International Journal of Biological Macromolecules, 1999, 25, 309-315.	7.5	71
125	Networks based on chitosan and oxidized cyclodextrin—II. Structural and catalytic features of a copper (II)-loaded network. Polymer Gels and Networks, 1998, 5, 525-540.	0.6	23
126	New hydrogels based on carbohydrate and on carbohydrate-synthetic polymer networks. Polymer Gels and Networks, 1997, 5, 225-239.	0.6	48

#	Article	IF	CITATIONS
127	1H NMR relaxation study of a chitosan-cyclodextrin network. Carbohydrate Research, 1997, 300, 77-84.	2.3	40
128	Counterion condensation in xanthan aqueous solutions in the semidilute and concentrated regime. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1996, 100, 881-884.	0.9	0
129	A comparative study of the high-frequency dielectric properties of $poly(\hat{l}\pm-glutamate)$ and $poly(\hat{l}^3-glutamate)$ aqueous solutions. , 1996, 40, 485-494.		23
130	Dielectric properties of poly(3-hydroxybutyrate) gels in dimethylformamide. Polymer, 1996, 37, 3501-3507.	3.8	4
131	New chemical hydrogels based on poly(vinyl alcohol). Journal of Polymer Science Part A, 1996, 34, 3417-3425.	2.3	35
132	Conformational Changes of Xanthan in Salt-Free Aqueous Solutions:Â A Low-Frequency Electrical Conductivity Study. The Journal of Physical Chemistry, 1996, 100, 7148-7154.	2.9	4
133	Molecular dynamics in sodium poly (L-glutamate) aqueous solutions analyzed by means of the stretched exponential decay of the williams-watts function. Biopolymers, 1995, 36, 539-545.	2.4	6
134	Case Studies of Physical and Chemical Gels Based on Microbial Polysaccharides. Journal of Bioactive and Compatible Polymers, 1995, 10, 235-248.	2.1	9
135	Radiowave dielectric properties of xanthan in aqueous solutions. The Journal of Physical Chemistry, 1995, 99, 274-284.	2.9	11
136	A photometer for the measurement of elastically scattered light from macromolecules in solution. IEEE Transactions on Instrumentation and Measurement, 1994, 43, 553-557.	4.7	3
137	Effect of counterion concentration on the dielectric behavior of a polypeptidic chain in the helix-coil transition. Biopolymers, 1993, 33, 1029-1035.	2.4	0
138	Association complexes between Fe(III) or Cu(II) ions and chitosan derivatives. A thermodynamic and spectroscopic investigation. International Journal of Biological Macromolecules, 1993, 15, 145-151.	7.5	11
139	Size and shape of macromolecules: Calculation of the scattering function for simple geometries. Journal of Chemical Education, 1993, 70, 440.	2.3	4
140	High-frequency dielectric relaxation measurements of side-chain dynamics of branched chitosan derivatives in aqueous solutions. Macromolecules, 1993, 26, 3363-3368.	4.8	10
141	Conformational transition in aqueous solution of poly(L-glutamic acid): a low-frequency electrical conductivity study. The Journal of Physical Chemistry, 1992, 96, 913-918.	2.9	11
142	Conformation transitions in aqueous solutions of poly(L-glutamic acid): a radiowave dielectric study. The Journal of Physical Chemistry, 1992, 96, 8194-8200.	2.9	5
143	Power‣aw Behavior in the Frequency dependence of the Electrical Conductivity of Poly(Lâ€Glutamic) Tj ETÇ	0q1 1 0.784:	314 ₁ rgBT /Ov
144	Branched-chain analogues of linear polysaccharides: a spectroscopic and conformational investigation of chitosan derivatives. International Journal of Biological Macromolecules, 1992, 14, 73-80.	7.5	20

#	Article	IF	CITATIONS
145	Chain dynamics in poly(L-glutamic acid) aqueous solutions as observed by means of frequency domain dielectric spectroscopy. Macromolecules, 1992, 25, 4206-4209.	4.8	11
146	Copper complexes immobilized to chitosan. Journal of Inorganic Biochemistry, 1992, 46, 109-118.	3.5	36
147	Dielectric behavior of polyelectrolyte solutions: the role of proton fluctuation. The Journal of Physical Chemistry, 1991, 95, 4883-4889.	2.9	16
148	Environmental control of reactions: Influence of poly(glutamate) on the reactivity of cysteine-quaterpyridineiron (III) mixtures. Biopolymers, 1990, 29, 921-933.	2.4	4
149	Influence of polypeptides on the reactivity of thiols toward iron(III) complex ions. Journal of Molecular Catalysis, 1990, 62, 369-382.	1.2	0
150	Stereoselective electron transfer between chiral substrates and metal chelates anchored to polypeptides. Biopolymers, 1989, 28, 319-331.	2.4	8
151	Oxidation of L-thiols in the presence of iron(III) complex ions anchored to asymmetric polymers: a kinetic and conformational investigation. The Journal of Physical Chemistry, 1988, 92, 3422-3429.	2.9	24
152	Theoretical models of diastereomeric noncovalent electron-transfer complexes. A thermodynamic and conformational investigation. The Journal of Physical Chemistry, 1987, 91, 1546-1553.	2.9	21
153	Dielectric study of low-molecular weight mannan triacetate in chloroform. International Journal of Biological Macromolecules, 1987, 9, 95-97.	7.5	0
154	An electron diffraction study of the mannan I crystal and molecular structure. Macromolecules, 1987, 20, 2407-2413.	4.8	69
155	Asymmetrically-selective oxidation of catechol derivatives by iron(III) complex ions anchored to polypeptides. Journal of Molecular Catalysis, 1987, 42, 269-284.	1.2	8
156	Chiral discrimination in the energetics of formation of diastereomeric adducts involving polypeptides. Biopolymers, 1986, 25, 1249-1258.	2.4	1
157	Energetics of formation of electron-transfer complexes between asymmetric species. Journal of Inorganic Biochemistry, 1986, 26, 281-287.	3.5	7
158	Remarks on the determination of chain stiffness from static scattering experiments. Die Makromolekulare Chemie Rapid Communications, 1985, 6, 767-772.	1.1	84
159	Solution properties of a new polyelectrolyte derived from the polysaccharide scleroglucan. Carbohydrate Polymers, 1983, 3, 273-286.	10.2	43
160	The mechanism of thermal degradation of a high-molecular-weight glycoprotein complex from bovine cervical mucus. Biochemical Journal, 1983, 209, 565-572.	3.7	10
161	Light scattering study of a series of xanthan fractions in aqueous solution. Macromolecules, 1982, 15, 874-879.	4.8	137
162	On the optical activity of pseudoisocyanine bound by sulfated polysaccharides in dilute aqueous solution. Polymer Bulletin, 1979, 1, 771.	3.3	3

0

#	Article	IF	CITATIONS
163	Conformation-dependent interactions between ionic polysaccharides and counterions in dilute aqueous solution. Polymer Bulletin, 1979, 1, 777.	3.3	3

164 Hydrogels: Cross-Linked Polyvinyl Alcohol. , 0, , 3893-3905.