Tiziana Triulzi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8641482/publications.pdf

Version: 2024-02-01

201674 182427 3,090 67 27 51 h-index citations g-index papers 69 69 69 5600 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Cancer acidity: An ultimate frontier of tumor immune escape and a novel target of immunomodulation. Seminars in Cancer Biology, 2017, 43, 74-89.	9.6	414
2	microRNA-205 Regulates HER3 in Human Breast Cancer. Cancer Research, 2009, 69, 2195-2200.	0.9	334
3	Extracellular matrix signature identifies breast cancer subgroups with different clinical outcome. Journal of Pathology, 2008, 214, 357-367.	4.5	311
4	FOXP3 Expression and Overall Survival in Breast Cancer. Journal of Clinical Oncology, 2009, 27, 1746-1752.	1.6	271
5	Oncosuppressive role of p53â€induced miRâ€205 in triple negative breast cancer. Molecular Oncology, 2012, 6, 458-472.	4.6	142
6	Modulation of Pulmonary Microbiota by Antibiotic or Probiotic Aerosol Therapy: A Strategy to Promote Immunosurveillance against Lung Metastases. Cell Reports, 2018, 24, 3528-3538.	6.4	141
7	Breast cancer-secreted miR-939 downregulates VE-cadherin and destroys the barrier function of endothelial monolayers. Cancer Letters, 2017, 384, 94-100.	7.2	131
8	Molecular profiling and characterization of luminalâ€like and basalâ€like <i>in vivo</i> breast cancer xenograft models. Molecular Oncology, 2009, 3, 469-482.	4.6	96
9	FOXP3 expression in tumor cells and implications for cancer progression. Journal of Cellular Physiology, 2013, 228, 30-35.	4.1	87
10	Tumor Extracellular Matrix Remodeling: New Perspectives as a Circulating Tool in the Diagnosis and Prognosis of Solid Tumors. Cells, 2019, 8, 81.	4.1	69
11	Radiation Effects on Development of HER2-Positive Breast Carcinomas. Clinical Cancer Research, 2007, 13, 46-51.	7.0	64
12	Activated d16HER2 Homodimers and SRC Kinase Mediate Optimal Efficacy for Trastuzumab. Cancer Research, 2014, 74, 6248-6259.	0.9	63
13	Gut Microbiota Condition the Therapeutic Efficacy of Trastuzumab in HER2-Positive Breast Cancer. Cancer Research, 2021, 81, 2195-2206.	0.9	63
14	HER2 signaling regulates the tumor immune microenvironment and trastuzumab efficacy. Oncolmmunology, 2019, 8, e1512942.	4.6	57
15	Association between antibiotic-immunotherapy exposure ratio and outcome in metastatic non small cell lung cancer. Lung Cancer, 2019, 132, 72-78.	2.0	54
16	Adipocytes in Breast Cancer, the Thick and the Thin. Cells, 2020, 9, 560.	4.1	54
17	Extracellular matrix proteins as diagnostic markers of breast carcinoma. Journal of Cellular Physiology, 2018, 233, 6280-6290.	4.1	49
18	Expression profile of tyrosine phosphatases in HER2 breast cancer cells and tumors. Cellular Oncology, 2010, 32, 361-72.	1.9	48

#	Article	IF	CITATIONS
19	Neoplastic and Stromal Cells Contribute to an Extracellular Matrix Gene Expression Profile Defining a Breast Cancer Subtype Likely to Progress. PLoS ONE, 2013, 8, e56761.	2.5	41
20	Cancer-Associated Adipocytes in Breast Cancer: Causes and Consequences. International Journal of Molecular Sciences, 2021, 22, 3775.	4.1	41
21	Antibiotic-induced disturbances of the gut microbiota result in accelerated breast tumor growth. IScience, 2021, 24, 103012.	4.1	41
22	Fusarium head blight evaluation in wheat transgenic plants expressing the maize b-32 antifungal gene. European Journal of Plant Pathology, 2007, 117, 129-140.	1.7	39
23	Taxanes enhance trastuzumab-mediated ADCC on tumor cells through NKG2D-mediated NK cell recognition. Oncotarget, 2016, 7, 255-265.	1.8	39
24	PDGFR \hat{I}^2 and FGFR2 mediate endothelial cell differentiation capability of triple negative breast carcinoma cells. Molecular Oncology, 2014, 8, 968-981.	4.6	37
25	Pathobiological implications of the d16HER2 splice variant for stemness and aggressiveness of HER2-positive breast cancer. Oncogene, 2017, 36, 1721-1732.	5.9	36
26	Whole-transcriptome analysis links trastuzumab sensitivity of breast tumors to both HER2 dependence and immune cell infiltration. Oncotarget, 2015, 6, 28173-28182.	1.8	34
27	Early immune modulation by single-agent trastuzumab as a marker of trastuzumab benefit. British Journal of Cancer, 2018, 119, 1487-1494.	6.4	33
28	Infiltrating Mast Cell–Mediated Stimulation of Estrogen Receptor Activity in Breast Cancer Cells Promotes the Luminal Phenotype. Cancer Research, 2020, 80, 2311-2324.	0.9	28
29	Exploiting FAsting-mimicking Diet and MEtformin to Improve the Efficacy of Platinum-pemetrexed Chemotherapy in Advanced LKB1-inactivated Lung Adenocarcinoma: The FAME Trial. Clinical Lung Cancer, 2019, 20, e413-e417.	2.6	27
30	Predictive biomarkers in the treatment of HER2-positive breast cancer: an ongoing challenge. Future Oncology, 2016, 12, 1413-1428.	2.4	24
31	Predicting the Efficacy of HER2-Targeted Therapies: A Look at the Host. Disease Markers, 2017, 2017, 1-14.	1.3	24
32	Collagen ultrastructural symmetry and its malignant alterations in human breast cancer revealed by polarizationâ€resolved secondâ€harmonic generation microscopy. Journal of Biophotonics, 2020, 13, e202000159.	2.3	24
33	Wound Healing Fluid Reflects the Inflammatory Nature and Aggressiveness of Breast Tumors. Cells, 2019, 8, 181.	4.1	19
34	Expression and prognostic significance of the autoimmune regulator gene in breast cancer cells. Cell Cycle, 2016, 15, 3220-3229.	2.6	16
35	Local Administration of Caloric Restriction Mimetics to Promote the Immune Control of Lung Metastases. Journal of Immunology Research, 2019, 2019, 1-8.	2.2	15
36	Maspin influences response to doxorubicin by changing the tumor microenvironment organization. International Journal of Cancer, 2014, 134, 2789-2797.	5.1	13

#	Article	IF	CITATIONS
37	Combined targeting of EGFR and HER2 against prostate cancer stem cells. Cancer Biology and Therapy, 2020, 21, 463-475.	3.4	13
38	The 41-gene classifier TRAR predicts response of HER2 positive breast cancer patients in the NeoALTTO study. European Journal of Cancer, 2019, 118, 1-9.	2.8	11
39	Rapid, Cost-Effective Peptide/Nucleic Acid-Based Platform for Therapeutic Antibody Monitoring in Clinical Samples. ACS Sensors, 2020, 5, 3109-3115.	7.8	11
40	Lipofilling in Breast Oncological Surgery: A Safe Opportunity or Risk for Cancer Recurrence?. International Journal of Molecular Sciences, 2021, 22, 3737.	4.1	11
41	Sulfurtransferase and thioredoxin specifically interact as demonstrated by bimolecular fluorescence complementation analysis and biochemical tests. FEBS Open Bio, 2015, 5, 832-843.	2.3	10
42	Immune system and angiogenesis-related potential surrogate biomarkers of response to everolimus-based treatment in hormone receptor-positive breast cancer: an exploratory study. Breast Cancer Research and Treatment, 2020, 184, 421-431.	2.5	9
43	Integrated Molecular and Immune Phenotype of HER2-Positive Breast Cancer and Response to Neoadjuvant Therapy: A NeoALTTO Exploratory Analysis. Clinical Cancer Research, 2021, 27, 6307-6313.	7.0	8
44	The Link Between the Microbiota and HER2+ Breast Cancer: The New Challenge of Precision Medicine. Frontiers in Oncology, 0, 12, .	2.8	7
45	Infrared Spectroscopic Imaging Visualizes a Prognostic Extracellular Matrix-Related Signature in Breast Cancer. Scientific Reports, 2020, 10, 5442.	3.3	6
46	What if the future of HER2â€positive breast cancer patients was written in miRNAs? An exploratory analysis from NeoALTTO study. Cancer Medicine, 2022, 11, 332-339.	2.8	6
47	Expression Profile of Tyrosine Phosphatases in HER2 Breast Cancer Cells and Tumors. Analytical Cellular Pathology, 2010, 32, 361-372.	1.4	5
48	Extracellular Matrix Features Discriminate Aggressive HER2-Positive Breast Cancer Patients Who Benefit from Trastuzumab Treatment. Cells, 2020, 9, 434.	4.1	4
49	The TRAR gene classifier to predict response to neoadjuvant therapy in HER2â€positive and ERâ€positive breast cancer patients: an explorative analysis from the NeoSphere trial. Molecular Oncology, 2022, 16, 2355-2366.	4.6	3
50	microRNA: New Players in Metastatic Process., 2013,,.		2
51	Biomimicking of the Breast Tumor Microenvironment. Current Molecular Biology Reports, 2015, 1, 71-76.	1.6	2
52	Deep Into Breast Cancer Heterogeneity to Increase Immunotherapeutic Effectiveness. JCO Precision Oncology, 2020, 4, 1267-1268.	3.0	2
53	Abstract P2-13-12: High CD36 expression predicts worse event free survival in HER2-positive breast cancer patients treated with neoadjuvant trastuzumab-based therapy: An exploratory analysis of the NeoALTTO study. Cancer Research, 2022, 82, P2-13-12-P2-13-12.	0.9	1
54	Stromal Responses among Carcinomasâ€"Letter. Clinical Cancer Research, 2014, 20, 1396-1396.	7.0	O

#	Article	IF	CITATIONS
55	P5-14-06: Interaction between Stoma and Tumor Characteristics as a New Prognostic and Predictive Marker in Breast Carcinomas , $2011, , .$		0
56	Abstract 4269: Opposite effect of ECM features in breast carcinoma progression according to tumor cell differentiation. , 2012 , , .		0
57	Abstract 5207: miR-491 and miR-218: Two possible tools to reduce FOXP3 expression in breast carcinomas. , 2014, , .		0
58	Abstract P4-15-06: Correlation between ERBB2 mRNA levels, HER2-dependence and susceptibility to trastuzumab in human breast cancer. , 2015 , , .		0
59	Abstract 2314: d16HER2 splice variant regulates the activity of HER2-positive breast cancer-initiating cells. , 2015, , .		0
60	Abstract 5015: Tumor dependence on HER2 signaling as a player in immune infiltration required for trastuzumab activity. , 2015 , , .		0
61	Abstract 748: Targeting the crosstalk between tumor cells and adipocytes to block breast cancer progression. , 2016, , .		0
62	Abstract 3924: AIRE is expressed and associated with good prognosis in breast cancer. , 2016, , .		0
63	Abstract 3826: Phenethyl isothiocyanate hampers growth and progression of HER2-positive breast cancers. , 2016, , .		0
64	Abstract P3-02-01: Fatty acid uptake as a potentially new resistance mechanism to anti-HER2 treatments in HER2-positive breast cancer. , 2020, , .		0
65	Abstract P4-10-32: Commensal gut microbiota influences efficacy of trastuzumab in patients with HER2-positive breast carcinoma. , 2020, , .		0
66	Abstract P5-13-26: The future of HER2-positive breast cancer patients might be written in miRNAs: An exploratory analysis from the NeoALTTO study. Cancer Research, 2022, 82, P5-13-26-P5-13-26.	0.9	0
67	Abstract 4959: The gut microbiota contributes to the effectiveness of HER2-targeted therapy. , 2019, , .		0