List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8640595/publications.pdf Version: 2024-02-01

Кім Ролтнер

#	Article	IF	CITATIONS
1	Online shape and density measurement of single aerosol particles. Journal of Aerosol Science, 2022, 159, 105880.	1.8	4
2	Grazer-induced changes in molecular signatures of cyanobacteria. Algal Research, 2022, 61, 102575.	2.4	3
3	Biologically Induced Changes in the Partitioning of Submicron Particulates Between Bulk Seawater and the Sea Surface Microlayer. Geophysical Research Letters, 2022, 49, e2021GL094587.	1.5	3
4	The Sea Spray Chemistry and Particle Evolution study (SeaSCAPE): overview and experimental methods. Environmental Sciences: Processes and Impacts, 2022, 24, 290-315.	1.7	11
5	Marine gas-phase sulfur emissions during an induced phytoplankton bloom. Atmospheric Chemistry and Physics, 2022, 22, 1601-1613.	1.9	11
6	Transmission of SARS-CoV-2: still up in the air – Authors' reply. Lancet, The, 2022, 399, 519-520.	6.3	7
7	Factors controlling the transfer of biogenic organic species from seawater to sea spray aerosol. Scientific Reports, 2022, 12, 3580.	1.6	6
8	Assessment of styreneâ€divinylbenzene polymer (PPL) solidâ€phase extraction and nonâ€targeted tandem mass spectrometry for the analysis of xenobiotics in seawater. Limnology and Oceanography: Methods, 2022, 20, 89-101.	1.0	6
9	Size-Dependent Morphology, Composition, Phase State, and Water Uptake of Nascent Submicrometer Sea Spray Aerosols during a Phytoplankton Bloom. ACS Earth and Space Chemistry, 2022, 6, 116-130.	1.2	12
10	Microplastics and nanoplastics in the marine-atmosphere environment. Nature Reviews Earth & Environment, 2022, 3, 393-405.	12.2	121
11	Discrimination between individual dust and bioparticles using aerosol time-of-flight mass spectrometry. Aerosol Science and Technology, 2022, 56, 592-608.	1.5	6
12	lsotopic Insights into Organic Composition Differences between Supermicron and Submicron Sea Spray Aerosol. Environmental Science & Technology, 2022, 56, 9947-9958.	4.6	4
13	Airborne Transmission of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): What We Know. Clinical Infectious Diseases, 2021, 73, 1924-1926.	2.9	55
14	Importance of Supermicron Ice Nucleating Particles in Nascent Sea Spray. Geophysical Research Letters, 2021, 48, e2020GL089633.	1.5	29
15	Tandem Fluorescence Measurements of Organic Matter and Bacteria Released in Sea Spray Aerosols. Environmental Science & Technology, 2021, 55, 5171-5179.	4.6	18
16	School reopening without robust COVID-19 mitigation risks accelerating the pandemic. Lancet, The, 2021, 397, 1177-1178.	6.3	46
17	Constraining the atmospheric limb of the plastic cycle. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	232
18	A paradigm shift to combat indoor respiratory infection. Science, 2021, 372, 689-691.	6.0	192

KIM PRATHER

#	Article	IF	CITATIONS
19	Non-targeted tandem mass spectrometry enables the visualization of organic matter chemotype shifts in coastal seawater. Chemosphere, 2021, 271, 129450.	4.2	33
20	Ten scientific reasons in support of airborne transmission of SARS-CoV-2. Lancet, The, 2021, 397, 1603-1605.	6.3	657
21	Cation-Driven Lipopolysaccharide Morphological Changes Impact Heterogeneous Reactions of Nitric Acid with Sea Spray Aerosol Particles. Journal of Physical Chemistry Letters, 2021, 12, 5023-5029.	2.1	6
22	Airborne transmission pathway for coastal water pollution. PeerJ, 2021, 9, e11358.	0.9	4
23	Cultivable halotolerant ice-nucleating bacteria and fungi in coastal precipitation. Atmospheric Chemistry and Physics, 2021, 21, 9031-9045.	1.9	6
24	lon identity molecular networking for mass spectrometry-based metabolomics in the GNPS environment. Nature Communications, 2021, 12, 3832.	5.8	119
25	Airborne transmission of respiratory viruses. Science, 2021, 373, .	6.0	693
26	Continuous measurements of volatile gases as detection of algae crop health. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	12
27	Acidity across the interface from the ocean surface to sea spray aerosol. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	73
28	Evolution of Sea Spray Aerosol Particle Phase State Across a Phytoplankton Bloom. ACS Earth and Space Chemistry, 2021, 5, 2995-3007.	1.2	10
29	The World Health Network: a global citizens' initiative. Lancet, The, 2021, 398, 1567-1568.	6.3	3
30	SARS-CoV-2 indoor air transmission is a threat that can be addressed with science. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	14
31	Development of Heterogeneous Ice Nucleation Rate Coefficient Parameterizations From Ambient Measurements. Geophysical Research Letters, 2021, 48, e2021GL095359.	1.5	8
32	Atmospheric Benzothiazoles in a Coastal Marine Environment. Environmental Science & Technology, 2021, 55, 15705-15714.	4.6	9
33	Airborne transmission of SARS-CoV-2. Science, 2020, 370, 303-304.	6.0	215
34	CAICE Studies: Insights from a Decade of Ocean–Atmosphere Experiments in the Laboratory. Accounts of Chemical Research, 2020, 53, 2510-2520.	7.6	10
35	A Chemical Perspective on Climate: Emerging Research into Atmospheric Chemistry Impacts on Earth's Radiative Balance. Accounts of Chemical Research, 2020, 53, 2496-2497.	7.6	0
36	Mario J. Molina (1943–2020). Science, 2020, 370, 1170-1170.	6.0	33

#	Article	IF	CITATIONS
37	Physicochemical Mixing State of Sea Spray Aerosols: Morphologies Exhibit Size Dependence. ACS Earth and Space Chemistry, 2020, 4, 1604-1611.	1.2	18
38	Ejection of Dust From the Ocean as a Potential Source of Marine Ice Nucleating Particles. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033073.	1.2	17
39	Marine Bacteria Affect Saccharide Enrichment in Sea Spray Aerosol during a Phytoplankton Bloom. ACS Earth and Space Chemistry, 2020, 4, 1638-1649.	1.2	25
40	Biological Influence on δ ¹³ C and Organic Composition of Nascent Sea Spray Aerosol. ACS Earth and Space Chemistry, 2020, 4, 1686-1699.	1.2	15
41	Secondary Marine Aerosol Plays a Dominant Role over Primary Sea Spray Aerosol in Cloud Formation. ACS Central Science, 2020, 6, 2259-2266.	5.3	40
42	Reducing transmission of SARS-CoV-2. Science, 2020, 368, 1422-1424.	6.0	675
43	Organic Enrichment, Physical Phase State, and Surface Tension Depression of Nascent Core–Shell Sea Spray Aerosols during Two Phytoplankton Blooms. ACS Earth and Space Chemistry, 2020, 4, 650-660.	1.2	29
44	Liquid Sampling-Atmospheric Pressure Glow Discharge Ionization as a Technique for the Characterization of Salt-Containing Organic Samples. Analytical Chemistry, 2020, 92, 8845-8851.	3.2	6
45	Best practices for precipitation sample storage for offline studies of ice nucleation in marine and coastal environments. Atmospheric Measurement Techniques, 2020, 13, 6473-6486.	1.2	16
46	The Old and the New: Aging of Sea Spray Aerosol and Formation of Secondary Marine Aerosol through OH Oxidation Reactions. ACS Earth and Space Chemistry, 2019, 3, 2307-2314.	1.2	24
47	Direct Online Mass Spectrometry Measurements of Ice Nucleating Particles at a California Coastal Site. Journal of Geophysical Research D: Atmospheres, 2019, 124, 12157-12172.	1.2	21
48	Characteristics of Ice Nucleating Particles in and Around California Winter Storms. Journal of Geophysical Research D: Atmospheres, 2019, 124, 11530-11551.	1.2	17
49	Contrasting local and long-range-transported warm ice-nucleating particles during an atmospheric river in coastal California, USA. Atmospheric Chemistry and Physics, 2019, 19, 4193-4210.	1.9	12
50	Shedding Light on Photosensitized Reactions within Marine-Relevant Organic Thin Films. ACS Earth and Space Chemistry, 2019, 3, 1614-1623.	1.2	21
51	Multistep Phase Transitions in Sea Surface Microlayer Droplets and Aerosol Mimics using Microfluidic Wells. ACS Earth and Space Chemistry, 2019, 3, 1260-1267.	1.2	17
52	Detection of Active Microbial Enzymes in Nascent Sea Spray Aerosol: Implications for Atmospheric Chemistry and Climate. Environmental Science and Technology Letters, 2019, 6, 171-177.	3.9	28
53	lce nucleation by particles containing long-chain fatty acids of relevance to freezing by sea spray aerosols. Environmental Sciences: Processes and Impacts, 2018, 20, 1559-1569.	1.7	37
54	Sea Spray Aerosol: Where Marine Biology Meets Atmospheric Chemistry. ACS Central Science, 2018, 4, 1617-1623.	5.3	36

#	Article	IF	CITATIONS
55	Taxon-specific aerosolization of bacteria and viruses in an experimental ocean-atmosphere mesocosm. Nature Communications, 2018, 9, 2017.	5.8	103
56	A Mesocosm Double Feature: Insights into the Chemical Makeup of Marine Ice Nucleating Particles. Journals of the Atmospheric Sciences, 2018, 75, 2405-2423.	0.6	67
57	Impacts of Lipase Enzyme on the Surface Properties of Marine Aerosols. Journal of Physical Chemistry Letters, 2018, 9, 3839-3849.	2.1	19
58	The Cloud Nucleating Properties and Mixing State of Marine Aerosols Sampled along the Southern California Coast. Atmosphere, 2018, 9, 52.	1.0	14
59	Molecular Diversity of Sea Spray Aerosol Particles: Impact of Ocean Biology on Particle Composition and Hygroscopicity. CheM, 2017, 2, 655-667.	5.8	111
60	The role of jet and film drops in controlling the mixing state of submicron sea spray aerosol particles. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6978-6983.	3.3	147
61	Sea Spray Aerosol: The Chemical Link between the Oceans, Atmosphere, and Climate. Accounts of Chemical Research, 2017, 50, 599-604.	7.6	84
62	Effect of Structural Heterogeneity in Chemical Composition on Online Single-Particle Mass Spectrometry Analysis of Sea Spray Aerosol Particles. Environmental Science & Technology, 2017, 51, 3660-3668.	4.6	17
63	Laboratory Studies of the Cloud Droplet Activation Properties and Corresponding Chemistry of Saline Playa Dust. Environmental Science & amp; Technology, 2017, 51, 1348-1356.	4.6	33
64	Expanding Single Particle Mass Spectrometer Analyses for the Identification of Microbe Signatures in Sea Spray Aerosol. Analytical Chemistry, 2017, 89, 10162-10170.	3.2	17
65	A Dynamic Link between Ice Nucleating Particles Released in Nascent Sea Spray Aerosol and Oceanic Biological Activity during Two Mesocosm Experiments. Journals of the Atmospheric Sciences, 2017, 74, 151-166.	0.6	93
66	Biological Impacts on Carbon Speciation and Morphology of Sea Spray Aerosol. ACS Earth and Space Chemistry, 2017, 1, 551-561.	1.2	36
67	Transport of pollution to a remote coastal site during gap flow from California's interior: impacts on aerosol composition, clouds, and radiative balance. Atmospheric Chemistry and Physics, 2017, 17, 1491-1509.	1.9	20
68	Automation and heat transfer characterization of immersion mode spectroscopy for analysis of ice nucleating particles. Atmospheric Measurement Techniques, 2017, 10, 2613-2626.	1.2	20
69	FATES: a flexible analysis toolkit for the exploration of single-particle mass spectrometer data. Atmospheric Measurement Techniques, 2017, 10, 1323-1334.	1.2	29
70	Improving our fundamental understanding of the role of aerosolâ~'cloud interactions in the climate system. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5781-5790.	3.3	479
71	Sea Spray Aerosol Structure and Composition Using Cryogenic Transmission Electron Microscopy. ACS Central Science, 2016, 2, 40-47.	5.3	74
72	Phytoplankton blooms weakly influence the cloud forming ability of sea spray aerosol. Geophysical Research Letters, 2016, 43, 9975-9983.	1.5	52

#	Article	IF	CITATIONS
73	Enrichment of Saccharides and Divalent Cations in Sea Spray Aerosol During Two Phytoplankton Blooms. Environmental Science & Technology, 2016, 50, 11511-11520.	4.6	90
74	The relationships between insoluble precipitation residues, clouds, and precipitation over California's southern Sierra Nevada during winter storms. Atmospheric Environment, 2016, 140, 298-310.	1.9	13
75	Heterogeneous Chemistry of Lipopolysaccharides with Gas-Phase Nitric Acid: Reactive Sites and Reaction Pathways. Journal of Physical Chemistry A, 2016, 120, 6444-6450.	1.1	22
76	Linking variations in sea spray aerosol particle hygroscopicity to composition during two microcosm experiments. Atmospheric Chemistry and Physics, 2016, 16, 9003-9018.	1.9	31
77	Sea spray aerosol as a unique source of ice nucleating particles. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5797-5803.	3.3	323
78	Analysis of Organic Anionic Surfactants in Fine and Coarse Fractions of Freshly Emitted Sea Spray Aerosol. Environmental Science & Technology, 2016, 50, 2477-2486.	4.6	143
79	Tools for the Microbiome: Nano and Beyond. ACS Nano, 2016, 10, 6-37.	7.3	137
80	CalWater Field Studies Designed to Quantify the Roles of Atmospheric Rivers and Aerosols in Modulating U.S. West Coast Precipitation in a Changing Climate. Bulletin of the American Meteorological Society, 2016, 97, 1209-1228.	1.7	87
81	Impact of interannual variations in sources of insoluble aerosol species on orographic precipitation over California's central Sierra Nevada. Atmospheric Chemistry and Physics, 2015, 15, 6535-6548.	1.9	38
82	Cryo-Transmission Electron Microscopy of Sea Spray Aerosols. Microscopy and Microanalysis, 2015, 21, 633-634.	0.2	0
83	Characterization of core–shell MOF particles by depth profiling experiments using on-line single particle mass spectrometry. Analyst, The, 2015, 140, 1510-1515.	1.7	12
84	Advancing Model Systems for Fundamental Laboratory Studies of Sea Spray Aerosol Using the Microbial Loop. Journal of Physical Chemistry A, 2015, 119, 8860-8870.	1.1	62
85	A Tribute to Mario Molina. Journal of Physical Chemistry A, 2015, 119, 4277-4278.	1.1	2
86	Microbial Control of Sea Spray Aerosol Composition: A Tale of Two Blooms. ACS Central Science, 2015, 1, 124-131.	5.3	172
87	The Impact of Aerosol Particle Mixing State on the Hygroscopicity of Sea Spray Aerosol. ACS Central Science, 2015, 1, 132-141.	5.3	64
88	Response to Comment on "Development of a High-Pressure Aerodynamic Lens for Focusing Large Particles (4–10Âî¼m) into the Aerosol Time-of-Flight Mass Spectrometer― Aerosol Science and Technology, 2015, 49, ii-ii.	1.5	0
89	The Impacts of California's San Francisco Bay Area Gap on Precipitation Observed in the Sierra Nevada during HMT and CalWater. Journal of Hydrometeorology, 2015, 16, 1048-1069.	0.7	29
90	Direct Night-Time Ejection of Particle-Phase Reduced Biogenic Sulfur Compounds from the Ocean to the Atmosphere. Environmental Science & Technology, 2015, 49, 4861-4867.	4.6	8

#	Article	IF	CITATIONS
91	Comparison of the mixing state of long-range transported Asian and African mineral dust. Atmospheric Environment, 2015, 115, 19-25.	1.9	62
92	Chemistry and Related Properties of Freshly Emitted Sea Spray Aerosol. Chemical Reviews, 2015, 115, 4383-4399.	23.0	289
93	Online Analysis of Single Cyanobacteria and Algae Cells under Nitrogen-Limited Conditions Using Aerosol Time-of-Flight Mass Spectrometry. Analytical Chemistry, 2015, 87, 8039-8046.	3.2	24
94	Role of Organic Coatings in Regulating N ₂ O ₅ Reactive Uptake to Sea Spray Aerosol. Journal of Physical Chemistry A, 2015, 119, 11683-11692.	1.1	34
95	Direct aerosol chemical composition measurements to evaluate the physicochemical differences between controlled sea spray aerosol generation schemes. Atmospheric Measurement Techniques, 2014, 7, 3667-3683.	1.2	95
96	Impacts of Aerosol Aging on Laser Desorption/Ionization in Single-Particle Mass Spectrometers. Aerosol Science and Technology, 2014, 48, 1050-1058.	1.5	24
97	Polluting of winter convective clouds upon transition from ocean inland over central California: Contrasting case studies. Atmospheric Research, 2014, 135-136, 112-127.	1.8	16
98	Development of a High-Pressure Aerodynamic Lens for Focusing Large Particles (4–10Âμm) into the Aerosol Time-of-Flight Mass Spectrometer. Aerosol Science and Technology, 2014, 48, 948-956.	1.5	11
99	Heterogeneous Reactivity of Nitric Acid with Nascent Sea Spray Aerosol: Large Differences Observed between and within Individual Particles. Journal of Physical Chemistry Letters, 2014, 5, 2493-2500.	2.1	66
100	On the Role of Particle Inorganic Mixing State in the Reactive Uptake of N ₂ O ₅ to Ambient Aerosol Particles. Environmental Science & Technology, 2014, 48, 1618-1627.	4.6	58
101	Do Cloud Properties in a Puerto Rican Tropical Montane Cloud Forest Depend on Occurrence of Long-Range Transported African Dust?. Pure and Applied Geophysics, 2014, 171, 2443-2459.	0.8	13
102	Transition Metal Associations with Primary Biological Particles in Sea Spray Aerosol Generated in a Wave Channel. Environmental Science & Technology, 2014, 48, 1324-1333.	4.6	58
103	Chemical properties of insoluble precipitation residue particles. Journal of Aerosol Science, 2014, 76, 13-27.	1.8	31
104	Corrigendum to Aerosol impacts on California winter clouds and precipitation during CalWater 2011: local pollution versus long-range transported dust published in Atmos. Chem. Phys., 14, 81–101, 2014. Atmospheric Chemistry and Physics, 2014, 14, 3063-3064.	1.9	4
105	Aerosol impacts on California winter clouds and precipitation during CalWater 2011: local pollution versus long-range transported dust. Atmospheric Chemistry and Physics, 2014, 14, 81-101.	1.9	101
106	Dust and Biological Aerosols from the Sahara and Asia Influence Precipitation in the Western U.S Science, 2013, 339, 1572-1578.	6.0	482
107	The 2010 California Research at the Nexus of Air Quality and Climate Change (CalNex) field study. Journal of Geophysical Research D: Atmospheres, 2013, 118, 5830-5866.	1.2	199
108	Shipboard measurements of gaseous elemental mercury along the coast of Central and Southern California. Journal of Geophysical Research D: Atmospheres, 2013, 118, 208-219.	1.2	15

#	Article	IF	CITATIONS
109	Tandem Postsynthetic Metal Ion and Ligand Exchange in Zeolitic Imidazolate Frameworks. Inorganic Chemistry, 2013, 52, 4011-4016.	1.9	209
110	Size-Dependent Changes in Sea Spray Aerosol Composition and Properties with Different Seawater Conditions. Environmental Science & amp; Technology, 2013, 47, 5603-5612.	4.6	175
111	Raman microspectroscopy and vibrational sum frequency generation spectroscopy as probes of the bulk and surface compositions of size-resolved sea spray aerosol particles. Physical Chemistry Chemical Physics, 2013, 15, 6206.	1.3	103
112	Air Quality Impact and Physicochemical Aging of Biomass Burning Aerosols during the 2007 San Diego Wildfires. Environmental Science & Technology, 2013, 47, 7633-7643.	4.6	96
113	Size-Resolved Sea Spray Aerosol Particles Studied by Vibrational Sum Frequency Generation. Journal of Physical Chemistry A, 2013, 117, 6589-6601.	1.1	50
114	Inside versus Outside: Ion Redistribution in Nitric Acid Reacted Sea Spray Aerosol Particles as Determined by Single Particle Analysis. Journal of the American Chemical Society, 2013, 135, 14528-14531.	6.6	89
115	Evaluating the properties of sea spray aerosols produced in the laboratory: Comparisons with controlled breaking waves. , 2013, , .		0
116	Laboratory measurements of ice nuclei concentrations from ocean water spray. , 2013, , .		2
117	Improvements to an Empirical Parameterization of Heterogeneous Ice Nucleation and Its Comparison with Observations. Journals of the Atmospheric Sciences, 2013, 70, 378-409.	0.6	127
118	Evaluation of aerosol mixing state classes in the GISS modelEâ€MATRIX climate model using singleâ€particle mass spectrometry measurements. Journal of Geophysical Research D: Atmospheres, 2013, 118, 9834-9844.	1.2	42
119	Impact of marine biogeochemistry on the chemical mixing state and cloud forming ability of nascent sea spray aerosol. Journal of Geophysical Research D: Atmospheres, 2013, 118, 8553-8565.	1.2	84
120	Bringing the ocean into the laboratory to probe the chemical complexity of sea spray aerosol. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7550-7555.	3.3	439
121	Relating aerosol absorption due to soot, organic carbon, and dust to emission sources determined from in-situ chemical measurements. Atmospheric Chemistry and Physics, 2013, 13, 9337-9350.	1.9	136
122	The common occurrence of highly supercooled drizzle and rain near the coastal regions of the western United States. Journal of Geophysical Research D: Atmospheres, 2013, 118, 9819-9833.	1.2	30
123	Composition and hygroscopicity of the Los Angeles Aerosol: CalNex. Journal of Geophysical Research D: Atmospheres, 2013, 118, 3016-3036.	1.2	79
124	The impact of shipping, agricultural, and urban emissions on single particle chemistry observed aboard the R/V <i>Atlantis</i> during CalNex. Journal of Geophysical Research D: Atmospheres, 2013, 118, 5003-5017.	1.2	33
125	A Marine Aerosol Reference Tank system as a breaking wave analogue for the production of foam and sea-spray aerosols. Atmospheric Measurement Techniques, 2013, 6, 1085-1094.	1.2	129
126	lce in Clouds Experiment–Layer Clouds. Part II: Testing Characteristics of Heterogeneous Ice Formation in Lee Wave Clouds. Journals of the Atmospheric Sciences, 2012, 69, 1066-1079.	0.6	61

#	Article	IF	CITATIONS
127	The mixing state of carbonaceous aerosol particles in northern and southern California measured during CARES and CalNex 2010. Atmospheric Chemistry and Physics, 2012, 12, 10989-11002.	1.9	57
128	Direct N ₂ O ₅ reactivity measurements at a polluted coastal site. Atmospheric Chemistry and Physics, 2012, 12, 2959-2968.	1.9	64
129	Overview of the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES). Atmospheric Chemistry and Physics, 2012, 12, 7647-7687.	1.9	94
130	Seasonal comparisons of single-particle chemical mixing state in Riverside, CA. Atmospheric Environment, 2012, 59, 587-596.	1.9	71
131	Postsynthetic Ligand and Cation Exchange in Robust Metal–Organic Frameworks. Journal of the American Chemical Society, 2012, 134, 18082-18088.	6.6	702
132	Importance of composition and hygroscopicity of BC particles to the effect of BC mitigation on cloud properties: Application to California conditions. Journal of Geophysical Research, 2012, 117, .	3.3	8
133	Postsynthetic ligand exchange as a route to functionalization of â€~inert' metal–organic frameworks. Chemical Science, 2012, 3, 126-130.	3.7	403
134	Mass spectrometry of atmospheric aerosols—Recent developments and applications. Part I: Offâ€line mass spectrometry techniques. Mass Spectrometry Reviews, 2012, 31, 1-16.	2.8	90
135	Mass spectrometry of atmospheric aerosols—Recent developments and applications. Part II: Onâ€line mass spectrometry techniques. Mass Spectrometry Reviews, 2012, 31, 17-48.	2.8	204
136	Measurements of Aerosol Chemistry during New Particle Formation Events at a Remote Rural Mountain Site. Environmental Science & Technology, 2011, 45, 8208-8216.	4.6	60
137	Measurements of Isoprene-Derived Organosulfates in Ambient Aerosols by Aerosol Time-of-Flight Mass Spectrometry - Part 1: Single Particle Atmospheric Observations in Atlanta. Environmental Science & Technology, 2011, 45, 5105-5111.	4.6	121
138	Measurements of Isoprene-Derived Organosulfates in Ambient Aerosols by Aerosol Time-of-Flight Mass Spectrometry—Part 2: Temporal Variability and Formation Mechanisms. Environmental Science & Technology, 2011, 45, 8648-8655.	4.6	79
139	Approach for Measuring the Chemistry of Individual Particles in the Size Range Critical for Cloud Formation. Analytical Chemistry, 2011, 83, 2271-2278.	3.2	16
140	Unique ocean-derived particles serve as a proxy for changes in ocean chemistry. Journal of Geophysical Research, 2011, 116, .	3.3	62
141	Detection of Asian dust in California orographic precipitation. Journal of Geophysical Research, 2011, 116, .	3.3	94
142	Exploring geophysical processes influencing U.S. West Coast precipitation and water supply. Eos, 2011, 92, 352-352.	0.1	0
143	Postsynthetic modification at orthogonal reactive sites on mixed, bifunctional metal–organic frameworks. Chemical Communications, 2011, 47, 7629.	2.2	71
144	Detection and phylogenetic analysis of coastal bioaerosols using culture dependent and independent techniques. Biogeosciences, 2011, 8, 301-309.	1.3	60

#	Article	IF	CITATIONS
145	Flight-based chemical characterization of biomass burning aerosols within two prescribed burn smoke plumes. Atmospheric Chemistry and Physics, 2011, 11, 12549-12565.	1.9	154
146	Effect of organic compounds on cloud condensation nuclei (CCN) activity of sea spray aerosol produced by bubble bursting. Atmospheric Environment, 2011, 45, 7462-7469.	1.9	50
147	Impact of Particle Generation Method on the Apparent Hygroscopicity of Insoluble Mineral Particles. Aerosol Science and Technology, 2010, 44, 830-846.	1.5	44
148	In Situ Chemical Characterization of Aged Biomass-Burning Aerosols Impacting Cold Wave Clouds. Journals of the Atmospheric Sciences, 2010, 67, 2451-2468.	0.6	48
149	Ice Initiation by Aerosol Particles: Measured and Predicted Ice Nuclei Concentrations versus Measured Ice Crystal Concentrations in an Orographic Wave Cloud. Journals of the Atmospheric Sciences, 2010, 67, 2417-2436.	0.6	96
150	Relationships of Biomass-Burning Aerosols to Ice in Orographic Wave Clouds. Journals of the Atmospheric Sciences, 2010, 67, 2437-2450.	0.6	54
151	Composition and Morphology of Individual Combustion, Biomass Burning, and Secondary Organic Particle Types Obtained Using Urban and Coastal ATOFMS and STXM-NEXAFS Measurements. Aerosol Science and Technology, 2010, 44, 551-562.	1.5	26
152	Aircraft measurements of vertical profiles of aerosol mixing states. Journal of Geophysical Research, 2010, 115, .	3.3	96
153	Observation of playa salts as nuclei in orographic wave clouds. Journal of Geophysical Research, 2010, 115, .	3.3	55
154	Real-Time Detection and Mixing State of Methanesulfonate in Single Particles at an Inland Urban Location during a Phytoplankton Bloom. Environmental Science & Technology, 2010, 44, 1566-1572.	4.6	83
155	Characterization of the Single Particle Mixing State of Individual Ship Plume Events Measured at the Port of Los Angeles. Environmental Science & amp; Technology, 2010, 44, 1954-1961.	4.6	131
156	Sources and properties of Amazonian aerosol particles. Reviews of Geophysics, 2010, 48, .	9.0	283
157	Real-Time, Single-Particle Volatility, Size, and Chemical Composition Measurements of Aged Urban Aerosols. Environmental Science & Technology, 2009, 43, 8276-8282.	4.6	83
158	In-situ measurements of the mixing state and optical properties of soot with implications for radiative forcing estimates. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11872-11877.	3.3	391
159	Our Current Understanding of the Impact of Aerosols on Climate Change. ChemSusChem, 2009, 2, 377-379.	3.6	10
160	In situ detection of biological particles in cloud ice-crystals. Nature Geoscience, 2009, 2, 398-401.	5.4	406
161	Seasonal Volatility Dependence of Ambient Particle Phase Amines. Environmental Science & Technology, 2009, 43, 5276-5281.	4.6	127
162	Development and Characterization of an Aircraft Aerosol Time-of-Flight Mass Spectrometer. Analytical Chemistry, 2009, 81, 1792-1800.	3.2	102

#	Article	IF	CITATIONS
163	Impact of Emissions from the Los Angeles Port Region on San Diego Air Quality during Regional Transport Events. Environmental Science & Technology, 2009, 43, 3500-3506.	4.6	136
164	Timescale for hygroscopic conversion of calcite mineral particles through heterogeneous reaction with nitric acid. Physical Chemistry Chemical Physics, 2009, 11, 7826.	1.3	82
165	Effect of chemical mixing state on the hygroscopicity and cloud nucleation properties of calcium mineral dust particles. Atmospheric Chemistry and Physics, 2009, 9, 3303-3316.	1.9	268
166	Source apportionment of 1h semi-continuous data during the 2005 Study of Organic Aerosols in Riverside (SOAR) using positive matrix factorization. Atmospheric Environment, 2008, 42, 2706-2719.	1.9	39
167	Using mass spectral source signatures to apportion exhaust particles from gasoline and diesel powered vehicles in a freeway study using UF-ATOFMS. Atmospheric Environment, 2008, 42, 568-581.	1.9	70
168	Assessment of the relative importance of atmospheric aging on CCN activity derived from field observations. Atmospheric Environment, 2008, 42, 3130-3142.	1.9	125
169	Comparison of two cluster analysis methods using single particle mass spectra. Atmospheric Environment, 2008, 42, 881-892.	1.9	33
170	Analysis of Atmospheric Aerosols. Annual Review of Analytical Chemistry, 2008, 1, 485-514.	2.8	145
171	Sizeâ€resolved chemical composition of aerosol particles during a monsoonal transition period over the Indian Ocean. Journal of Geophysical Research, 2008, 113, .	3.3	45
172	Chemically segregated optical and microphysical properties of ambient aerosols measured in a singleâ€particle mass spectrometer. Journal of Geophysical Research, 2008, 113, .	3.3	68
173	Gold Nanoparticles as a Matrix for Visible-Wavelength Single-Particle Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry of Small Biomolecules. Journal of Physical Chemistry C, 2008, 112, 4083-4090.	1.5	41
174	Correction to "Trace gas and particulate emissions from the 2003 southern California wildfires― Journal of Geophysical Research, 2008, 113, .	3.3	0
175	Characterization of Aerosols Containing Zn, Pb, and Cl from an Industrial Region of Mexico City. Environmental Science & Technology, 2008, 42, 7091-7097.	4.6	143
176	Detection of Ambient Ultrafine Aerosols by Single Particle Techniques During the SOAR 2005 Campaign. Aerosol Science and Technology, 2008, 42, 674-684.	1.5	18
177	The influence of chemical composition and mixing state of Los Angeles urban aerosol on CCN number and cloud properties. Atmospheric Chemistry and Physics, 2008, 8, 5649-5667.	1.9	171
178	Measurement of ambient aerosols in northern Mexico City by single particle mass spectrometry. Atmospheric Chemistry and Physics, 2008, 8, 4499-4516.	1.9	257
179	Direct observations of the atmospheric processing of Asian mineral dust. Atmospheric Chemistry and Physics, 2007, 7, 1213-1236.	1.9	424
180	Simultaneous Measurement of the Effective Density and Chemical Composition of Ambient Aerosol Particles. Environmental Science & Amp; Technology, 2007, 41, 1303-1309.	4.6	90

KIM PRATHER

#	Article	IF	CITATIONS
181	Investigations of the Diurnal Cycle and Mixing State of Oxalic Acid in Individual Particles in Asian Aerosol Outflow. Environmental Science & Technology, 2007, 41, 8062-8069.	4.6	167
182	Real-Time, Single-Particle Measurements of Oligomers in Aged Ambient Aerosol Particles. Environmental Science & Technology, 2007, 41, 5439-5446.	4.6	162
183	Trace gas and particulate emissions from the 2003 southern California wildfires. Journal of Geophysical Research, 2007, 112, .	3.3	49
184	Analysis of rainwater samples: Comparison of single particle residues with ambient particle chemistry from the northeast Pacific and Indian oceans. Journal of Geophysical Research, 2007, 112, .	3.3	23
185	Aerosol time-of-flight mass spectrometry data analysis: A benchmark of clustering algorithms. Analytica Chimica Acta, 2007, 585, 38-54.	2.6	69
186	Determination of single particle mass spectral signatures from heavy-duty diesel vehicle emissions for PM2.5 source apportionment. Atmospheric Environment, 2007, 41, 3841-3852.	1.9	71
187	Mineral dust is a sink for chlorine in the marine boundary layer. Atmospheric Environment, 2007, 41, 7166-7179.	1.9	113
188	Real-Time Characterization of the Composition of Individual Particles Emitted From Ultrafine Particle Concentrators. Aerosol Science and Technology, 2006, 40, 437-455.	1.5	23
189	Comparison of Two Methods for Obtaining Quantitative Mass Concentrations from Aerosol Time-of-Flight Mass Spectrometry Measurements. Analytical Chemistry, 2006, 78, 6169-6178.	3.2	84
190	Single Particle Characterization of Ultrafine and Accumulation Mode Particles from Heavy Duty Diesel Vehicles Using Aerosol Time-of-Flight Mass Spectrometry. Environmental Science & Technology, 2006, 40, 3912-3921.	4.6	129
191	Characterization of Asian Dust during ACE-Asia. Global and Planetary Change, 2006, 52, 23-56.	1.6	190
192	Impact of biomass emissions on particle chemistry during the California Regional Particulate Air Quality Study. International Journal of Mass Spectrometry, 2006, 258, 142-150.	0.7	52
193	Comparison of oil and fuel particle chemical signatures with particle emissions from heavy and light duty vehicles. Atmospheric Environment, 2006, 40, 5224-5235.	1.9	99
194	Instrument Busy Time and Mass Measurement using Aerosol Time-of-Flight Mass Spectrometry. Aerosol Science and Technology, 2006, 40, 615-626.	1.5	11
195	Using ATOFMS to Determine OC/EC Mass Fractions in Particles. Aerosol Science and Technology, 2006, 40, 585-594.	1.5	88
196	Predicting bulk ambient aerosol compositions from ATOFMS data with ART-2a and multivariate analysis. Analytica Chimica Acta, 2005, 549, 179-187.	2.6	26
197	Stability of single particle tracers for differentiating between heavy- and light-duty vehicle emissions. Atmospheric Environment, 2005, 39, 2889-2901.	1.9	15
198	ATOFMS Characterization of Individual Model Aerosol Particles Used for Exposure Studies. Aerosol Science and Technology, 2005, 39, 400-407.	1.5	12

KIM PRATHER

#	Article	IF	CITATIONS
199	Extending ATOFMS Measurements To Include Refractive Index and Density. Analytical Chemistry, 2005, 77, 6535-6541.	3.2	46
200	Recent Advances in Our Understanding of Atmospheric Chemistry and Climate Made Possible by On-Line Aerosol Analysis Instrumentation. Analytical Chemistry, 2005, 77, 3861-3886.	3.2	175
201	Determination of Single Particle Mass Spectral Signatures from Light-Duty Vehicle Emissions. Environmental Science & Technology, 2005, 39, 4569-4580.	4.6	130
202	Improvements in ion signal reproducibility obtained using a homogeneous laser beam for on-line laser desorption/ionization of single particles. Rapid Communications in Mass Spectrometry, 2004, 18, 1525-1533.	0.7	51
203	Characterization of an Ambient Coarse Particle Concentrator Used for Human Exposure Studies: Aerosol Size Distributions, Chemical Composition, and Concentration Enrichment. Aerosol Science and Technology, 2004, 38, 1123-1137.	1.5	23
204	MALDI Matrices for Biomolecular Analysis Based on Functionalized Carbon Nanomaterials. Analytical Chemistry, 2004, 76, 6734-6742.	3.2	96
205	Development and Characterization of an Aerosol Time-of-Flight Mass Spectrometer with Increased Detection Efficiency. Analytical Chemistry, 2004, 76, 712-719.	3.2	165
206	Marine boundary layer dust and pollutant transport associated with the passage of a frontal system over eastern Asia. Journal of Geophysical Research, 2004, 109, .	3.3	94
207	Three-dimensional simulations of inorganic aerosol distributions in east Asia during spring 2001. Journal of Geophysical Research, 2004, 109, .	3.3	80
208	Hydroxymethanesulfonate as a tracer for fog processing of individual aerosol particles. Atmospheric Environment, 2003, 37, 1033-1043.	1.9	72
209	Ambient single particle analysis in Riverside, California by aerosol time-of-flight mass spectrometry during the SCOS97-NARSTO. Atmospheric Environment, 2003, 37, 239-258.	1.9	64
210	Detection of Pesticide Residues on Individual Particles. Analytical Chemistry, 2003, 75, 49-56.	3.2	22
211	A comparison of particle mass spectrometers during the 1999 Atlanta Supersite Project. Journal of Geophysical Research, 2003, 108, .	3.3	90
212	Aerosol time-of-flight mass spectrometry during the Atlanta Supersite Experiment: 1. Measurements. Journal of Geophysical Research, 2003, 108, .	3.3	85
213	Aerosol time-of-flight mass spectrometry during the Atlanta Supersite Experiment: 2. Scaling procedures. Journal of Geophysical Research, 2003, 108, .	3.3	63
214	Characterization of carbonaceous aerosols outflow from India and Arabia: Biomass/biofuel burning and fossil fuel combustion. Journal of Geophysical Research, 2003, 108, .	3.3	109
215	Recent Advances and Some Remaining Challenges in Analytical Chemistry of the Atmosphere. Analytical Chemistry, 2003, 75, 2929-2940.	3.2	44
216	A Field-Based Approach for Determining ATOFMS Instrument Sensitivities to Ammonium and Nitrate. Environmental Science & Technology, 2002, 36, 4868-4879.	4.6	66

#	Article	IF	CITATIONS
217	Effects of Meteorological Conditions on Aerosol Composition and Mixing State in Bakersfield, CA. Environmental Science & Technology, 2002, 36, 2345-2353.	4.6	57
218	Evaluation of an Air Quality Model for the Size and Composition of Source-Oriented Particle Classes. Environmental Science & Technology, 2002, 36, 2154-2163.	4.6	21
219	Reproducibility of Single Particle Chemical Composition during a Heavy Duty Diesel Truck Dynamometer Study. Aerosol Science and Technology, 2002, 36, 1139-1141.	1.5	17
220	Continuous measurements of size-resolved particle chemistry during INDOEX-Intensive Field Phase 99. Journal of Geophysical Research, 2001, 106, 28607-28627.	3.3	80
221	Indian Ocean Experiment: An integrated analysis of the climate forcing and effects of the great Indo-Asian haze. Journal of Geophysical Research, 2001, 106, 28371-28398.	3.3	1,199
222	Formation of Aerosol Particles from Reactions of Secondary and Tertiary Alkylamines:Â Characterization by Aerosol Time-of-Flight Mass Spectrometry. Environmental Science & Technology, 2001, 35, 3130-3138.	4.6	214
223	Closure between aerosol particles and cloud condensation nuclei at Kaashidhoo Climate Observatory. Journal of Geophysical Research, 2001, 106, 28711-28718.	3.3	68
224	Improved Lower Particle Size Limit for Aerosol Time-of-Flight Mass Spectrometry. Aerosol Science and Technology, 2001, 34, 381-385.	1.5	10
225	Quantification of ATOFMS Data by Multivariate Methods. Analytical Chemistry, 2001, 73, 3535-3541.	3.2	45
226	Source Apportionment of Fine Particulate Matter by Clustering Single-Particle Data:Â Tests of Receptor Model Accuracy. Environmental Science & Technology, 2001, 35, 2060-2072.	4.6	52
227	Source apportionment of gasoline and diesel by multivariate calibration based on single particle mass spectral data. Analytica Chimica Acta, 2001, 446, 327-341.	2.6	22
228	Real-time measurements of the chemical composition of size-resolved particles during a Santa Ana wind episode, California USA. Atmospheric Environment, 2001, 35, 3229-3240.	1.9	55
229	The Indian Ocean Experiment: Widespread Air Pollution from South and Southeast Asia. Science, 2001, 291, 1031-1036.	6.0	687
230	Real-time single particle mass spectrometry: A historical review of a quarter century of the chemical analysis of aerosols. Mass Spectrometry Reviews, 2000, 19, 248-274.	2.8	235
231	Single particle analysis of suspended soil dust from Southern California. Atmospheric Environment, 2000, 34, 1811-1820.	1.9	93
232	Single Particle Characterization of Automobile and Diesel Truck Emissions in the Caldecott Tunnel. Aerosol Science and Technology, 2000, 32, 152-163.	1.5	69
233	Variations in the Size and Chemical Composition of Nitrate-Containing Particles in Riverside, CA. Aerosol Science and Technology, 2000, 33, 71-86.	1.5	51
234	Relative Sensitivity Factors for Alkali Metal and Ammonium Cations in Single-Particle Aerosol Time-of-Flight Mass Spectra. Analytical Chemistry, 2000, 72, 416-422.	3.2	178

#	Article	IF	CITATIONS
235	Particle Detection Efficiencies of Aerosol Time of Flight Mass Spectrometers under Ambient Sampling Conditions. Environmental Science & Technology, 2000, 34, 211-217.	4.6	109
236	The ongoing evolution of analytical chemistry Analytical Chemistry, 2000, 72, 501 A-501 A.	3.2	4
237	Interpretation of Mass Spectra from Organic Compounds in Aerosol Time-of-Flight Mass Spectrometry. Analytical Chemistry, 2000, 72, 3553-3562.	3.2	183
238	Evolution of Atmospheric Particles along Trajectories Crossing the Los Angeles Basin. Environmental Science & Technology, 2000, 34, 3058-3068.	4.6	101
239	Introduction: Online Single Particle Analysis. Aerosol Science and Technology, 2000, 33, 1-2.	1.5	4
240	Classification of Single Particles Analyzed by ATOFMS Using an Artificial Neural Network, ART-2A. Analytical Chemistry, 1999, 71, 860-865.	3.2	326
241	Size and Chemical Characterization of Individual Particles Resulting from Biomass Burning of Local Southern California Species. Environmental Science & amp; Technology, 1999, 33, 3068-3076.	4.6	221
242	Size and Composition Distribution of Atmospheric Particles in Southern California. Environmental Science & Technology, 1999, 33, 3506-3515.	4.6	93
243	Mass Spectrometry of Aerosols. Chemical Reviews, 1999, 99, 3007-3036.	23.0	206
244	Coupling two-step laser desorption/ionization with aerosol time-of-flight mass spectrometry for the analysis of individual organic particles. Journal of the American Society for Mass Spectrometry, 1998, 9, 1068-1073.	1.2	110
245	Time-of-flight mass spectrometry methods for real time analysis of individual aerosol particles. TrAC - Trends in Analytical Chemistry, 1998, 17, 346-356.	5.8	27
246	Single particle analysis of transient variations occurring in atmospheric aerosols. Journal of Aerosol Science, 1998, 29, S1185-S1186.	1.8	0
247	Determination of the particle counting efficiency and chemical sensitivities of an aerosol time of flight mass spectrometer under ambient sampling conditions. Journal of Aerosol Science, 1998, 29, S1195-S1196.	1.8	0
248	Single Particle Characterization of Albuterol Metered Dose Inhaler Aerosol in Near Real-Time. Aerosol Science and Technology, 1998, 29, 294-306.	1.5	20
249	Direct Observation of Heterogeneous Chemistry in the Atmosphere. Science, 1998, 279, 1184-1187.	6.0	340
250	Aerosol Time-of-Flight Mass Spectrometry: A New Method for Performing Real-Time Characterization of Aerosol Particles. Journal of Occupational and Environmental Hygiene, 1998, 13, 439-443.	0.5	8
251	Air pollution: the role of particles. Physics World, 1998, 11, 39-44.	0.0	14
252	Real-Time Monitoring of Pyrotechnically Derived Aerosol Particles in the Troposphere. Analytical Chemistry, 1997, 69, 1808-1814.	3.2	119

#	Article	IF	CITATIONS
253	On-Line Characterization of Individual Particles from Automobile Emissions. Environmental Science & Technology, 1997, 31, 3074-3080.	4.6	82
254	Real-time single particle monitoring of a relative increase in marine aerosol concentration during winter rainstorms. Geophysical Research Letters, 1997, 24, 2753-2756.	1.5	17
255	Real-Time Analysis of Individual Atmospheric Aerosol Particles:  Design and Performance of a Portable ATOFMS. Analytical Chemistry, 1997, 69, 4083-4091.	3.2	494
256	SpectraSort: A data analysis program for real-time aerosol analysis by aerosol time-of-flight mass spectrometry. Chemometrics and Intelligent Laboratory Systems, 1997, 37, 197-203.	1.8	10
257	Aerodynamic Particle Sizing versus Light Scattering Intensity Measurement as Methods for Real-Time Particle Sizing Coupled with Time-of-Flight Mass Spectrometry. Analytical Chemistry, 1996, 68, 230-234.	3.2	66
258	Real-Time Measurement of Correlated Size and Composition Profiles of Individual Atmospheric Aerosol Particles. Environmental Science & Technology, 1996, 30, 2667-2680.	4.6	243
259	Aerosol characterization using mass spectrometry. TrAC - Trends in Analytical Chemistry, 1994, 13, 218-222.	5.8	35
260	Real-Time Measurement Capabilities Using Aerosol Time-of-Flight Mass Spectrometry. Analytical Chemistry, 1994, 66, 3540-3542.	3.2	60
261	Real-time characterization of individual aerosol particles using time-of-flight mass spectrometry. Analytical Chemistry, 1994, 66, 1403-1407.	3.2	296
262	The Photodissociation of Pyridine at 193 nm. Israel Journal of Chemistry, 1994, 34, 43-53.	1.0	22
263	Primary processes involved in the photodissociation of saturated hydrocarbons at 157 nm. , 1992, , .		0
264	Photodissociation dynamics of 3-cyclopentenone using a tunable diode laser. The Journal of Physical Chemistry, 1991, 95, 6544-6548.	2.9	5
265	Photodissociation dynamics of carbonyltrihydridoboron at 193 nm. The Journal of Physical Chemistry, 1990, 94, 4138-4142.	2.9	4