List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8639801/publications.pdf Version: 2024-02-01



SHINIDO HADA

| #  | Article                                                                                                                                                                                                             | lF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Control of InAs Nanowire Growth Directions on Si. Nano Letters, 2008, 8, 3475-3480.                                                                                                                                 | 9.1 | 320       |
| 2  | GaAs/AlGaAs Core Multishell Nanowire-Based Light-Emitting Diodes on Si. Nano Letters, 2010, 10,<br>1639-1644.                                                                                                       | 9.1 | 305       |
| 3  | Single GaAs/GaAsP Coaxial Coreâ^'Shell Nanowire Lasers. Nano Letters, 2009, 9, 112-116.                                                                                                                             | 9.1 | 254       |
| 4  | Growth of Core–Shell InP Nanowires for Photovoltaic Application by Selective-Area Metal Organic<br>Vapor Phase Epitaxy. Applied Physics Express, 0, 2, 035004.                                                      | 2.4 | 185       |
| 5  | Fabrication and characterization of freestanding GaAsâ^•AlGaAs core-shell nanowires and AlGaAs<br>nanotubes by using selective-area metalorganic vapor phase epitaxy. Applied Physics Letters, 2005, 87,<br>093109. | 3.3 | 168       |
| 6  | Selective-area growth of vertically aligned GaAs and GaAs/AlGaAs core–shell nanowires on Si(111)<br>substrate. Nanotechnology, 2009, 20, 145302.                                                                    | 2.6 | 145       |
| 7  | Ill–V Nanowires on Si Substrate: Selective-Area Growth and Device Applications. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17, 1112-1129.                                                        | 2.9 | 145       |
| 8  | Mechanism of catalyst-free growth of GaAs nanowires by selective area MOVPE. Journal of Crystal<br>Growth, 2007, 298, 616-619.                                                                                      | 1.5 | 135       |
| 9  | Growth of highly uniform InAs nanowire arrays by selective-area MOVPE. Journal of Crystal Growth, 2007, 298, 644-647.                                                                                               | 1.5 | 123       |
| 10 | Selective-area growth of III-V nanowires and their applications. Journal of Materials Research, 2011, 26, 2127-2141.                                                                                                | 2.6 | 109       |
| 11 | Structural Transition in Indium Phosphide Nanowires. Nano Letters, 2010, 10, 1699-1703.                                                                                                                             | 9.1 | 108       |
| 12 | Growth characteristics of GaAs nanowires obtained by selective area metal–organic vapour-phase epitaxy. Nanotechnology, 2008, 19, 265604.                                                                           | 2.6 | 94        |
| 13 | Vertical Surrounding Gate Transistors Using Single InAs Nanowires Grown on Si Substrates. Applied<br>Physics Express, 2010, 3, 025003.                                                                              | 2.4 | 80        |
| 14 | Observation of Microcavity Modes and Waveguides in InP Nanowires Fabricated by Selective-Area<br>Metalorganic Vapor-Phase Epitaxy. Nano Letters, 2007, 7, 3598-3602.                                                | 9.1 | 62        |
| 15 | Characterization of Fabry-Pérot microcavity modes in GaAs nanowires fabricated by selective-area metal organic vapor phase epitaxy. Applied Physics Letters, 2007, 91, 131112.                                      | 3.3 | 59        |
| 16 | Crystallographic Structure of InAs Nanowires Studied by Transmission Electron Microscopy. Japanese<br>Journal of Applied Physics, 2007, 46, L1102-L1104.                                                            | 1.5 | 53        |
| 17 | Growth of InGaAs nanowires by selective-area metalorganic vapor phase epitaxy. Journal of Crystal<br>Growth, 2008, 310, 2359-2364.                                                                                  | 1.5 | 49        |
| 18 | Electrical Characterizations of InGaAs Nanowire-Top-Gate Field-Effect Transistors by Selective-Area<br>Metal Organic Vapor Phase Epitaxy. Japanese Journal of Applied Physics, 2007, 46, 7562.                      | 1.5 | 45        |

| #  | Article                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Analysis of twin defects in GaAs nanowires and tetrahedra and their correlation to GaAs(111)B surface reconstructions in selective-area metal organic vapour-phase epitaxy. Journal of Crystal Growth, 2009, 312, 52-57.  | 1.5  | 41        |
| 20 | Formation and photoluminescence characterization of quantum well wires using multiatomic steps grown by metalorganic vapor phase epitaxy. Journal of Crystal Growth, 1994, 145, 692-697.                                  | 1.5  | 36        |
| 21 | Quantum Well Wire Fabrication Method Using Self-Organized Multiatomic Steps on Vicinal (001) GaAs<br>Surfaces by Metalorganic Vapor Phase Epitaxy. Japanese Journal of Applied Physics, 1995, 34, 4401-4404.              | 1.5  | 36        |
| 22 | Self-assembly and selective-area formation of ferromagnetic MnAs nanoclusters on<br>lattice-mismatched semiconductor surfaces by MOVPE. Journal of Crystal Growth, 2008, 310,<br>2390-2394.                               | 1.5  | 29        |
| 23 | Growth and Characterization of InGaAs Nanowires Formed on GaAs(111)B by Selective-Area Metal<br>Organic Vapor Phase Epitaxy. Japanese Journal of Applied Physics, 2010, 49, 04DH08.                                       | 1.5  | 29        |
| 24 | Self-organised InGaAs quantum wire lasers on GaAs multi-atomic steps. Electronics Letters, 1998, 34,<br>894.                                                                                                              | 1.0  | 28        |
| 25 | Multiatomic step formation mechanism of metalorganic vapor phase epitaxial grown GaAs vicinal surfaces and its application to quantum well wires. Journal of Crystal Growth, 1995, 146, 183-187.                          | 1.5  | 27        |
| 26 | Hexagonal ferromagnetic MnAs nanocluster formation on GalnAsâ^•InP (111)B layers by metal-organic vapor phase epitaxy. Applied Physics Letters, 2006, 89, 113111.                                                         | 3.3  | 27        |
| 27 | Transport Properties of Hybrids with Ferromagnetic MnAs Nanoclusters and Their Potential for New Magnetoelectronic Devices. Advanced Materials, 2014, 26, 8079-8095.                                                      | 21.0 | 26        |
| 28 | SA-MOVPE of InGaAs nanowires and their compositions studied by micro-PL measurement. Journal of Crystal Growth, 2008, 310, 5111-5113.                                                                                     | 1.5  | 24        |
| 29 | Comparison of the magnetic properties of GalnAs/MnAs and GaAs/MnAs hybrids with random and ordered arrangements of MnAs nanoclusters. Journal of Applied Physics, 2010, 107, 013701.                                      | 2.5  | 22        |
| 30 | Influence of growth temperature on growth of InGaAs nanowires in selective-area metal–organic<br>vapor-phase epitaxy. Journal of Crystal Growth, 2012, 338, 47-51.                                                        | 1.5  | 22        |
| 31 | Formation and characterization of InGaAs strained quantum wires on GaAs multiatomic steps grown by metalorganic vapor phase epitaxy. Journal of Crystal Growth, 1997, 170, 579-584.                                       | 1.5  | 21        |
| 32 | Fabrication of Axial and Radial Heterostructures for Semiconductor Nanowires by Using<br>Selective-Area Metal-Organic Vapor-Phase Epitaxy. Journal of Nanotechnology, 2012, 2012, 1-29.                                   | 3.4  | 19        |
| 33 | Multiatomic step formation on GaAs(001) vicinal surfaces during thermal treatment. Journal of<br>Crystal Growth, 1996, 160, 235-240.                                                                                      | 1.5  | 18        |
| 34 | Magnetic domain characterizations of anisotropic-shaped MnAs nanoclusters position-controlled by selective-area metal-organic vapor phase epitaxy. Applied Physics Letters, 2009, 94, 243117.                             | 3.3  | 18        |
| 35 | Influence of ordered arrangements of cluster chains on the hopping transport in GaAs:Mn/MnAs<br>hybrids at low temperatures. Physical Review B, 2011, 83, .                                                               | 3.2  | 18        |
| 36 | Ferromagnetic nanoclusters hybridized in Mn-incorporated GaInAs layers during metal–organic<br>vapour phase epitaxial growth on InP layers under low growth temperature conditions.<br>Nanotechnology, 2005, 16, 957-965. | 2.6  | 17        |

| #  | Article                                                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Effect of the cluster magnetization on the magnetotransport at low temperatures in ordered arrays<br>of MnAs nanoclusters on (111) <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"&gt;<mml:mi>B</mml:mi></mml:math> GaAs. Physical Review B, 2011, 84, . | 3.2 | 16        |
| 38 | Growth Direction Control of Ferromagnetic MnAs Grown by Selective-Area Metal–Organic Vapor<br>Phase Epitaxy. Japanese Journal of Applied Physics, 2009, 48, 04C137.                                                                                                                       | 1.5 | 15        |
| 39 | Fabrication and characterization of GaAs quantum well buried in AlGaAs/GaAs heterostructure nanowires. Journal of Crystal Growth, 2010, 312, 3592-3598.                                                                                                                                   | 1.5 | 15        |
| 40 | Pitch-Independent Realization of 30-nm-Diameter InGaAs Nanowire Arrays by Two-Step Growth Method<br>in Selective-Area Metalorganic Vapor-Phase Epitaxy. Applied Physics Express, 2013, 6, 025502.                                                                                         | 2.4 | 15        |
| 41 | Cluster formation and magnetic properties of Mn-incorporated (Galn)As/InP layers grown by metal-organic vapor phase epitaxy. Journal of Crystal Growth, 2004, 261, 330-335.                                                                                                               | 1.5 | 14        |
| 42 | Single-photon emission from InAsP quantum dots embedded in density-controlled InP nanowires.<br>Japanese Journal of Applied Physics, 2017, 56, 04CP04.                                                                                                                                    | 1.5 | 14        |
| 43 | Self-assembled formation of ferromagnetic MnAs nanoclusters on GalnAs/InP (111) B layers by metal-organic vapor phase epitaxy. Journal of Crystal Growth, 2007, 298, 612-615.                                                                                                             | 1.5 | 13        |
| 44 | Magnetic Sensor Devices Based on Ordered Planar Arrangements of MnAs Nanocluster. IEEE<br>Transactions on Magnetics, 2010, 46, 1702-1704.                                                                                                                                                 | 2.1 | 13        |
| 45 | Optical characterization and laser operation of InGaAs quantum wires on GaAs multiatomic steps.<br>Solid-State Electronics, 1998, 42, 1233-1238.                                                                                                                                          | 1.4 | 12        |
| 46 | Lattice-mismatched InGaAs nanowires formed on GaAs(1 1 1)B by selective-area MOVPE. Journal of Crystal Growth, 2011, 315, 148-151.                                                                                                                                                        | 1.5 | 12        |
| 47 | Synthesis and structural characterization of vertical ferromagnetic MnAs/semiconducting InAs heterojunction nanowires. Japanese Journal of Applied Physics, 2016, 55, 075503.                                                                                                             | 1.5 | 10        |
| 48 | Growth and Characterization of MnAs Nanoclusters Embedded in GaAs Nanowires by Metal–Organic<br>Vapor Phase Epitaxy. Japanese Journal of Applied Physics, 2012, 51, 02BH01.                                                                                                               | 1.5 | 10        |
| 49 | Fabrication and Characterization of InP Nanowire Light-Emitting Diodes. Japanese Journal of Applied Physics, 2012, 51, 02BN03.                                                                                                                                                            | 1.5 | 9         |
| 50 | Framework for automatic information extraction from research papers on nanocrystal devices.<br>Beilstein Journal of Nanotechnology, 2015, 6, 1872-1882.                                                                                                                                   | 2.8 | 9         |
| 51 | Magnetoresistance effects and spin-valve like behavior of an arrangement of two MnAs nanoclusters.<br>Applied Physics Letters, 2015, 106, .                                                                                                                                               | 3.3 | 9         |
| 52 | Magnetization in vertical MnAs/InAs heterojunction nanowires. Journal of Crystal Growth, 2017, 464,<br>80-85.                                                                                                                                                                             | 1.5 | 9         |
| 53 | Magnetization characterization of MnAs nanoclusters at close range in bended MnAs/InAs heterojunction nanowires. Journal of Crystal Growth, 2019, 507, 241-245.                                                                                                                           | 1.5 | 8         |
| 54 | Selective-Area Growth and Electrical Characterization of Hybrid Structures between Semiconducting<br>GaAs Nanowires and Ferromagnetic MnAs Nanoclusters. Japanese Journal of Applied Physics, 2012, 51,<br>11PE01.                                                                        | 1.5 | 8         |

| #  | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Metal–Organic Vapor Phase Epitaxial Growth Condition Dependences of MnAs Nanocluster Formation<br>on GalnAs (111)A Surfaces. Japanese Journal of Applied Physics, 2008, 47, 3253-3256.                                                       | 1.5 | 7         |
| 56 | Selective-Area Growth of InAs Nanowires with Metal/Dielectric Composite Mask and Their Application to Vertical Surrounding-Gate Field-Effect Transistors. Applied Physics Express, 2013, 6, 045001.                                          | 2.4 | 7         |
| 57 | Selectiveâ€area growth and magnetic reversals of ferromagnetic nanoclusters on semiconducting<br>substrate for magnetic logic applications. Physica Status Solidi (B): Basic Research, 2015, 252, 1925-1933.                                 | 1.5 | 7         |
| 58 | Selective-area growth and transport properties of MnAs/InAs heterojunction nanowires. Journal of<br>Materials Research, 2019, 34, 3863-3876.                                                                                                 | 2.6 | 7         |
| 59 | Anomalous Angle-Dependent Magnetotransport Properties of Single InAs Nanowires. Nano Letters,<br>2020, 20, 618-624.                                                                                                                          | 9.1 | 7         |
| 60 | A Novel Electron Wave Interference Device Using Multiatomic Steps on Vicinal GaAs Surfaces Grown<br>by Metalorganic Vapor Phase Epitaxy: Investigation of Transport Properties. Japanese Journal of Applied<br>Physics, 1997, 36, 1966-1971. | 1.5 | 6         |
| 61 | Ferromagnetic MnAs Nanocluster Composites Position-Controlled on GaAs (111)B Substrates toward<br>Lateral Magnetoresistive Devices. Japanese Journal of Applied Physics, 2011, 50, 06GH01.                                                   | 1.5 | 6         |
| 62 | Growth and Characterization of MnAs Nanoclusters Embedded in GaAs Nanowires by Metal–Organic<br>Vapor Phase Epitaxy. Japanese Journal of Applied Physics, 2012, 51, 02BH01.                                                                  | 1.5 | 6         |
| 63 | Ferromagnetic MnAs Nanocluster Composites Position-Controlled on GaAs (111)B Substrates toward<br>Lateral Magnetoresistive Devices. Japanese Journal of Applied Physics, 2011, 50, 06GH01.                                                   | 1.5 | 6         |
| 64 | Theoretical and experimental investigation of an electron interference device using multiatomic steps on vicinal GaAs surfaces. Physica B: Condensed Matter, 1996, 227, 295-298.                                                             | 2.7 | 5         |
| 65 | Selective-area growth and magnetic characterization of MnAs/AlGaAs nanoclusters on insulating Al2O3 layers crystallized on Si(111) substrates. Applied Physics Letters, 2016, 108, 043108.                                                   | 3.3 | 5         |
| 66 | Shape control of ferromagnetic MnAs nanoclusters exhibiting magnetization switching in vertical MnAs/InAs heterojunction nanowires. Japanese Journal of Applied Physics, 2017, 56, 06GH03.                                                   | 1.5 | 5         |
| 67 | Growth and Characterization of a GaAs Quantum Well Buried in GaAsP/GaAs Vertical Heterostructure<br>Nanowires by Selective-Area Metal Organic Vapor Phase Epitaxy. Japanese Journal of Applied Physics,<br>2011, 50, 04DH03.                 | 1.5 | 4         |
| 68 | Automatic Information Extraction of Experiments from Nanodevices Development Papers. , 2012, , .                                                                                                                                             |     | 4         |
| 69 | Difference in formation of ferromagnetic MnAs nanoclusters on III-V semiconducting nanowire templates. , 2013, , .                                                                                                                           |     | 4         |
| 70 | Composition–dependent growth dynamics of selectively grown InGaAs nanowires. Materials Research<br>Express, 2014, 1, 015036.                                                                                                                 | 1.6 | 4         |
| 71 | Selective-area growth and magnetic characterization of lateral MnAs nanowires. Journal of Crystal<br>Growth, 2015, 414, 151-155.                                                                                                             | 1.5 | 4         |
| 72 | The transport properties of InAs nanowires: an introduction to MnAs/InAs heterojunction nanowires for spintronics. Journal Physics D: Applied Physics, 2020, 53, 333002.                                                                     | 2.8 | 4         |

| #  | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Magnetic properties of hexagonal MnAs nanoclusters formed on GalnAs (111) surfaces by<br>metal-organic vapor phase epitaxy. Journal of Magnetism and Magnetic Materials, 2007, 310, e833-e835.                               | 2.3 | 3         |
| 74 | Construction of tagged corpus for Nanodevices development papers. , 2011, , .                                                                                                                                                |     | 3         |
| 75 | Selective-Area Growth and Electrical Characterization of Hybrid Structures between Semiconducting<br>GaAs Nanowires and Ferromagnetic MnAs Nanoclusters. Japanese Journal of Applied Physics, 2012, 51,<br>11PE01.           | 1.5 | 3         |
| 76 | Analysis of magnetic random telegraph noise in individual arrangements of a small number of coupled<br>MnAs nanoclusters. Physical Review B, 2015, 92, .                                                                     | 3.2 | 3         |
| 77 | Analyses of magnetization switching and magnetic domains in lateral MnAs nanowires in combination with structural characterization. Japanese Journal of Applied Physics, 2017, 56, 06GH05.                                   | 1.5 | 3         |
| 78 | Magnetic domain structure and domain wall analysis of ferromagnetic MnAs nanodisks<br>selectively-grown on Si (111) substrates for spintronic applications. Journal of Applied Physics, 2018,<br>124, .                      | 2.5 | 3         |
| 79 | Optical activity of a single MnAs cluster: Birefringence or Kerr effect. Journal of Magnetism and<br>Magnetic Materials, 2006, 301, 478-488.                                                                                 | 2.3 | 2         |
| 80 | Growth of AlGaAs nanostructures on crystallized Al2O3interlayers for semiconducting nanowire growth on glass substrate. Japanese Journal of Applied Physics, 2015, 54, 075504.                                               | 1.5 | 2         |
| 81 | Nanowire Field-Effect Transistors. , 2021, , 371-431.                                                                                                                                                                        |     | 2         |
| 82 | Growth and Characterization of a GaAs Quantum Well Buried in GaAsP/GaAs Vertical Heterostructure<br>Nanowires by Selective-Area Metal Organic Vapor Phase Epitaxy. Japanese Journal of Applied Physics,<br>2011, 50, 04DH03. | 1.5 | 2         |
| 83 | Tailoring Magnetic Domains and Magnetization Switching in CoFe Nanolayer Patterns with Their<br>Thickness and Aspect Ratio on GaAs (001) Substrate. Physica Status Solidi (B): Basic Research, 2022, 259,                    | 1.5 | 2         |
| 84 | Catalyst-free growth of semiconductor nanowires by selective area MOVPE. AIP Conference Proceedings, 2005, , .                                                                                                               | 0.4 | 1         |
| 85 | Selective-area MOVPE growth and optical properties of single InAsP quantum dots embedded in InP<br>NWs. , 2010, , .                                                                                                          |     | 1         |
| 86 | Bottom-Up Formation of Vertical Free-Standing Semiconductor Nanowires Hybridized with Ferromagnetic Nanoclusters. Materials Science Forum, 0, 783-786, 1990-1995.                                                            | 0.3 | 1         |
| 87 | NaDev: An Annotated Corpus to Support Information Extraction from Research Papers on Nanocrystal<br>Devices. Journal of Information Processing, 2016, 24, 554-564.                                                           | 0.4 | 1         |
| 88 | Selective-area growth of magnetic MnAs nanodisks on Si (1 1 1) substrates using multiple types of dielectric masks. Journal of Crystal Growth, 2019, 507, 226-231.                                                           | 1.5 | 1         |
| 89 | Formation of InP and InGaAs Air-Hole Arrays on InP(111) Substrates by Selective-Area Metal–Organic<br>Vapor Phase Epitaxy. Japanese Journal of Applied Physics, 2008, 47, 3354-3358.                                         | 1.5 | 0         |
| 90 | Fabrication of III-V semicondctor nanowires by SA-MOVPE and their applications to photonic and photovoltaic devices. , 2010, , .                                                                                             |     | 0         |

6

| #  | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Selectiveâ€area growth and magnetic reversals of ferromagnetic nanoclusters on semiconducting<br>substrate for magnetic logic applications (Phys. Status Solidi B 9/2015). Physica Status Solidi (B): Basic<br>Research, 2015, 252, . | 1.5 | 0         |
| 92 | Magnetization switching depending on magnetic fields applied to ferromagnetic MnAs nanodisks selectively-grown on Si (111) substrates. AlP Advances, 2020, 10, 125003.                                                                | 1.3 | 0         |