Roberto Di Primio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8638292/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	From 2646 to 15: differentially regulated microRNAs between progenitors from normal myometrium and leiomyoma. American Journal of Obstetrics and Gynecology, 2020, 222, 596.e1-596.e9.	1.3	18
2	Mesenchymal stem cell profile in actinic keratosis and its modification after topical application of ingenol mebutate. Journal of the European Academy of Dermatology and Venereology, 2020, 34, e148-e149.	2.4	1
3	The senescent status of endothelial cells affects proliferation, inflammatory profile and SOX2 expression in bone marrow-derived mesenchymal stem cells. Experimental Gerontology, 2019, 120, 21-27.	2.8	12
4	Breast Implant Texturization Does Not Affect the Crosstalk Between MSC and ALCL Cells. Inflammation, 2019, 42, 721-730.	3.8	2
5	Mesenchymal Stem Cells from Nucleus Pulposus and Neural Differentiation Potential: a Continuous Challenge. Journal of Molecular Neuroscience, 2019, 67, 111-124.	2.3	13
6	Indirect co-cultures of healthy mesenchymal stem cells restore the physiological phenotypical profile of psoriatic mesenchymal stem cells. Clinical and Experimental Immunology, 2018, 193, 234-240.	2.6	24
7	Pituitary adenomas, stem cells, and cancer stem cells: what's new?. Journal of Endocrinological Investigation, 2018, 41, 745-753.	3.3	17
8	Mesenchymal Stem Cells from Cervix and Age: New Insights into CIN Regression Rate. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-12.	4.0	11
9	Chronic Inflammation May Enhance Leiomyoma Development by the Involvement of Progenitor Cells. Stem Cells International, 2018, 2018, 1-13.	2.5	40
10	Allyl Isothiocyanate Exhibits No Anticancer Activity in MDA-MB-231 Breast Cancer Cells. International Journal of Molecular Sciences, 2018, 19, 145.	4.1	9
11	Pathogenetic Characteristics of Mesenchymal Stem Cells in Hidradenitis Suppurativa. JAMA Dermatology, 2018, 154, 1184.	4.1	18
12	Inflammation by Breast Implants and Adenocarcinoma: Not Always a Bad Company. Clinical Breast Cancer, 2017, 17, 286-292.	2.4	3
13	Effects of somatostatin and its analogues on progenitor mesenchymal cells isolated from human pituitary adenomas. Pituitary, 2017, 20, 251-260.	2.9	11
14	<scp>TNF</scp> â€i+ inhibitors reduce the pathological Th ₁ –Th ₁₇ /Th ₂ imbalance in cutaneous mesenchymal stem cells of psoriasis patients. Experimental Dermatology, 2017, 26, 319-324.	2.9	40
15	T helper (Th)1, Th17 and Th2 imbalance in mesenchymal stem cells of adult patients with atopic dermatitis: at the origin of the problem. British Journal of Dermatology, 2017, 176, 1569-1576.	1.5	46
16	Role of mesenchymal stem cells in the pathogenesis of psoriasis: current perspectives. Psoriasis: Targets and Therapy, 2017, Volume 7, 73-85.	2.2	8
17	Evidence Supporting a Paracrine Effect of IGF-1/VEGF on Human Mesenchymal Stromal Cell Commitment. Cells Tissues Organs, 2016, 201, 333-341.	2.3	16
18	The effect of etanercept on vascular endothelial growth factor production by cutaneous mesenchymal stem cells from patients with psoriasis. Journal of International Medical Research, 2016, 44, 6-9.	1.0	18

#	Article	IF	CITATIONS
19	New miRNAs network in human mesenchymal stem cells derived from skin and amniotic fluid. International Journal of Immunopathology and Pharmacology, 2016, 29, 523-528.	2.1	6
20	MSCs and inflammation: new insights into the potential association between ALCL and breast implants. Breast Cancer Research and Treatment, 2016, 156, 65-72.	2.5	20
21	Stem cell origin differently affects bone tissue engineering strategies. Frontiers in Physiology, 2015, 6, 266.	2.8	45
22	Isolation and characterization of progenitor mesenchymal cells in human pituitary tumors. Cancer Gene Therapy, 2015, 22, 9-16.	4.6	34
23	Comparative study between amniotic-fluid mesenchymal stem cells and retinal pigmented epithelium (RPE) stem cells ability to differentiate towards RPE cells. Cell and Tissue Research, 2015, 362, 21-31.	2.9	14
24	Tumor VEGF expression correlates with tumor stage and identifies prognostically different groups in patients with clear cell renal cell carcinoma. Urologic Oncology: Seminars and Original Investigations, 2015, 33, 113.e1-113.e7.	1.6	15
25	Characterization and profiling of immunomodulatory genes in resident mesenchymal stem cells reflect the Th1-Th17/Th2 imbalance of psoriasis. Archives of Dermatological Research, 2014, 306, 915-920.	1.9	68
26	Role of IGF1 and IGF1/VEGF on Human Mesenchymal Stromal Cells in Bone Healing: Two Sources and Two Fates. Tissue Engineering - Part A, 2014, 20, 2473-2482.	3.1	21
27	Pathology of Upper Tract Urothelial Carcinoma with Emphasis on Staging. International Journal of Immunopathology and Pharmacology, 2014, 27, 509-516.	2.1	13
28	IL-1β and TGF-β weaken the placental barrier through destruction of tight junctions: An in vivo and in vitro study. Placenta, 2014, 35, 509-516.	1.5	48
29	mRNAs and miRNAs profiling of mesenchymal stem cells derived from amniotic fluid and skin: the double face of the coin. Cell and Tissue Research, 2014, 355, 121-130.	2.9	31
30	Interleukin-1β, cyclooxygenase-2, and hypoxia-inducible factor-1α in asthenozoospermia. Histochemistry and Cell Biology, 2014, 142, 569-575.	1.7	10
31	The Response of Breast Cancer Cells to Mesenchymal Stem Cells. Plastic and Reconstructive Surgery, 2014, 134, 994e-996e.	1.4	7
32	Extensive Characterization of Stem Cells Derived from Skin. , 2014, , 335-342.		0
33	Cdc42 is involved in basal cell carcinoma carcinogenesis. Archives of Dermatological Research, 2013, 305, 835-840.	1.9	9
34	Amyloid precursor protein expression is enhanced in human platelets from subjects with Alzheimer's disease and frontotemporal lobar degeneration: A Real-time PCR study. Experimental Gerontology, 2013, 48, 1505-1508.	2.8	25
35	Cytotoxicity induced by exposure to natural and synthetic tremolite asbestos: An in vitro pilot study. Acta Histochemica, 2013, 115, 100-112.	1.8	28
36	Involvement of sperm plasma membrane and cytoskeletal proteins in human male infertility. Fertility and Sterility, 2013, 99, 697-704.	1.0	31

#	Article	IF	CITATIONS
37	Skin-Derived Mesenchymal Stem Cells: Isolation, Culture, and Characterization. Methods in Molecular Biology, 2013, 989, 275-283.	0.9	28
38	Microvessel density and VEGF, <scp>HIF</scp> â€lα expression in primary oral melanoma: correlation with prognosis. Oral Diseases, 2013, 19, 620-627.	3.0	24
39	Morphological Analysis of Radical Prostatectomy Specimens: Recent Topics Relevant to Prognosis. European Journal of Inflammation, 2013, 11, 15-22.	0.5	1
40	The Response of Breast Cancer Cells to Mesenchymal Stem Cells. Plastic and Reconstructive Surgery, 2013, 132, 899e-910e.	1.4	18
41	Alterations of ROS pathways in scleroderma begin at stem cell level. Journal of Biological Regulators and Homeostatic Agents, 2013, 27, 211-24.	0.7	10
42	Glutamatein vitroeffects on human term placental mitochondria. Journal of Maternal-Fetal and Neonatal Medicine, 2012, 25, 952-956.	1.5	7
43	Tigecycline accelerates staphylococcal-infected burn wound healing through matrix metalloproteinase-9 modulation. Journal of Antimicrobial Chemotherapy, 2012, 67, 191-201.	3.0	30
44	Human Periosteum-Derived Stem Cells for Tissue Engineering Applications: The Role of VEGF. Stem Cell Reviews and Reports, 2012, 8, 882-890.	5.6	45
45	Prognostic value of CD44 expression in penile squamous cell carcinoma: a pilot study. Cellular Oncology (Dordrecht), 2012, 35, 377-384.	4.4	3
46	Nitric Oxide Synthase Expression in Rat Anorectal Tissue after Sacral Neuromodulation. Journal of Surgical Research, 2012, 176, 29-33.	1.6	7
47	Nitric oxide synthase and tyrosine nitration in idiopathic asthenozoospermia: an immunohistochemical study. Fertility and Sterility, 2012, 97, 554-560.	1.0	35
48	Effect of biologic therapies targeting tumour necrosis factor-α on cutaneous mesenchymal stem cells in psoriasis. British Journal of Dermatology, 2012, 167, 68-76.	1.5	59
49	D2-40 immunoreactivity in penile squamous cell carcinoma: a marker of aggressiveness. Human Pathology, 2011, 42, 1596-1602.	2.0	21
50	Do DNA-Methylation and Histone Acetylation Play a Role in Clear Cell Renal Carcinoma? Analysis of Radical Nephrectomy Specimens in a Long-Term Follow-up. International Journal of Immunopathology and Pharmacology, 2011, 24, 149-158.	2.1	8
51	The mesenchymal stem cell profile in psoriasis. British Journal of Dermatology, 2011, 165, 585-592.	1.5	66
52	VEGF and nitric oxide synthase immunoexpression in Down's syndrome amniotic fluid stem cells. European Journal of Clinical Investigation, 2011, 41, 23-29.	3.4	12
53	Neurogenic potential of mesenchymal-like stem cells from human amniotic fluid: the influence of extracellular growth factors. Journal of Biological Regulators and Homeostatic Agents, 2011, 25, 115-30.	0.7	22
54	Green fluorescent protein as indicator of nonviral transient transfection efficiency in endometrial and testicular biopsies. Microscopy Research and Technique, 2010, 73, 229-233.	2.2	10

#	Article	IF	CITATIONS
55	Human skin-derived mesenchymal stem cells as a source of VEGF and nitric oxide. Archives of Dermatological Research, 2010, 302, 367-374.	1.9	31
56	Proangiogenetic molecules, hypoxia-inducible factor-1α and nitric oxide synthase isoforms in ovarian endometriotic cysts. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2010, 456, 703-710.	2.8	22
57	Oxidative stress defense in human-skin-derived mesenchymal stem cells versus human keratinocytes: Different mechanisms of protection and cell selection. Free Radical Biology and Medicine, 2010, 49, 830-838.	2.9	60
58	Skinâ€derived mesenchymal stem cells (Sâ€MSCs) induce endothelial cell activation by paracrine mechanisms. Experimental Dermatology, 2010, 19, 848-850.	2.9	27
59	Functional Characterization of Calcium-Signaling Pathways of Human Skin-Derived Mesenchymal Stem Cells. Skin Pharmacology and Physiology, 2010, 23, 124-132.	2.5	39
60	Prognostic role of global DNAâ€methylation and histone acetylation in pT1a clear cell renal carcinoma in partial nephrectomy specimens. Journal of Cellular and Molecular Medicine, 2009, 13, 2115-2121.	3.6	42
61	Collagen I membranes for tendon repair: Effect of collagen fiber orientation on cell behavior. Journal of Orthopaedic Research, 2009, 27, 826-832.	2.3	52
62	Involvement of vascular endothelial growth factor, CD44 and CD133 in periodontal disease and diabetes: an immunohistochemical study. Journal of Clinical Periodontology, 2009, 36, 3-10.	4.9	36
63	The effects of disodium pamidronate on human polymorphonuclear leukocytes and platelets: An in vitro study. Cellular and Molecular Biology Letters, 2009, 14, 457-65.	7.0	5
64	Nitric oxide production during the osteogenic differentiation of human periodontal ligament mesenchymal stem cells. Acta Histochemica, 2009, 111, 15-24.	1.8	43
65	VEGF, survivin and NOS overexpression in psoriatic skin: Critical role of nitric oxide synthases. Journal of Dermatological Science, 2009, 54, 205-208.	1.9	38
66	Insights into nuclear localization and dynamic association of CD38 in Raji and K562 cells. Journal of Cellular Biochemistry, 2008, 103, 1294-1308.	2.6	8
67	CD38 is constitutively expressed in the nucleus of human hematopoietic cells. Journal of Cellular Biochemistry, 2008, 105, 905-912.	2.6	46
68	Functional interleukinâ€7/interleukinâ€7Rα, and SDFâ€1α/CXCR4 are expressed by human periodontal ligament derived mesenchymal stem cells. Journal of Cellular Physiology, 2008, 214, 706-713.	4.1	46
69	Potential Role of Culture Mediums for Successful Isolation and Neuronal Differentiation of Amniotic Fluid Stem Cells. International Journal of Immunopathology and Pharmacology, 2008, 21, 595-602.	2.1	40
70	Exploiting CD38-mediated endocytosis for immunoliposome internalization. Anti-Cancer Drugs, 2008, 19, 599-605.	1.4	5
71	Adult mesenchymal stem cells for bone and cartilage engineering: effect of scaffold materials. European Journal of Histochemistry, 2008, 52, 169.	1.5	45
72	Melatonin provokes cell death in human Bâ€lymphoma cells by mitochondrialâ€dependent apoptotic pathway activation. Journal of Pineal Research, 2005, 39, 425-431.	7.4	66

#	Article	IF	CITATIONS
73	Changes of Plasma Membrane Properties in a Human Pre-T Cell Line Undergoing Apoptosis. Journal of Membrane Biology, 2005, 204, 77-84.	2.1	3
74	NF-κB and NOS may play a role in human RPMI-8402 cell apoptosis. Cell Biology International, 2005, 29, 529-536.	3.0	4
75	Cyclase and Phosphodiesterase Activity on Preâ€T Lymphoid Human Cells, Treated with Dimethyl Sulfoxide (DMSO). Nucleosides, Nucleotides and Nucleic Acids, 2004, 23, 1241-1244.	1.1	2
76	DMSO Modifies Structural and Functional Properties of RPMI-8402 Cells by Promoting Programmed Cell Death. International Journal of Immunopathology and Pharmacology, 2003, 16, 253-259.	2.1	31
77	Thymic sensitivity to hypoxic condition in young and old rats. Age-dependent expression of NF-κB. Experimental Gerontology, 2002, 37, 1077-1088.	2.8	9
78	Nuclear matrix provides linkage sites for translocated NF-κB: morphological evidence. Histochemistry and Cell Biology, 2000, 113, 369-377.	1.7	16
79	The c-myc gene regulates the polyamine pathway in DMSO-induced apoptosis Cell Proliferation, 1999, 32, 119-129.	5.3	19
80	Melatonin regulates the respiratory burst of human neutrophils and their depolarization. Journal of Pineal Research, 1998, 24, 43-49.	7.4	35
81	Phorbol Ester Synergizes the Dimethyl Sulfoxide-Dependent Programmed Cell Death Through Diacylglycerol Increment. Cancer Detection and Prevention, 1998, 22, 463-469.	2.1	5
82	Dimethyl sulfoxide induces programmed cell death and reversible G1 arrest in the cell cycle of human lymphoid pre-T cell line. Immunology Letters, 1996, 50, 51-57.	2.5	35
83	Polyamines and terminal deoxynucleotidyl transferase expression In KM 3 pre-B cell line during phorbol ester induced differentiation Cell Biology International, 1995, 19, 821-826.	3.0	3
84	Nuclear Translocation of Î ² II PKC Isoenzyme in Phorbol Ester-Stimulated KM-3 Pre-B Human Leukemic Cells Experimental Cell Research, 1995, 221, 172-178.	2.6	9
85	Terminal deoxynucleotidil transferase is a nuclear PKC substrate. FEBS Letters, 1995, 374, 367-370.	2.8	7
86	Protein kinase C modulation in apoptotic rat thymocytes: an ultrastructural analysis. Histochemistry, 1994, 102, 311-316.	1.9	11
87	Phorbol ester-induced effects on cell cycle progression and terminal deoxynucleotidyltransferase (TdT) activity in KM-3 pre-B cell line. Immunology Letters, 1993, 35, 265-269.	2.5	3
88	Inositol lipid-mediated intranuclear signalling: A comparative analysis of in vivo labelling in interferon alpha-sensitive and -resistant daudi lymphoma cells. Cellular Signalling, 1993, 5, 331-336.	3.6	10
89	Mouse and human hemopoietic cell lines of erythroid lineage express lamins A,B and C. Biochemical and Biophysical Research Communications, 1992, 185, 271-276.	2.1	6
90	Intracellular localization of terminal transferase during the cell cycle. Experimental Cell Research, 1992, 202, 405-411.	2.6	7

#	Article	IF	CITATIONS
91	Interferon-mediated intracellular signalling Modulation of different phospholipase activities in Burkitt lymphoma cells. FEBS Letters, 1992, 313, 210-212.	2.8	7
92	Association between nuclear matrix and terminal transferase: an electron microscope immunocytochemical analysis. Histochemistry, 1991, 96, 59-64.	1.9	6
93	Analysis of human peripheral blood lymphocytes isolated by counterflow centrifugation-elutriation. Journal of Immunological Methods, 1983, 63, 81-91.	1.4	4
94	Receptors for the Third Complement Component on a Proportion of Large Granular Lymphocytes from Human Peripheral Blood. Scandinavian Journal of Immunology, 1982, 15, 573-579.	2.7	12