Sebastianâ€**‰** Waszak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8637697/publications.pdf

Version: 2024-02-01

62 papers

9,761 citations

147566 31 h-index 197535 49 g-index

73 all docs

73 docs citations

73 times ranked

17930 citing authors

#	Article	IF	CITATIONS
1	Pan-cancer analysis of whole genomes. Nature, 2020, 578, 82-93.	13.7	1,966
2	The landscape of genomic alterations across childhood cancers. Nature, 2018, 555, 321-327.	13.7	1,068
3	The whole-genome landscape of medulloblastoma subtypes. Nature, 2017, 547, 311-317.	13.7	787
4	Patterns of somatic structural variation in human cancer genomes. Nature, 2020, 578, 112-121.	13.7	560
5	Variation in Transcription Factor Binding Among Humans. Science, 2010, 328, 232-235.	6.0	521
6	Analyses of non-coding somatic drivers in 2,658Âcancer whole genomes. Nature, 2020, 578, 102-111.	13.7	424
7	A Dual Program for Translation Regulation in Cellular Proliferation and Differentiation. Cell, 2014, 158, 1281-1292.	13.5	414
8	Coordinated Effects of Sequence Variation on DNA Binding, Chromatin Structure, and Transcription. Science, 2013, 342, 744-747.	6.0	364
9	Pan-cancer analysis of somatic copy-number alterations implicates IRS4 and IGF2 in enhancer hijacking. Nature Genetics, 2017, 49, 65-74.	9.4	326
10	Active medulloblastoma enhancers reveal subgroup-specific cellular origins. Nature, 2016, 530, 57-62.	13.7	318
11	Genomic basis for RNA alterations in cancer. Nature, 2020, 578, 129-136.	13.7	280
12	Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition. Nature Genetics, 2020, 52, 306-319.	9.4	275
13	Spectrum and prevalence of genetic predisposition in medulloblastoma: a retrospective genetic study and prospective validation in a clinical trial cohort. Lancet Oncology, The, 2018, 19, 785-798.	5.1	268
14	Population Variation and Genetic Control of Modular Chromatin Architecture in Humans. Cell, 2015, 162, 1039-1050.	13.5	210
15	Molecular Evolution of Early-Onset Prostate Cancer Identifies Molecular Risk Markers and Clinical Trajectories. Cancer Cell, 2018, 34, 996-1011.e8.	7.7	190
16	Risk-adapted therapy for young children with medulloblastoma (SJYCO7): therapeutic and molecular outcomes from a multicentre, phase 2 trial. Lancet Oncology, The, 2018, 19, 768-784.	5.1	151
17	A cellâ€based model system links chromothripsis with hyperploidy. Molecular Systems Biology, 2015, 11, 828.	3.2	118
18	Relating CNVs to transcriptome data at fine resolution: Assessment of the effect of variant size, type, and overlap with functional regions. Genome Research, 2011, 21, 2004-2013.	2.4	109

#	Article	IF	Citations
19	Genomic Variation and Its Impact on Gene Expression in Drosophila melanogaster. PLoS Genetics, 2012, 8, e1003055.	1.5	102
20	Identification of the transcription factor ZEB1 as a central component of the adipogenic gene regulatory network. ELife, 2014, 3, e03346.	2.8	101
21	Genomic and transcriptomic changes complement each other in the pathogenesis of sporadic Burkitt lymphoma. Nature Communications, 2019, 10, 1459.	5.8	99
22	Integrative Genomics Identifies the Corepressor SMRT as a Gatekeeper of Adipogenesis through the Transcription Factors C/EBPÎ ² and KAISO. Molecular Cell, 2012, 46, 335-350.	4.5	96
23	The molecular landscape of ETMR at diagnosis and relapse. Nature, 2019, 576, 274-280.	13.7	94
24	Germline Elongator mutations in Sonic Hedgehog medulloblastoma. Nature, 2020, 580, 396-401.	13.7	94
25	Personal receptor repertoires: olfaction as a model. BMC Genomics, 2012, 13, 414.	1.2	92
26	Antibiotics-induced monodominance of a novel gut bacterial order. Gut, 2019, 68, 1781-1790.	6.1	73
27	Chromosomal contacts connect loci associated with autism, BMI and head circumference phenotypes. Molecular Psychiatry, 2017, 22, 836-849.	4.1	68
28	Systematic Inference of Copy-Number Genotypes from Personal Genome Sequencing Data Reveals Extensive Olfactory Receptor Gene Content Diversity. PLoS Computational Biology, 2010, 6, e1000988.	1.5	56
29	Germline <i>GPR161</i> Mutations Predispose to Pediatric Medulloblastoma. Journal of Clinical Oncology, 2020, 38, 43-50.	0.8	50
30	Pharmaco-proteogenomic profiling of pediatric diffuse midline glioma to inform future treatment strategies. Oncogene, 2022, 41, 461-475.	2.6	39
31	<scp>PDX</scp> models recapitulate the genetic and epigenetic landscape of pediatric Tâ€cell leukemia. EMBO Molecular Medicine, 2018, 10, .	3.3	38
32	Imipridones affect tumor bioenergetics and promote cell lineage differentiation in diffuse midline gliomas. Neuro-Oncology, 2022, 24, 1438-1451.	0.6	36
33	A yeast oneâ€hybrid and microfluidicsâ€based pipeline to map mammalian gene regulatory networks. Molecular Systems Biology, 2013, 9, 682.	3.2	35
34	Mutational mechanisms shaping the coding and noncoding genome of germinal center derived B-cell lymphomas. Leukemia, 2021, 35, 2002-2016.	3.3	34
35	Mechanisms of imipridones in targeting mitochondrial metabolism in cancer cells. Neuro-Oncology, 2021, 23, 542-556.	0.6	30
36	No correlation between NF1 mutation position and risk of optic pathway glioma in 77 unrelated NF1 patients. Human Genetics, 2016, 135, 469-475.	1.8	29

#	Article	IF	CITATIONS
37	Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples. Nature Communications, 2020, 11, 4748.	5.8	27
38	Genome-wide Screens Implicate Loss of Cullin Ring Ligase 3 in Persistent Proliferation and Genome Instability in TP53-Deficient Cells. Cell Reports, 2020, 31, 107465.	2.9	24
39	Identification and removal of low-complexity sites in allele-specific analysis of ChIP-seq data. Bioinformatics, 2014, 30, 165-171.	1.8	21
40	NCoR1: Putting the Brakes on the Dendritic Cell Immune Tolerance. IScience, 2019, 19, 996-1011.	1.9	20
41	Chromatin accessibility landscape of pediatric Tâ€lymphoblastic leukemia and human Tâ€cell precursors. EMBO Molecular Medicine, 2020, 12, e12104.	3.3	13
42	Butler enables rapid cloud-based analysis of thousands of human genomes. Nature Biotechnology, 2020, 38, 288-292.	9.4	11
43	Versatile workflow for cell type–resolved transcriptional and epigenetic profiles from cryopreserved human lung. JCI Insight, 2021, 6, .	2.3	8
44	A leukemia-protective germline variant mediates chromatin module formation via transcription factor nucleation. Nature Communications, 2022, 13, 2042.	5.8	6
45	Cancer risk and tumour spectrum in 172 patients with a germline <i>SUFU </i> pathogenic variation: a collaborative study of the SIOPE Host Genome Working Group. Journal of Medical Genetics, 2022, 59, 1123-1132.	1.5	4
46	Variation in transcription factor binding among humans. New Biotechnology, 2010, 27, S81.	2.4	3
47	A common microdeletion affecting a hippocampus―and amygdalaâ€specific isoform of tryptophan hydroxylase 2 is not associated with affective disorders. Bipolar Disorders, 2014, 16, 764-768.	1.1	2
48	HGG-32. ONC201 AND ONC206 TARGET TUMOR CELL METABOLISM IN PEDIATRIC DIFFUSE MIDLINE GLIOMA PRECLINICAL MODELS. Neuro-Oncology, 2021, 23, i23-i24.	0.6	2
49	Rare Germline Variants Are Associated with Rapid Biochemical Recurrence After Radical Prostate Cancer Treatment: A Pan Prostate Cancer Group Study. European Urology, 2022, 82, 201-211.	0.9	2
50	Rounding Up Natural Gene Expression Variation during Development. Developmental Cell, 2013, 27, 601-603.	3.1	1
51	MEDB-14. Clinical outcome of pediatric medulloblastoma patients with Li-Fraumeni syndrome. Neuro-Oncology, 2022, 24, i107-i107.	0.6	1
52	EPIG-04THE CHROMATIN LANDSCAPE OF MEDULLOBLASTOMA. Neuro-Oncology, 2015, 17, v86.4-v87.	0.6	0
53	MBCL-44. THE MOLECULAR AND CLINICAL LANDSCAPE OF INFANT MEDULLOBLASTOMA (iMB): RESULTS AND MOLECULAR ANALYSIS FROM A PROSPECTIVE, MULTICENTER PHASE II TRIAL (SJYCO7). Neuro-Oncology, 2018, 20, i126-i127.	0.6	0
54	EMBR-10. GENOMIC COMPLEXITY AND EVOLUTION OF EMBRYONAL TUMORS WITH MULTILAYERED ROSETTES (ETMR). Neuro-Oncology, 2018, 20, i70-i70.	0.6	0

#	Article	lF	CITATIONS
55	MEDU-11. MOLECULAR CHARACTERIZATION OF ETMRs REVEALS A ROLE FOR R-LOOP MEDIATED CHROMOSOMAL INSTABILITY. Neuro-Oncology, 2019, 21, ii105-ii105.	0.6	O
56	Abstract LB-B23: Medulloblastoma regulatory circuitries reveal subgroup-specific cellular origins. , 2015, , .		0
57	NCoR1 is a master repressor of the tolerogenic program in dendritic cells. Canadian Journal of Biotechnology, 2017, 1, 161-161.	0.3	0
58	Abstract 3172: Targeting genomic instability in embryonal tumors with multilayered rosettes (ETMR). , 2018, , .		0
59	Pediatric T-ALLs Developing into a Type 2 Relapse Originate from Cells That Carry the Potential of Variable Maturation into Subclones with Distinct Chromatin Landscapes. Blood, 2018, 132, 1545-1545.	0.6	0
60	DIPG-64. INTERNATIONAL PRECLINICAL DRUG DISCOVERY AND BIOMARKER PROGRAM INFORMING AN ADOPTIVE COMBINATORIAL TRIAL FOR DIFFUSE MIDLINE GLIOMAS. Neuro-Oncology, 2020, 22, iii300-iii300.	0.6	0
61	MBCL-21. GERMLINE ELONGATOR MUTATIONS IN SONIC HEDGEHOG MEDULLOBLASTOMA. Neuro-Oncology, 2020, 22, iii392-iii393.	0.6	O
62	DIPG-07. Preclinical and case study results underpinning the phase II clinical trial testing the combination of ONC201 and paxalisib for the treatment of patients with diffuse midline glioma (NCT05009992). Neuro-Oncology, 2022, 24, i18-i19.	0.6	0