Michele Mishto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8637356/publications.pdf

Version: 2024-02-01

172457 189892 2,620 59 29 50 citations h-index g-index papers 62 62 62 3221 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	A large fraction of HLA class I ligands are proteasome-generated spliced peptides. Science, 2016, 354, 354-358.	12.6	322
2	Immunoproteasome and LMP2 polymorphism in aged and Alzheimer's disease brains. Neurobiology of Aging, 2006, 27, 54-66.	3.1	184
3	Neuroinflammatory targets and treatments for epilepsy validated in experimental models. Epilepsia, 2017, 58, 27-38.	5.1	131
4	Evidence for Sub-Haplogroup H5 of Mitochondrial DNA as a Risk Factor for Late Onset Alzheimer's Disease. PLoS ONE, 2010, 5, e12037.	2.5	117
5	Proteasome isoforms exhibit only quantitative differences in cleavage and epitope generation. European Journal of Immunology, 2014, 44, 3508-3521.	2.9	107
6	Proteasomes generate spliced epitopes by two different mechanisms and as efficiently as non-spliced epitopes. Scientific Reports, 2016, 6, 24032.	3.3	88
7	The different apoptotic potential of the p53 codon 72 alleles increases with age and modulates in vivo ischaemia-induced cell death. Cell Death and Differentiation, 2004, 11, 962-973.	11.2	84
8	Systems Biology and Longevity: An Emerging Approach to Identify Innovative Anti- Aging Targets and Strategies. Current Pharmaceutical Design, 2010, 16, 802-813.	1.9	76
9	Immunoproteasomes and immunosenescence. Ageing Research Reviews, 2003, 2, 419-432.	10.9	72
10	Network, degeneracy and bow tie. Integrating paradigms and architectures to grasp the complexity of the immune system. Theoretical Biology and Medical Modelling, 2010, 7, 32.	2.1	71
11	Driving Forces of Proteasome-catalyzed Peptide Splicing in Yeast and Humans. Molecular and Cellular Proteomics, 2012, 11, 1008-1023.	3.8	71
12	Genes, ageing and longevity in humans: Problems, advantages and perspectives. Free Radical Research, 2006, 40, 1303-1323.	3.3	66
13	Post-Translational Peptide Splicing and T Cell Responses. Trends in Immunology, 2017, 38, 904-915.	6.8	65
14	The 20S Proteasome Splicing Activity Discovered by SpliceMet. PLoS Computational Biology, 2010, 6, e1000830.	3.2	63
15	Mapping the MHC Class I–Spliced Immunopeptidome of Cancer Cells. Cancer Immunology Research, 2019, 7, 62-76.	3.4	60
16	Immunoproteasome LMP2 60HH Variant Alters MBP Epitope Generation and Reduces the Risk to Develop Multiple Sclerosis in Italian Female Population. PLoS ONE, 2010, 5, e9287.	2.5	56
17	Towards a Liquid Self: How Time, Geography, and Life Experiences Reshape the Biological Identity. Frontiers in Immunology, 2014, 5, 153.	4.8	51
18	Multi-level Strategy for Identifying Proteasome-Catalyzed Spliced Epitopes Targeted by CD8+ T Cells during Bacterial Infection. Cell Reports, 2017, 20, 1242-1253.	6.4	46

#	Article	IF	Citations
19	Effects of Donepezil, Galantamine and Rivastigmine in 938 Italian Patients with Alzheimer's Disease. CNS Drugs, 2010, 24, 163-176.	5.9	44
20	CD8 ⁺ TÂcells of <i>Listeria monocytogenesâ€</i> i>infected mice recognize both linear and spliced proteasome products. European Journal of Immunology, 2016, 46, 1109-1118.	2.9	39
21	Quantitative time-resolved analysis reveals intricate, differential regulation of standard- and immuno-proteasomes. ELife, 2015, 4, e07545.	6.0	39
22	p53 codon 72 genotype affects apoptosis by cytosine arabinoside in blood leukocytes. Biochemical and Biophysical Research Communications, 2002, 299, 539-541.	2.1	38
23	An in silico—in vitro Pipeline Identifying an HLA-A*02:01+ KRAS G12V+ Spliced Epitope Candidate for a Broad Tumor-Immune Response in Cancer Patients. Frontiers in Immunology, 2019, 10, 2572.	4.8	38
24	A Mathematical Model of Protein Degradation by the Proteasome. Biophysical Journal, 2005, 88, 2422-2432.	0.5	37
25	Why do proteases mess up with antigen presentation by re-shuffling antigen sequences?. Current Opinion in Immunology, 2018, 52, 81-86.	5.5	37
26	Extracellular proteasome-osteopontin circuit regulates cell migration with implications in multiple sclerosis. Scientific Reports, 2017, 7, 43718.	3.3	35
27	A structural model of 20S immunoproteasomes: effect of LMP2 codon 60 polymorphism on expression, activity, intracellular localisation and insight into the regulatory mechanisms. Biological Chemistry, 2006, 387, 417-429.	2.5	32
28	Studies on immunoproteasome in human liver. Part I: Absence in fetuses, presence in normal subjects, and increased levels in chronic active hepatitis and cirrhosis. Biochemical and Biophysical Research Communications, 2010, 397, 301-306.	2.1	31
29	The immunoproteasome \hat{l}^2 5i subunit is a key contributor to ictogenesis in a rat model of chronic epilepsy. Brain, Behavior, and Immunity, 2015, 49, 188-196.	4.1	30
30	Immunoproteasome expression is induced in mesial temporal lobe epilepsy. Biochemical and Biophysical Research Communications, 2011, 408, 65-70.	2.1	29
31	Modeling the in Vitro 20S Proteasome Activity: The Effect of PA28–αβ and of the Sequence and Length of Polypeptides on the Degradation Kinetics. Journal of Molecular Biology, 2008, 377, 1607-1617.	4.2	28
32	Immunoproteasome in Cancer and Neuropathologies: A New Therapeutic Target?. Current Pharmaceutical Design, 2013, 19, 702-718.	1.9	27
33	Current Understanding on the Role of Standard and Immunoproteasomes in Inflammatory/Immunological Pathways of Multiple Sclerosis. Autoimmune Diseases, 2014, 2014, 1-12.	0.6	27
34	Proteolytic dynamics of human 20S thymoproteasome. Journal of Biological Chemistry, 2019, 294, 7740-7754.	3.4	27
35	Poly-Ub-Substrate-Degradative Activity of 26S Proteasome Is Not Impaired in the Aging Rat Brain. PLoS ONE, 2013, 8, e64042.	2.5	26
36	Association of p53 polymorphisms and colorectal cancer: Modulation of risk and progression. European Journal of Surgical Oncology, 2009, 35, 415-419.	1.0	25

#	Article	IF	CITATIONS
37	NMDA-receptor inhibition and oxidative stress during hippocampal maturation differentially alter parvalbumin expression and gamma-band activity. Scientific Reports, 2018, 8, 9545.	3.3	25
38	Large database for the analysis and prediction of spliced and non-spliced peptide generation by proteasomes. Scientific Data, 2020, 7, 146.	5. 3	25
39	Age dependent impact of LMP polymorphisms on TNFα-induced apoptosis in human peripheral blood mononuclear cells. Experimental Gerontology, 2002, 37, 301-308.	2.8	22
40	Lifelong maintenance of composition, function and cellular/subcellular distribution of proteasomes in human liver. Mechanisms of Ageing and Development, 2014, 141-142, 26-34.	4.6	21
41	Molecular alterations in proteasomes of rat liver during aging result in altered proteolytic activities. Age, 2014, 36, 57-72.	3.0	20
42	The T210M Substitution in the HLA-a*02:01 gp100 Epitope Strongly Affects Overall Proteasomal Cleavage Site Usage and Antigen Processing. Journal of Biological Chemistry, 2015, 290, 30417-30428.	3.4	20
43	Immunoproteasome in cancer and neuropathologies: a new therapeutic target?. Current Pharmaceutical Design, 2013, 19, 702-18.	1.9	18
44	Proteasome-Generated cis-Spliced Peptides and Their Potential Role in CD8+ T Cell Tolerance. Frontiers in Immunology, 2021, 12, 614276.	4.8	13
45	Identification of a class of non-conventional ER-stress-response-derived immunogenic peptides. Cell Reports, 2021, 36, 109312.	6.4	13
46	An Unexpected Major Role for Proteasome-Catalyzed Peptide Splicing in Generation of T Cell Epitopes: Is There Relevance for Vaccine Development?. Frontiers in Immunology, 2017, 8, 1441.	4.8	12
47	What We See, What We Do Not See, and What We Do Not Want to See in HLA Class I Immunopeptidomes. Proteomics, 2020, 20, 2000112.	2.2	12
48	Potential Mimicry of Viral and Pancreatic \hat{l}^2 Cell Antigens Through Non-Spliced and cis-Spliced Zwitter Epitope Candidates in Type 1 Diabetes. Frontiers in Immunology, 2021, 12, 656451.	4.8	11
49	Commentary: Are There Indeed Spliced Peptides in the Immunopeptidome?. Molecular and Cellular Proteomics, 2021, 20, 100158.	3.8	11
50	Modelling Proteasome and Proteasome Regulator Activities. Biomolecules, 2014, 4, 585-599.	4.0	10
51	Mechanistic diversity in MHC class I antigen recognition. Biochemical Journal, 2021, 478, 4187-4202.	3.7	10
52	Strategies to enhance immunogenicity of cDNA vaccine encoded antigens by modulation of antigen processing. Vaccine, 2016, 34, 5132-5140.	3.8	9
53	Untangling Extracellular Proteasome-Osteopontin Circuit Dynamics in Multiple Sclerosis. Cells, 2019, 8, 262.	4.1	9
54	Response: Commentary: An In Silico–In Vitro Pipeline Identifying an HLA-A*02:01+ KRAS G12V+ Spliced Epitope Candidate for a Broad Tumor-Immune Response in Cancer Patients. Frontiers in Immunology, 2021, 12, 679836.	4.8	9

#	Article	IF	CITATIONS
55	Immunoproteasome in Macaca fascicularis: No Age-Dependent Modification of Abundance and Activity in the Brain and Insight into an in silico Structural Model. Rejuvenation Research, 2008, 11, 73-82.	1.8	7
56	Database search engines and target database features impinge upon the identification of postâ€translationally <i>cisâ€</i> spliced peptides in HLA class I immunopeptidomes. Proteomics, 2022, 22, e2100226.	2.2	7
57	ERâ€aminopeptidase 1 determines the processing and presentation of an immunotherapyâ€relevant melanoma epitope. European Journal of Immunology, 2020, 50, 270-283.	2.9	6
58	Predicting the Success of Fmoc-Based Peptide Synthesis. ACS Omega, 2022, 7, 23771-23781.	3.5	6
59	Proteasome Modulation in Brain: A New Target for Anti-Aging Drugs?. Central Nervous System Agents in Medicinal Chemistry, 2007, 7, 236-240.	1.1	2