Yasuhiro Uozumi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/863727/publications.pdf

Version: 2024-02-01

235 papers

11,980 citations

61 h-index 33894

g-index

344 all docs

344 docs citations

times ranked

344

7419 citing authors

#	Article	IF	Citations
1	Suzuki–Miyaura Cross-Coupling Reaction with Potassium Aryltrifluoroborate in Pure Water Using Recyclable Nanoparticle Catalyst. Synlett, 2022, 33, 57-61.	1.8	3
2	Cyanide-Free Cyanation of Aryl lodides with Nitromethane by Using an Amphiphilic Polymer-Supported Palladium Catalyst. Synlett, 2022, 33, 40-44.	1.8	3
3	Palladium-Catalyzed Cyanide-Free Cyanation of Aryl Iodides with Nitromethane. Synfacts, 2022, 18, 0411.	0.0	O
4	Phenylboronic Ester-Activated Aryl Iodide-Selective Buchwald–Hartwig-Type Amination toward Bioactivity Assay. ACS Omega, 2022, 7, 24184-24189.	3.5	1
5	Highly Reusable and Active Nanometalâ^'Siliconâ€Nanowire Array Hybrid Catalysts for Hydrogenation. European Journal of Inorganic Chemistry, 2021, 2021, 708-712.	2.0	4
6	Amphiphilic Immobilized Diphenylprolinol Alkyl Ether Catalyst on PS-PEG Resin. Bulletin of the Chemical Society of Japan, 2021, 94, 790-797.	3.2	3
7	Photocatalytic Carbinol Cation/Anion Umpolung: Direct Addition of Aromatic Aldehydes and Ketones to Carbon Dioxide. Organic Letters, 2021, 23, 7194-7198.	4.6	10
8	Suzuki–Miyaura Coupling and C–H Arylation Catalyzed by Poly(4-vinylpyridine)–Palladium Composite. Synfacts, 2021, 17, 0196.	0.0	0
9	Iterative Preparation of Platinum Nanoparticles in an Amphiphilic Polymer Matrix: Regulation of Catalytic Activity in Hydrogenation. Synlett, 2020, 31, 147-152.	1.8	5
10	Production of Bio Hydrofined Diesel, Jet Fuel, and Carbon Monoxide from Fatty Acids Using a Silicon Nanowire Array-Supported Rhodium Nanoparticle Catalyst under Microwave Conditions. ACS Catalysis, 2020, 10, 2148-2156.	11,2	18
11	Second-Generation meta-Phenolsulfonic Acid–Formaldehyde Resin as a Catalyst for Continuous-Flow Esterification. Organic Letters, 2020, 22, 160-163.	4.6	15
12	Catalytic Reductive Alkylation of Amines in Batch and Microflow Conditions Using a Silicon-Wafer-Based Palladium Nanocatalyst. ACS Omega, 2020, 5, 26938-26945.	3.5	6
13	A Convoluted Polyvinylpyridineâ€Palladium Catalyst for Suzukiâ€Miyaura Coupling and Câ^'H Arylation. Advanced Synthesis and Catalysis, 2020, 362, 4687-4698.	4.3	18
14	Câ^'H Arylation of Thiophenes with Aryl Bromides by a Parts-per-Million Loading of a Palladium NNC-Pincer Complex. Synlett, 2020, 31, 1634-1638.	1.8	6
15	Regulation of Catalytic Activity in Hydrogenation with Platinum Nanoparticles in a PS-PEG Matrix. Synfacts, 2020, 16, 1083.	0.0	0
16	Activator-Promoted Aryl Halide-Dependent Chemoselective Buchwald–Hartwig and Suzuki–Miyaura Type Cross-Coupling Reactions. Organic Letters, 2020, 22, 4797-4801.	4.6	14
17	Synthesis of \hat{l}_{\pm} -Tertiary Amines by the Ruthenium-catalyzed Regioselective Allylic Amination of Tertiary Allylic Esters. Chemistry Letters, 2020, 49, 645-647.	1.3	5
18	Metallically gradated silicon nanowire and palladium nanoparticle composites as robust hydrogenation catalysts. Communications Chemistry, 2020, 3, .	4.5	16

#	Article	IF	CITATIONS
19	Surface Modification of a Supported Pt Catalyst Using Ionic Liquids for Selective Hydrodeoxygenation of Phenols into Arenes under Mild Conditions. Chemistry - A European Journal, 2019, 25, 14762-14766.	3.3	10
20	Arylation of Terminal Alkynes by Aryl Iodides Catalyzed by a Parts-per-Million Loading of Palladium Acetate. ACS Catalysis, 2019, 9, 11640-11646.	11.2	18
21	The Hiyama Crossâ€Coupling Reaction at Parts Per Million Levels of Pd: In Situ Formation of Highly Active Spirosilicates in Glycol Solvents. Chemistry - an Asian Journal, 2019, 14, 3850-3854.	3.3	8
22	Mechanistic Study on Allylic Arylation in Water with Linear Polystyrene-Stabilized Pd and PdO Nanoparticles. ACS Omega, 2019, 4, 15764-15770.	3.5	7
23	Solvent-Free A ³ and KA ² Coupling Reactions with mol ppm Level Loadings of a Polymer-Supported Copper(II)–Bipyridine Complex for Green Synthesis of Propargylamines. ACS Sustainable Chemistry and Engineering, 2019, 7, 9097-9102.	6.7	27
24	Aqueous Flow Hydroxycarbonylation of Aryl Halides Catalyzed by an Amphiphilic Polymer-Supported Palladium–Diphenylphosphine Catalyst. Synlett, 2019, 30, 961-966.	1.8	8
25	Mechanistic insight into the catalytic hydrogenation of nonactivated aldehydes with a Hantzsch ester in the presence of a series of organoboranes: NMR and DFT studies. RSC Advances, 2019, 9, 10201-10210.	3.6	10
26	Self-Assembled Polymeric Pyridine Copper Catalysts for Huisgen Cycloaddition with Alkynes and Acetylene Gas: Application in Synthesis of Tazobactam. Organic Process Research and Development, 2019, 23, 493-498.	2.7	14
27	Poly(<i>meta</i> -phenylene oxides) for the design of a tunable, efficient, and reusable catalytic platform. Chemical Communications, 2018, 54, 2878-2881.	4.1	9
28	A Palladium NNCâ€Pincer Complex as an Efficient Catalyst Precursor for the Mizorokiâ^'Heck Reaction. Advanced Synthesis and Catalysis, 2018, 360, 1833-1840.	4.3	31
29	Controlled Aerobic Oxidation of Primary Benzylic Alcohols to Aldehydes Catalyzed by Polymer-Supported Triazine-Based Dendrimer–Copper Composites. Synlett, 2018, 29, 1152-1156.	1.8	13
30	Aqueous Asymmetric 1,4-Addition of Arylboronic Acids to Enones Catalyzed by an Amphiphilic Resin-Supported Chiral Diene Rhodium Complex under Batch and Continuous-Flow Conditions. Journal of Organic Chemistry, 2018, 83, 7380-7387.	3.2	36
31	Cu-catalyzed reduction of azaarenes and nitroaromatics with diboronic acid as reductant. Tetrahedron, 2018, 74, 2121-2129.	1.9	29
32	Recent Advances in Palladiumâ€Catalyzed Crossâ€Coupling Reactions at ppm to ppb Molar Catalyst Loadings. Advanced Synthesis and Catalysis, 2018, 360, 602-625.	4.3	226
33	Catalytic specificity of linear polystyrene-stabilized Pd nanoparticles during Ullmann coupling reaction in water and the associated mechanism. Journal of Organometallic Chemistry, 2018, 854, 87-93.	1.8	15
34	Iridium-Catalyzed Direct Cyclization of Aromatic Amines with Diols. Synlett, 2018, 29, 2385-2389.	1.8	14
35	Poly(tetrafluoroethylene)-Stabilized Metal Nanoparticles: Preparation and Evaluation of Catalytic Activity for Suzuki, Heck, and Arene Hydrogenation in Water. ACS Omega, 2018, 3, 10066-10073.	3.5	15
36	Asymmetric Copper-Catalyzed C(sp)â€"H Bond Insertion of Carbenoids Derived from N-Tosylhydrazones. Synlett, 2018, 29, 2251-2256.	1.8	8

#	Article	IF	Citations
37	Ligand-Introduction Synthesis of NCN-Pincer Complexes and their Chemical Properties., 2018,, 643-672.		1
38	Metal-free Reduction of Nitro Aromatics to Amines with B2(OH)4/H2O. Synlett, 2018, 29, 1765-1768.	1.8	33
39	Linear polystyrene-stabilized Rh(III) nanoparticles for oxidative coupling of arylboronic acids with alkenes in water. Journal of Organometallic Chemistry, 2018, 873, 1-7.	1.8	1
40	Detailed Structural Analysis of a Selfâ€Assembled Vesicular Amphiphilic NCNâ€Pincer Palladium Complex by Using Wideâ€Angle Xâ€Ray Scattering and Molecular Dynamics Calculations. Chemistry - A European Journal, 2017, 23, 1291-1298.	3.3	13
41	Synthesis and Catalytic Applications of a Triptycene-Based Monophosphine Ligand for Palladium-Mediated Organic Transformations. ACS Omega, 2017, 2, 1930-1937.	3.5	29
42	Detailed Structural Analysis of a Self-Assembled Vesicular Amphiphilic NCN-Pincer Palladium Complex by Wide-Angle X-Ray Scattering and Molecular Dynamics Calculations. Chemistry - A European Journal, 2017, 23, 1209-1209.	3.3	0
43	Detailed Mechanism for Hiyama Coupling Reaction in Water Catalyzed by Linear Polystyrene-Stabilized PdO Nanoparticles. Organometallics, 2017, 36, 1618-1622.	2.3	21
44	Preparation of Aryl(dicyclohexyl)phosphines by C–P Bond-Forming Cross-Coupling in Water Catalyzed by an Amphiphilic-Resin-Supported Palladium Complex. Synlett, 2017, 28, 2966-2970.	1.8	4
45	Chemoselective Continuous-Flow Hydrogenation of Aldehydes Catalyzed by Platinum Nanoparticles Dispersed in an Amphiphilic Resin. ACS Catalysis, 2017, 7, 7371-7377.	11.2	36
46	Batch and Continuous-Flow Huisgen 1,3-Dipolar Cycloadditions with an Amphiphilic Resin-Supported Triazine-Based Polyethyleneamine Dendrimer Copper Catalyst. ACS Sustainable Chemistry and Engineering, 2017, 5, 10722-10734.	6.7	65
47	Photocatalytic Aerobic Oxidation of Alkenes into Epoxides or Chlorohydrins Promoted by a Polymerâ€Supported Decatungstate Catalyst. ChemPhotoChem, 2017, 1, 479-484.	3.0	19
48	Huisgen Cycloaddition with Acetylene Gas by Using an Amphiphilic Self-Assembled Polymeric Copper Catalyst. Heterocycles, 2017, 95, 715.	0.7	2
49	Fluoride-Free Hiyama Coupling Reaction Catalyzed by Linear Polystyrene-Stabilized PdO Nanoparticles in Water: Specific Reactivity of PdO Nanoparticles over Pd Nanoparticles. Synlett, 2016, 27, 1202-1206.	1.8	13
50	Cluster Preface: Heterogeneous Catalysis. Synlett, 2016, 27, 1177-1178.	1.8	0
51	Linear Polystyrene-stabilized Pt Nanoparticles Catalyzed Indole Synthesis in Water via Aerobic Alcohol Oxidation. Chemistry Letters, 2016, 45, 758-760.	1.3	11
52	The Development of a Vesicular Self-assembled Amphiphilic Platinum NCN-Pincer Complex and Its Catalytic Application to Hydrosilylation of Alkenes in Water. Chemistry Letters, 2016, 45, 1244-1246.	1.3	12
53	Palladium-Catalyzed Asymmetric Suzuki–Miyaura Cross Coupling with Homochiral Phosphine Ligands Having Tetrahydro-1H-imidazo[1,5-a]indole Backbone. Synthesis, 2016, 49, 59-68.	2.3	14
54	In-Water and Neat Batch and Continuous-Flow Direct Esterification and Transesterification by a Porous Polymeric Acid Catalyst. Scientific Reports, 2016, 6, 25925.	3.3	26

#	Article	IF	CITATIONS
55	Recyclable Polystyrene-Supported Copper Catalysts for the Aerobic Oxidative Homocoupling of Terminal Alkynes. Synlett, 2016, 27, 1232-1236.	1.8	27
56	Application of Heterogeneous Polymer-Supported Catalysts to Continuous Flow Systems. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2016, 74, 621-630.	0.1	3
57	A Convoluted Polymeric Imidazole Palladium Catalyst: Structural Elucidation and Investigation of the Driving Force for the Efficient Mizoroki–Heck Reaction. ChemCatChem, 2015, 7, 2141-2148.	3.7	24
58	Instantaneous Click Chemistry by a Copperâ€Containing Polymericâ€Membraneâ€Installed Microflow Catalytic Reactor. Chemistry - A European Journal, 2015, 21, 17269-17273.	3.3	23
59	Development of an aquacatalytic system based on the formation of vesicles of an amphiphilic palladium NNC-pincer complex. Dalton Transactions, 2015, 44, 7828-7834.	3.3	10
60	Continuous-flow hydrogenation of olefins and nitrobenzenes catalyzed by platinum nanoparticles dispersed in an amphiphilic polymer. RSC Advances, 2015, 5, 45760-45766.	3.6	18
61	Production of Valuable Esters from Oleic Acid with a Porous Polymeric Acid Catalyst without Water Removal. Synlett, 2015, 27, 29-32.	1.8	5
62	A palladium NNC-pincer complex: an efficient catalyst for allylic arylation at parts per billion levels. Chemical Communications, 2015, 51, 3886-3888.	4.1	34
63	Application of "Boomerang―Linear Polystyrene-Stabilized Pd Nanoparticles to a Series of C-C Coupling Reactions in Water. Catalysts, 2015, 5, 106-118.	3.5	26
64	A vesicular self-assembled amphiphilic palladium NNC-pincer complex-catalyzed allylic arylation of allyl acetates with sodium tetraarylborates in water. Tetrahedron, 2015, 71, 6437-6441.	1.9	16
65	BrÃ,nsted acid-catalyzed selective C–C bond cleavage of 1,3-diketones: a facile synthesis of 4(3H)-quinazolinones in aqueous ethyl lactate. RSC Advances, 2015, 5, 85646-85651.	3.6	31
66	Low temperature hydrodeoxygenation of phenols under ambient hydrogen pressure to form cyclohexanes catalysed by Pt nanoparticles supported on H-ZSM-5. Chemical Communications, 2015, 51, 17000-17003.	4.1	46
67	Mechanistic Insights into Copper-Catalyzed Azide–Alkyne Cycloaddition (CuAAC): Observation of Asymmetric Amplification. Synlett, 2015, 26, 1475-1479.	1.8	23
68	Organoborane-Catalyzed Hydrogenation of Unactivated Aldehydes with a Hantzsch Ester as a Synthetic NAD(P)H Analogue. Synlett, 2015, 26, 2037-2041.	1.8	36
69	Aerobic flow oxidation of alcohols in water catalyzed by platinum nanoparticles dispersed in an amphiphilic polymer. RSC Advances, 2015, 5, 2647-2654.	3.6	32
70	A Palladiumâ€Nanoparticle and Siliconâ€Nanowireâ€Array Hybrid: A Platform for Catalytic Heterogeneous Reactions. Angewandte Chemie - International Edition, 2014, 53, 127-131.	13.8	116
71	Bimetallic Co–Pd alloy nanoparticles as magnetically recoverable catalysts for the aerobic oxidation of alcohols in water. Tetrahedron, 2014, 70, 6146-6149.	1.9	8
72	Enantioposition-Selective Copper-Catalyzed Azide–Alkyne Cycloaddition for Construction of Chiral Biaryl Derivatives. Organic Letters, 2014, 16, 5866-5869.	4.6	73

#	Article	IF	Citations
73	Iron-catalyzed C(sp ³)–H functionalization of methyl azaarenes: a green approach to azaarene-substituted α- or β-hydroxy carboxylic derivatives and 2-alkenylazaarenes. RSC Advances, 2014, 4, 57875-57884.	3.6	54
74	Driving an equilibrium acetalization to completion in the presence of water. RSC Advances, 2014, 4, 36864-36867.	3.6	10
75	Transfer hydrogenation of alkenes using Ni/Ru/Pt/Au heteroquatermetallic nanoparticle catalysts: sequential cooperation of multiple nano-metal species. Chemical Communications, 2014, 50, 12123-12126.	4.1	27
76	Cyclization of alkynoic acids in water in the presence of a vesicular self-assembled amphiphilic pincer palladium complex catalyst. Chemical Communications, 2014, 50, 14516-14518.	4.1	25
77	Iron-Catalyzed Green Synthesis of 2-Alkenylazaarenes. Chinese Journal of Organic Chemistry, 2014, 34, 1369.	1.3	5
78	Direct Dehydrative Esterification of Alcohols and Carboxylic Acids with a Macroporous Polymeric Acid Catalyst. Organic Letters, 2013, 15, 5798-5801.	4.6	63
79	A Recyclable "Boomerang―Linear Polystyrene‧tabilized Pd Nanoparticles for the Suzuki Coupling Reaction of Aryl Chlorides in Water. ChemCatChem, 2013, 5, 2167-2169.	3.7	23
80	Highly efficient iron(0) nanoparticle-catalyzed hydrogenation in water in flow. Green Chemistry, 2013, 15, 2141.	9.0	96
81	Polymeric Bimetallic Catalyst-Promoted In-Water Dehydrative Alkylation of Ammonia and Amines with Alcohols. Synthesis, 2013, 45, 2093-2100.	2.3	34
82	Asymmetric Sonogashira Coupling with a Chiral Palladium Imidazoindole Phosphine Complex. Synlett, 2013, 24, 2550-2554.	1.8	3
83	4.2 C–C Bond-Forming Reactions via the Heck Reaction. , 2012, , 2-17.		2
84	4.3 C–C Bond-Forming Reactions via Cross-Coupling. , 2012, , 18-32.		0
85	Use of dimethyl carbonate as a solvent greatly enhances the biaryl coupling of aryl iodides and organoboron reagents without adding any transition metal catalysts. Chemical Communications, 2012, 48, 2912.	4.1	21
86	Enantioselective Carbenoid Insertion into Phenolic Oâ€"H Bonds with a Chiral Copper(I) Imidazoindolephosphine Complex. Organic Letters, 2012, 14, 194-197.	4.6	66
87	Self-Assembled Poly(imidazole-palladium): Highly Active, Reusable Catalyst at Parts per Million to Parts per Billion Levels. Journal of the American Chemical Society, 2012, 134, 3190-3198.	13.7	218
88	Amphiphilic Self-Assembled Polymeric Copper Catalyst to Parts per Million Levels: Click Chemistry. Journal of the American Chemical Society, 2012, 134, 9285-9290.	13.7	187
89	Development of Polymeric Palladiumâ€Nanoparticle Membraneâ€Installed Microflow Devices and their Application in Hydrodehalogenation. ChemSusChem, 2012, 5, 293-299.	6.8	25
90	In-Water Dehydrative Alkylation of Ammonia and Amines with Alcohols by a Polymeric Bimetallic Catalyst. Organic Letters, 2011, 13, 3892-3895.	4.6	70

#	Article	IF	Citations
91	A novel amphiphilic pincer palladium complex: design, preparation and self-assembling behavior. Dalton Transactions, 2011, 40, 8859.	3.3	27
92	C–N and C–S Bond Forming Cross Coupling in Water with Amphiphilic Resin-supported Palladium Complexes. Chemistry Letters, 2011, 40, 934-935.	1.3	16
93	Highly Active Copperâ€Network Catalyst for the Direct Aldol Reaction. Chemistry - an Asian Journal, 2011, 6, 2545-2549.	3.3	8
94	Molecularâ€Architectureâ€Based Administration of Catalysis in Water: Selfâ€Assembly of an Amphiphilic Palladium Pincer Complex. Angewandte Chemie - International Edition, 2011, 50, 4876-4878.	13.8	53
95	A Highly Active and Reusable Selfâ€Assembled Poly(Imidazole/Palladium) Catalyst: Allylic Arylation/Alkenylation. Angewandte Chemie - International Edition, 2011, 50, 9437-9441.	13.8	90
96	Tandem Olefin Migration-Aldol Condensation in Water with an Amphiphilic Resin-Supported Ruthenium Complex. Synlett, 2011, 2011, 787-790.	1.8	1
97	Recovery of In Situ-generated Pd Nanoparticles with Linear Polystyrene. Green and Sustainable Chemistry, 2011, 01, 19-25.	1.2	13
98	Development of Polymeric Metal Catalysts via Molecular Convolution and of Catalytic Membrane-Installed Microflow Devices. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2011, 69, 542-551.	0.1	10
99	Heterogeneous Aromatic Amination of Aryl Halides with Arylamines in Water with PSâ€PEG Resinâ€Supported Palladium Complexes. Chemistry - an Asian Journal, 2010, 5, 1788-1795.	3.3	26
100	Palladium Membraneâ€Installed Microchannel Devices for Instantaneous Suzuki–Miyaura Crossâ€Coupling. Chemistry - A European Journal, 2010, 16, 11311-11319.	3.3	53
101	Copper-Free Sonogashira coupling in water with an amphiphilic resin-supported palladium complex. Tetrahedron, 2010, 66, 1064-1069.	1.9	90
102	A Self-Supported Palladium-Bipyridyl Catalyst for the Suzuki-Miyaura Coupling in Water. Heterocycles, 2010, 80, 505.	0.7	10
103	Green Chemistry - A New Paradigm of Organic Synthesis. Synlett, 2010, 2010, 1988-1989.	1.8	12
104	H ₂ O ₂ -Oxidation of Alcohols Promoted by Polymeric Phosphotungstate Catalysts. Organic Letters, 2010, 12, 4540-4543.	4.6	44
105	Clean synthesis of triarylamines: Buchwald–Hartwig reaction in water with amphiphilic resin-supported palladium complexes. Chemical Communications, 2010, 46, 1103-1105.	4.1	53
106	Chemoselective Oxidation of Sulfides Promoted by a Tightly Convoluted Polypyridinium Phosphotungstate Catalyst with H2. Bulletin of the Korean Chemical Society, 2010, 31, 547-548.	1.9	8
107	Bipyridyl-Palladium Catalyst for Aerobic Oxidation of Alcohols. Synfacts, 2009, 2009, 1419-1419.	0.0	0
108	Catalytic Membrane-Installed Microchannel Reactors for Allylic Arylation. Synfacts, 2009, 2009, 1418-1418.	0.0	1

7

#	Article	IF	CITATIONS
109	Asymmetric Suzuki–Miyaura Coupling in Water with a Chiral Palladium Catalyst Supported on an Amphiphilic Resin. Angewandte Chemie - International Edition, 2009, 48, 2708-2710.	13.8	223
110	Development of an amphiphilic resinâ€dispersion of nanopalladium and nanoplatinum catalysts: Design, preparation, and their use in green organic transformations. Chemical Record, 2009, 9, 51-65.	5.8	49
111	An Amphiphilic Resinâ€dispersion of Nanoparticles of Platinum (ARPâ€Pt): A Highly Active and Recyclable Catalyst for the Aerobic Oxidation of a Variety of Alcohols in Water. Chemistry - an Asian Journal, 2009, 4, 1092-1098.	3.3	28
112	Catalytic membrane-installed microchannel reactors for one-second allylic arylation. Chemical Communications, 2009, , 5594.	4.1	56
113	Oxidative cyclization of alkenols with Oxone using a miniflow reactor. Beilstein Journal of Organic Chemistry, 2009, 5, 18.	2.2	12
114	Aquacatalytic Aerobic Oxidation of Benzylic Alcohols with a Self-supported Bipyridyl–Palladium Complex. Chemistry Letters, 2009, 38, 902-903.	1.3	14
115	Highly Efficient Heterogeneous Aqueous Kharasch Reaction with an Amphiphilic Resinâ€Supported Ruthenium Catalyst. Advanced Synthesis and Catalysis, 2008, 350, 1771-1775.	4.3	41
116	Synthesis of [2,6-Bis(2-oxazolinyl)phenyl]palladium Complexes via the Ligand Introduction Route. Organometallics, 2008, 27, 5159-5162.	2.3	30
117	Allylic Substitution of meso-1,4-Diacetoxycycloalkenes in Water with an Amphiphilic Resin-Supported Chiral Palladium Complex. Synlett, 2008, 2008, 1557-1561.	1.8	20
118	Ï€-Allylic Sulfonylation in Water with Amphiphilic Resin-Supported Palladium-Phosphine Complexes. Synthesis, 2008, 2008, 1960-1964.	2.3	37
119	Heterogeneous Asymmetric Catalysis in Water with Amphiphilic Polymer-Supported Homochiral Palladium Complexes. Bulletin of the Chemical Society of Japan, 2008, 81, 1183-1195.	3.2	35
120	Development of Tightly Convoluted Polymeric Phosphotungstate Catalysts and Their Application to an Oxidative Cyclization of Alkenols and Alkenoic Acids. Heterocycles, 2008, 76, 645.	0.7	7
121	Asymmetric allylic substitution of cycloalkenyl esters in water with an amphiphilic resin-supported chiral palladium complex. Pure and Applied Chemistry, 2007, 79, 1481-1489.	1.9	22
122	Tightly Convoluted Polymeric Phosphotungstate Catalyst:  An Oxidative Cyclization of Alkenols and Alkenoic Acids. Organic Letters, 2007, 9, 1501-1504.	4.6	36
123	Development of New P-Chiral Phosphorodiamidite Ligands Having a Pyrrolo[1,2-c]diazaphosphol-1-one Unit and Their Application to Regio- and Enantioselective Iridium-Catalyzed Allylic Etherification. Journal of Organic Chemistry, 2007, 72, 707-714.	3.2	108
124	A Nanoplatinum Catalyst for Aerobic Oxidation of Alcohols in Water. Angewandte Chemie - International Edition, 2007, 46, 704-706.	13.8	203
125	Pd Pincer Complex as a Probe To Index the Coordination Ability of Various Ligands. European Journal of Inorganic Chemistry, 2007, 2007, 1629-1631.	2.0	10
126	Development of a convoluted polymeric nanopalladium catalyst: \hat{l}_{\pm} -alkylation of ketones and ring-opening alkylation of cyclic 1,3-diketones with primary alcohols. Tetrahedron, 2007, 63, 8492-8498.	1.9	83

#	Article	IF	CITATIONS
127	Development of an amphiphilic resin-dispersion of nanopalladium catalyst: Design, preparation, and its use in aquacatalytic hydrodechlorination and aerobic oxidation. Journal of Organometallic Chemistry, 2007, 692, 420-427.	1.8	51
128	A Solid-Phase Self-Organized Catalyst of Nanopalladium with Main-Chain Viologen Polymers:  α-Alkylation of Ketones with Primary Alcohols. Organic Letters, 2006, 8, 1375-1378.	4.6	160
129	Instantaneous Carbonâ^'Carbon Bond Formation Using a Microchannel Reactor with a Catalytic Membrane. Journal of the American Chemical Society, 2006, 128, 15994-15995.	13.7	154
130	PCP Pincer Palladium Complexes and Their Catalytic Properties:Â Synthesis via the Electrophilic Ligand Introduction Route. Organometallics, 2006, 25, 4883-4887.	2.3	58
131	Ï€-Allylic C1-Substitution in Water with Nitromethane Using Amphiphilic Resin-Supported Palladium Complexes. Journal of Organic Chemistry, 2006, 71, 8644-8646.	3.2	59
132	Asymmetric π-allylic etherification of cycloalkenyl esters with phenols in water using a resin-supported chiral palladium complex. Tetrahedron: Asymmetry, 2006, 17, 161-166.	1.8	68
133	Amphezonol A, a novel polyhydroxyl metabolite from marine dinoflagellate Amphidinium sp Tetrahedron Letters, 2006, 47, 4369-4371.	1.4	28
134	Novel 3D Coordination Palladiumâ^'Network Complex:  A Recyclable Catalyst for Suzukiâ^'Miyaura Reactionâ€. Organic Letters, 2006, 8, 4259-4262.	4.6	78
135	NCN Pincer Palladium Complexes: Their Preparation via a Ligand Introduction Route and Their Catalytic Properties ChemInform, 2006, 37, no.	0.0	0
136	A Combinatorial Approach to Heterogeneous Asymmetric Aquacatalysis with Amphiphilic Polymer-Supported Chiral Phosphine-Palladium Complexes. Advanced Synthesis and Catalysis, 2006, 348, 1561-1566.	4.3	34
137	Alkylative Cyclization of 1,6-Enynes in Water with an Amphiphilic Resin-Supported Palladium Catalyst. Synlett, 2006, 2006, 3065-3068.	1.8	3
138	Ï€-Allylic Azidation in Water with an Amphiphilic Resin-Supported Palladium-Phosphine Complex. Synlett, 2006, 2006, 2109-2113.	1.8	25
139	Hydrogenation and Dehalogenation under Aqueous Conditions with an Amphiphilic-Polymer-Supported Nanopalladium Catalyst ChemInform, 2005, 36, no.	0.0	0
140	Cycloisomerization of 1,6-Enynes: Asymmetric Multistep Preparation of a Hydrindan Framework in Water with Polymeric Catalysts ChemInform, 2005, 36, no.	0.0	0
141	Controlled Monoarylation of Dibromoarenes in Water with a Polymeric Palladium Catalyst ChemInform, 2005, 36, no.	0.0	0
142	Heterogeneous Asymmetric Aquacatalysis with Polymer-Supported Palladium Complexes. Catalysis Surveys From Asia, 2005, 9, 269-278.	2.6	8
143	Controlled Monoarylation of Dibromoarenes in Water with a Polymeric Palladium Catalyst. Synlett, 2005, 2005, 1775-1778.	1.8	37
144	Hydrogenation and Dehalogenation under Aqueous Conditions with an Amphiphilic-Polymer-Supported Nanopalladium Catalyst. Organic Letters, 2005, 7, 163-165.	4.6	135

#	Article	IF	CITATIONS
145	Cycloisomerization of 1,6-Enynes:  Asymmetric Multistep Preparation of a Hydrindane Framework in Water with Polymeric Catalysts. Organic Letters, 2005, 7, 291-293.	4.6	64
146	NCN Pincer Palladium Complexes:Â Their Preparation via a Ligand Introduction Route and Their Catalytic Properties. Journal of the American Chemical Society, 2005, 127, 12273-12281.	13.7	172
147	Application of Polymer-Metal Complexes to Environmentally-Benign Catalysis. Kobunshi, 2005, 54, 83-83.	0.0	0
148	An N-C-N Pincer Palladium Complex as an Efficient Catalyst Precursor for the Heck Reaction. Advanced Synthesis and Catalysis, 2004, 346, 1693-1696.	4.3	47
149	Asymmetric Allylic Amination in Water Catalyzed by an Amphiphilic Resin-Supported Chiral Palladium Complex ChemInform, 2004, 35, no.	0.0	0
150	Development of Chiral Pincer Palladium Complexes Bearing a Pyrroloimidazolone Unit. Catalytic Use for Asymmetric Michael Addition ChemInform, 2004, 35, no.	0.0	0
151	PS-PEG resin-supported palladium–MOP complexes. Application in asymmetric π-allylic reduction. Tetrahedron, 2004, 60, 9297-9306.	1.9	33
152	Asymmetric Allylic Amination in Water Catalyzed by an Amphiphilic Resin-Supported Chiral Palladium Complex. Organic Letters, 2004, 6, 281-283.	4.6	94
153	Deuterium-Labeling Studies Establishing Stereochemistry at the Oxypalladation Step in Wacker-Type Oxidative Cyclization of an o-Allylphenol. Journal of the American Chemical Society, 2004, 126, 3036-3037.	13.7	119
154	Development of Chiral Pincer Palladium Complexes Bearing a Pyrroloimidazolone Unit. Catalytic Use for Asymmetric Michael Addition. Organic Letters, 2004, 6, 1833-1835.	4.6	85
155	Recent Progress in Polymeric Palladium Catalysts for Organic Synthesis. Topics in Current Chemistry, 2004, 242, 77-112.	4.0	109
156	Solid-Phase Palladium Catalysis for High-Throughput Organic Synthesis. , 2004, , 531-584.		1
157	Title is missing!. Angewandte Chemie, 2003, 115, 204-207.	2.0	7 3
158	An Amphiphilic Resin-Supported Palladium Catalyst for High-Throughput Cross-Coupling in Water ChemInform, 2003, 34, no.	0.0	0
159	New Homochiral Phosphine Ligands Having a Hexahydro-1H-pyrrolo[1,2-c]imidazolone Backbone: Preparation and Use for Palladium-Catalyzed Asymmetric Alkylation of Cycloalkenyl Carbonates ChemInform, 2003, 34, no.	0.0	0
160	Heck Reaction in Water with Amphiphilic Resin-Supported Palladium-Phosphine Complexes ChemInform, 2003, 34, no.	0.0	0
161	The Sonogashira Reaction in Water via an Amphiphilic Resin-Supported Palladium-Phosphine Complex under Copper-Free Conditions ChemInform, 2003, 34, no.	0.0	0
162	Catalytic Oxidation of Alcohols in Water under Atmospheric Oxygen by Use of an Amphiphilic Resin-Dispersion of a Nanopalladium Catalyst ChemInform, 2003, 34, no.	0.0	0

#	Article	IF	CITATIONS
163	Catalytic Oxidation of Alcohols in Water under Atmospheric Oxygen by Use of an Amphiphilic Resin-Dispersion of a Nanopalladium Catalyst. Angewandte Chemie - International Edition, 2003, 42, 194-197.	13.8	307
164	A simple synthetic approach to homochiral 6- and $6\hat{a}\in^2$ -substituted 1,1 $\hat{a}\in^2$ -binaphthyl derivatives. Tetrahedron, 2003, 59, 619-630.	1.9	58
165	The Sonogashira Reaction in Water via an Amphiphilic Resin-supported Palladium-Phosphine Complex under Copper-free Conditions. Heterocycles, 2003, 59, 71.	0.7	105
166	Heck Reaction in Water with Amphiphilic Resin-Supported Palladium-Phosphine Complexes. Synlett, 2002, 2002, 2045-2048.	1.8	73
167	Polymer-Supported 2,2′-Bis(oxazolin-2-yl)-1,1′-binaphthyls (Boxax): Immobilized Chiral Ligands for Asymmetric Wacker-Type Cyclizations. Synlett, 2002, 2002, 2049-2053.	1.8	4
168	An Amphiphilic Resin-Supported Palladium Catalyst for High-Throughput Cross-Coupling in Water. Organic Letters, 2002, 4, 2997-3000.	4.6	173
169	Combinatorial Approaches towards Organic Synthetic Catalysts Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2002, 60, 434-441.	0.1	1
170	Palladium Catalysis in Water: Design, Preparation, and Use of Amphiphilic Resin-Supported Palladium-Phosphine Complexes Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2002, 60, 1063-1068.	0.1	14
171	Amphiphilic Resin-Supported Rhodium-Phosphine Catalysts for C-C Bond Forming Reactions in Water. Advanced Synthesis and Catalysis, 2002, 344, 274-277.	4.3	46
172	New homochiral phosphine ligands having a hexahydro-1H-pyrrolo[1,2-c]imidazolone backbone: preparation and use for palladium-catalyzed asymmetric alkylation of cycloalkenyl carbonates. Tetrahedron: Asymmetry, 2002, 13, 1769-1772.	1.8	34
173	Amphiphilic Resinâ€Supported Rhodiumâ€Phosphine Catalysts for Câ€"C Bond Forming Reactions in Water ChemInform, 2002, 33, 71-71.	0.0	0
174	Asymmetric Hydrosilylation of Styrenes Catalyzed by Palladiumâ^'MOP Complexes:Â Ligand Modification and Mechanistic Studies. Journal of Organic Chemistry, 2001, 66, 1441-1449.	3.2	106
175	Double Carbonylation of Aryl Iodides with Primary Amines under Atmospheric Pressure Conditions Using the Pd/PPh3/DABCO/THF System. Journal of Organic Chemistry, 2001, 66, 5272-5274.	3.2	107
176	Catalytic Asymmetric Allylic Alkylation in Water with a Recyclable Amphiphilic Resin-SupportedP,N-Chelating Palladium Complex. Journal of the American Chemical Society, 2001, 123, 2919-2920.	13.7	181
177	Enantioselective desymmetrization of meso-cyclic anhydrides catalyzed by hexahydro-1H-pyrrolo[1,2-c]imidazolones. Tetrahedron Letters, 2001, 42, 411-414.	1.4	57
178	A parallel preparation of a bicyclic N-chiral amine library and its use for chiral catalyst screening. Tetrahedron Letters, 2001, 42, 407-410.	1.4	29
179	Synthesis and potential central nervous system stimulant activity of 5,8-methanoquinazolines and bornano-triazines fused with imidazole and pyrimidine. Journal of Heterocyclic Chemistry, 2001, 38, 379-381.	2.6	3
180	Modification of Chiral Monodentate Phosphine Ligands (MOP) for Palladium-Catalyzed Asymmetric Hydrosilylation of Cyclic 1,3-Dienes. Advanced Synthesis and Catalysis, 2001, 343, 279-283.	4.3	75

#	Article	IF	CITATIONS
181	Modification of Chiral Monodentate Phosphine (MOP) Ligands for Palladium-Catalyzed Asymmetric Hydrosilylation of Styrenes. Chemistry Letters, 2000, 29, 1272-1273.	1.3	23
182	Palladium-Catalyzed Asymmetric Reduction of Racemic Allylic Esters with Formic Acid: Effects of Phosphine Ligands on Isomerization of π-Allylpalladium Intermediates and Enantioselectivity. Tetrahedron, 2000, 56, 2247-2257.	1.9	35
183	Allylic substitution in water catalyzed by amphiphilic resin-supported palladium-phosphine complexes. Tetrahedron, 1999, 55, 14341-14352.	1.9	90
184	Design and Preparation of 3,3â€~-Disubstituted 2,2â€~-Bis(oxazolyl)-1,1â€~-binaphthyls (boxax): New Chiral Bis(oxazoline) Ligands for Catalytic Asymmetric Wacker-Type Cyclization. Journal of Organic Chemistry, 1999, 64, 1620-1625.	3.2	94
185	Green Catalysis:Â Hydroxycarbonylation of Aryl Halides in Water Catalyzed by an Amphiphilic Resin-Supported Phosphineâ°'Palladium Complex. Journal of Organic Chemistry, 1999, 64, 6921-6923.	3.2	97
186	Cross-Coupling of Aryl Halides and Allyl Acetates with Arylboron Reagents in Water Using an Amphiphilic Resin-Supported Palladium Catalyst. Journal of Organic Chemistry, 1999, 64, 3384-3388.	3.2	240
187	Palladium-catalyzed asymmetric allylic substitution in aqueous media using amphiphilic resin-supported MOP ligands. Tetrahedron Letters, 1998, 39, 8303-8306.	1.4	111
188	Asymmetric aza-Claisen rearrangement of allyl imidates catalyzed by homochiral cationic palladium(II) complexes. Tetrahedron: Asymmetry, 1998, 9, 1065-1072.	1.8	61
189	Synthesis and application of novel chiral phosphino-oxazoline ligands with 1,1′-binaphthyl skeleton. Tetrahedron: Asymmetry, 1998, 9, 1779-1787.	1.8	97
190	Retention of Regiochemistry of Allylic Esters in Palladium-Catalyzed Allylic Alkylation in the Presence of a MOP Ligand. Journal of the American Chemical Society, 1998, 120, 1681-1687.	13.7	150
191	Regiocontrol in palladium-catalysed allylic alkylation by addition of lithium iodide. Chemical Communications, 1998, , 217-218.	4.1	32
192	Cationic Palladium/Boxax Complexes for Catalytic Asymmetric Wacker-Type Cyclization. Journal of Organic Chemistry, 1998, 63, 5071-5075.	3.2	92
193	Cyclization ofo-Allylstyrene via Hydrosilylation:Â Mechanistic Aspects of Hydrosilylation of Styrenes Catalyzed by Palladiumâ^'Phosphine Complexes. Journal of Organic Chemistry, 1998, 63, 6137-6140.	3.2	41
194	MOP: Design, Preparation, and Use for Palladium-Catalyzed Asymmetric Reactions. Yakugaku Zasshi, 1998, 118, 193-205.	0.2	2
195	Regio- and enantio-selective allylic alkylation catalysed by a chiral monophosphine–palladium complex. Chemical Communications, 1997, , 561-562.	4.1	114
196	Catalytic Asymmetric Wacker-Type Cyclization. Journal of the American Chemical Society, 1997, 119, 5063-5064.	13.7	229
197	New amphiphilic palladium-phosphine complexes bound to solid supports: Preparation and use for catalytic allylic substitution in aqueous media. Tetrahedron Letters, 1997, 38, 3557-3560.	1.4	107
198	Preparation of Combinatorial Library Indexed by Molecular Tags. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 1997, 55, 65-71.	0.1	1

#	Article	IF	Citations
199	Parallel Synthesis and Screening of a Solid Phase Carbohydrate Library. Science, 1996, 274, 1520-1522.	12.6	302
200	Catalytic asymmetric synthesis of optically active alkenes by palladium-catalysed asymmetric reduction of racemic allylic esters with formic acid. Chemical Communications, 1996, , 1767.	4.1	34
201	Enantioposition-selective alkynylation of biaryl ditriflates by palladium-catalyzed asymmetric cross-coupling. Tetrahedron Letters, 1996, 37, 3161-3164.	1.4	61
202	Asymmetric hydrosilylation of cyclic 1,3-dienes catalyzed by an axially chiral monophosphine-palladium complex. Tetrahedron Letters, 1996, 37, 4169-4172.	1.4	68
203	Erythro-Selective aldol-type reaction of N-sulfonylaldimines with methyl isocyanoacetate catalyzed by gold(I). Tetrahedron Letters, 1996, 37, 4969-4972.	1.4	100
204	Homochiral 2,2′-bis(oxazolyl)-1,1′-binaphthyls as ligands for copper(I)-catalyzed asymmetric cyclopropanation. Tetrahedron: Asymmetry, 1996, 7, 1603-1606.	1.8	116
205	Asymmetric Hydrosilylation of 1-Alkenes Catalyzed by Palladium–MOP. Bulletin of the Chemical Society of Japan, 1995, 68, 713-722.	3.2	101
206	Catalytic asymmetric hydrosilylation of ketones with new chiral ferrocenylphosphine-imine ligands. Tetrahedron: Asymmetry, 1995, 6, 2503-2506.	1.8	83
207	Catalytic asymmetric synthesis of axially chiral biaryls by palladium-catalyzed enantioposition-selective cross-coupling Journal of the American Chemical Society, 1995, 117, 9101-9102.	13.7	189
208	Palladium-catalysed asymmetric hydrosilylation of styrenes with a new chiral monodentate phosphine ligand. Journal of the Chemical Society Chemical Communications, 1995, , 1533.	2.0	82
209	A New Optically Active Monodentate Phosphine Ligand, (R)-(+)-3-Diphenylphosphino-3′-methoxy-4,4′-biphenanthryl (MOP-phen): Preparation and Use for Palladium-Catalyzed Asymmetric Reduction of Allylic Esters with Formic Acid. Synthesis, 1994, 1994, 526-532.	2.3	50
210	Preparation of optically active binaphthylmonophosphines (MOP's) containing various functional groups. Tetrahedron, 1994, 50, 4293-4302.	1.9	156
211	Asymmetric synthesis of allylsilanes by palladium-catalyzed asymmetric reduction of allylic carbonates with formic acid. Tetrahedron Letters, 1994, 35, 4813-4816.	1.4	61
212	Catalytic Asymmetric Reduction of Allylic Esters with Formic Acid Catalyzed by Palladium-MOP Complexes. Journal of the American Chemical Society, 1994, 116, 775-776.	13.7	178
213	Asymmetric hydrosilylation of dihydrofurans by use of palladium-MOP catalyst. Tetrahedron Letters, 1993, 34, 2335-2338.	1.4	77
214	Regio- and enantioselective hydrosilylation of 1-arylalkenes by use of palladium-MOP catalyst. Tetrahedron: Asymmetry, 1993, 4, 2419-2422.	1.8	67
215	Synthesis of optically active 2-(diarylphosphino)-1,1'-binaphthyls, efficient chiral monodentate phosphine ligands. Journal of Organic Chemistry, 1993, 58, 1945-1948.	3.2	287
216	Axially chiral allenylboranes: catalytic asymmetric synthesis by palladium-catalysed hydroboration of but-1-en-3-ynes and their reaction with an aldehyde. Journal of the Chemical Society Chemical Communications, 1993, , 1468.	2.0	112

#	Article	IF	Citations
217	Catalytic asymmetric construction of morpholines and piperazines by palladium-catalyzed tandem allylic substitution reactions. Journal of Organic Chemistry, 1993, 58, 6826-6832.	3.2	102
218	The Development and Application of a New Class of Monodentate Optically Active Phosphines(MOP's). Asymmetric Hydrosilylation of Olefins Catalyzed by Palladium-MOP Complexes Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 1993, 51, 1087-1096.	0.1	3
219	Catalytic asymmetric synthesis of optically active alcohols via hydrosilylation of olefins with a chiral monophosphine-palladium catalyst. Pure and Applied Chemistry, 1992, 64, 1911-1916.	1.9	56
220	New C-N-C Bond Formation Reaction Using Nitrogenation-Transmetallation Process. Novel Ring Construction of Indole and Quinoline Derivatives. Heterocycles, 1992, 33, 819.	0.7	19
221	Asymmetric functionalization of bicycloalkenes by catalytic enantioposition-selective hydrosilylation. Tetrahedron Letters, 1992, 33, 7185-7188.	1.4	119
222	New C–N–C bond formation reaction using the nitrogenation-transmetallation process. Journal of the Chemical Society Chemical Communications, 1991, .	2.0	16
223	Catalytic asymmetric synthesis of optically active 2-alkanols via hydrosilylation of 1-alkenes with a chiral monophosphine-palladium catalyst. Journal of the American Chemical Society, 1991, 113, 9887-9888.	13.7	325
224	A catalytic asymmetric synthesis of \hat{l} ±-methylene lactones by the palladium-catalysed carbonylation of prochiral alkenyl halides. Journal of the Chemical Society Chemical Communications, 1991, , 1593-1595.	2.0	56
225	Silver(I)-catalyzed asymmetric aldol reaction of isocyanoacetate. Tetrahedron Letters, 1991, 32, 2799-2802.	1.4	113
226	Catalytic asymmetric elimination forming chiral 1,3-dienes via π-allylpalladium intermediate. Tetrahedron: Asymmetry, 1991, 2, 195-198.	1.8	15
227	Incorporation of molecular nitrogen into organic compounds. Journal of Organometallic Chemistry, 1990, 399, 93-102.	1.8	30
228	Incorporation of molecular nitrogen into organic compounds III. Reaction of titanium-nitrogen complexes with acid halides and acid anhydrides. Journal of Organometallic Chemistry, 1990, 395, 255-267.	1.8	8
229	Incorporation of molecular nitrogen into organic compounds. 2. Novel lactam synthesis by use of a combination system of carbonylation and nitrogenation. Journal of the American Chemical Society, 1989, 111, 3725-3727.	13.7	65
230	Incorporation of molecular nitrogen into amides and imides by use of titanium nitrogen complexes. Tetrahedron Letters, 1987, 28, 6187-6190.	1.4	24
231	Total synthesis of neothramycin. Journal of the Chemical Society Chemical Communications, 1986, , 841.	2.0	24
232	Structure and Syntheses of SEN-125 and Oxotomaymycin. Heterocycles, 1986, 24, 1257.	0.7	6
233	Total Syntheses of Prothracarcin and Tomaymycin by Use of Palladium Catalyzed Carbonylation. Tetrahedron, 1986, 42, 3793-3806.	1.9	52
234	A one step synthesis of 1,4-benzodiazepines: synthetic studies on neothramycin. Tetrahedron Letters, 1985, 26, 5947-5950.	1.4	27

 #	Article	IF	CITATIONS
235	Palladiumâ€Catalyzed Aminocarbonylation of Aryl Halides with N,Nâ€Dialkylformamide Acetals. Helvetica Chimica Acta, 0, , e2100162.	1.6	0