
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8637267/publications.pdf Version: 2024-02-01

ςλάλη Οττο

#	Article	IF	CITATIONS
1	Fixation and effective size in a haploid–diploid population with asexual reproduction. Theoretical Population Biology, 2022, 143, 30-45.	1.1	3
2	The need for linked genomic surveillance of SARS-CoV-2. Canada Communicable Disease Report, 2022, 48, 131-139.	1.3	13
3	Unbalanced selection: the challenge of maintaining a social polymorphism when a supergene is selfish. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, .	4.0	9
4	Selective Interference and the Evolution of Sex. Journal of Heredity, 2021, 112, 9-18.	2.4	37
5	Coevolution fails to maintain genetic variation in a host–parasite model with constant finite population size. Theoretical Population Biology, 2021, 137, 10-21.	1.1	4
6	Evolution of plasticity in production and transgenerational inheritance of small RNAs under dynamic environmental conditions. PLoS Genetics, 2021, 17, e1009581.	3.5	8
7	The origins and potential future of SARS-CoV-2 variants of concern in the evolving COVID-19 pandemic. Current Biology, 2021, 31, R918-R929.	3.9	246
8	Feedback between coevolution and epidemiology can help or hinder the maintenance of genetic variation in hostâ€parasite models. Evolution; International Journal of Organic Evolution, 2021, 75, 582-599.	2.3	4
9	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038
10	Relative genomic impacts of translocation history, hatchery practices, and farm selection in Pacific oyster <i>Crassostrea gigas</i> throughout the Northern Hemisphere. Evolutionary Applications, 2020, 13, 1380-1399.	3.1	13
11	On the evolutionary epidemiology of SARS-CoV-2. Current Biology, 2020, 30, R849-R857.	3.9	160
12	Insights from Fisher's geometric model on the likelihood of speciation under different histories of environmental change. Evolution; International Journal of Organic Evolution, 2020, 74, 1603-1619.	2.3	24
13	Genetic Paths to Evolutionary Rescue and the Distribution of Fitness Effects Along Them. Genetics, 2020, 214, 493-510.	2.9	17
14	Crossover Interference: Shedding Light on the Evolution of Recombination. Annual Review of Genetics, 2019, 53, 19-44.	7.6	74
15	Little Evidence of Antagonistic Selection in the Evolutionary Strata of Fungal Mating-Type Chromosomes (<i>Microbotryum lychnidis-dioicae)</i> . G3: Genes, Genomes, Genetics, 2019, 9, 1987-1998.	1.8	18
16	Evolutionary potential for genomic islands of sexual divergence on recombining sex chromosomes. New Phytologist, 2019, 224, 1241-1251.	7.3	13
17	"Any news?―Special issue in honor of Marcus Feldman's 75th birthday. Theoretical Population Biology, 2019, 129, 1-3.	1.1	1
18	Testing the socioeconomic and environmental determinants of better child-health outcomes in Africa: a cross-sectional study among nations. BMJ Open, 2019, 9, e029968.	1.9	11

SARAH OTTO

#	Article	IF	CITATIONS
19	A sheep in wolf's clothing: levels of deceit and detection in the evolution of cue-mimicry. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20191425.	2.6	2
20	National contributions to global ecosystem values. Conservation Biology, 2019, 33, 1219-1223.	4.7	9
21	Some topics in theoretical population genetics: Editorial commentaries on a selection of Marc Feldman's TPB papers. Theoretical Population Biology, 2019, 129, 4-8.	1.1	1
22	Macroevolutionary Patterns of Flowering Plant Speciation and Extinction. Annual Review of Plant Biology, 2018, 69, 685-706.	18.7	60
23	Keeping Pace with the Red Queen: Identifying the Genetic Basis of Susceptibility to Infectious Disease. Genetics, 2018, 208, 779-789.	2.9	29
24	Joint coevolutionary–epidemiological models dampen Red Queen cycles and alter conditions for epidemics. Theoretical Population Biology, 2018, 122, 137-148.	1.1	22
25	Evolution: Zeroing In on the Rate of Genome Doubling. Current Biology, 2018, 28, R320-R322.	3.9	1
26	Adaptation, speciation and extinction in the Anthropocene. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20182047.	2.6	121
27	The genome-wide rate and spectrum of spontaneous mutations differ between haploid and diploid yeast. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5046-E5055.	7.1	122
28	Haploid selection, sex ratio bias, and transitions between sex-determining systems. PLoS Biology, 2018, 16, e2005609.	5.6	31
29	The Evolutionary Consequences of Selection at the Haploid Gametic Stage. American Naturalist, 2018, 192, 241-249.	2.1	58
30	Macroevolutionary synthesis of flowering plant sexual systems. Evolution; International Journal of Organic Evolution, 2017, 71, 898-912.	2.3	68
31	When Predators Help Prey Adapt and Persist in a Changing Environment. American Naturalist, 2017, 190, 83-98.	2.1	52
32	Asymmetric competition impacts evolutionary rescue in a changing environment. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170374.	2.6	12
33	Evolution of movement rate increases the effectiveness of marine reserves for the conservation of pelagic fishes. Evolutionary Applications, 2017, 10, 444-461.	3.1	29
34	Fixation Probability in a Haploid-Diploid Population. Genetics, 2017, 205, 421-440.	2.9	6
35	Haploid Selection Favors Suppressed Recombination Between Sex Chromosomes Despite Causing Biased Sex Ratios. Genetics, 2017, 207, 1631-1649.	2.9	20
36	Widespread Genetic Incompatibilities between First-Step Mutations during Parallel Adaptation of Saccharomyces cerevisiae to a Common Environment. PLoS Biology, 2017, 15, e1002591.	5.6	72

#	Article	IF	CITATIONS
37	Evolution of sex: Using experimental genomics to select among competing theories. BioEssays, 2016, 38, 751-757.	2.5	31
38	Costs of reproduction can explain the correlated evolution of semelparity and egg size: theory and a test with salmon. Ecology Letters, 2016, 19, 687-696.	6.4	19
39	Dioecy does not consistently accelerate or slow lineage diversification across multiple genera of angiosperms. New Phytologist, 2016, 209, 1290-1300.	7.3	37
40	Probing the Depths of Biological Diversity During the Second Century of GENETICS. Genetics, 2016, 204, 395-400.	2.9	1
41	Phylogenetic evidence for cladogenetic polyploidization in land plants. American Journal of Botany, 2016, 103, 1252-1258.	1.7	39
42	Multiple reproductive barriers separate recently diverged sunflower ecotypes. Evolution; International Journal of Organic Evolution, 2016, 70, 2322-2335.	2.3	53
43	Women in evolution – highlighting the changing face of evolutionary biology. Evolutionary Applications, 2016, 9, 3-16.	3.1	22
44	Adaptation to elevated CO2 in different biodiversity contexts. Nature Communications, 2016, 7, 12358.	12.8	33
45	Evolutionary dynamics of a quantitative trait in a finite asexual population. Theoretical Population Biology, 2016, 108, 75-88.	1.1	33
46	Canada at a crossroad: The imperative for realigning ocean policy with ocean science. Marine Policy, 2016, 63, 53-60.	3.2	28
47	Liking the good guys: amplifying local adaptation via the evolution of conditionâ€dependent mate choice. Journal of Evolutionary Biology, 2015, 28, 1804-1815.	1.7	15
48	Evolution of haploid selection in predominantly diploid organisms. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15952-15957.	7.1	45
49	The evolution of sex chromosomes in organisms with separate haploid sexes. Evolution; International Journal of Organic Evolution, 2015, 69, 694-708.	2.3	37
50	Methods for studying polyploid diversification and the dead end hypothesis: a reply to Soltis <i>etÂal</i> . (2014). New Phytologist, 2015, 206, 27-35.	7.3	82
51	Too Much of a Good Thing: The Unique and Repeated Paths Toward Copper Adaptation. Genetics, 2015, 199, 555-571.	2.9	43
52	Y Fuse? Sex Chromosome Fusions in Fishes and Reptiles. PLoS Genetics, 2015, 11, e1005237.	3.5	109
53	Fitness-valley crossing with generalized parent–offspring transmission. Theoretical Population Biology, 2015, 105, 1-16.	1.1	0
54	Sex Determination: Why So Many Ways of Doing It?. PLoS Biology, 2014, 12, e1001899.	5.6	916

#	Article	IF	CITATIONS
55	Driven Apart: The Evolution of Ploidy Differences between the Sexes under Antagonistic Selection. American Naturalist, 2014, 183, 96-107.	2.1	5
56	Specialization and generalization in the diversification of phytophagous insects: tests of the musical chairs and oscillation hypotheses. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20132960.	2.6	157
57	Selective maintenance of recombination between the sex chromosomes. Journal of Evolutionary Biology, 2014, 27, 1431-1442.	1.7	23
58	The Evolution of Offspring Size across Life-History Stages. American Naturalist, 2014, 184, 543-555.	2.1	27
59	Evolutionary Rescue in Structured Populations. American Naturalist, 2014, 183, E17-E35.	2.1	90
60	EVOLUTIONARILY STABLE SEX RATIOS AND MUTATION LOAD. Evolution; International Journal of Organic Evolution, 2013, 67, 1915-1925.	2.3	19
61	The magnitude of local adaptation under genotypeâ€dependent dispersal. Ecology and Evolution, 2013, 3, 4722-4735.	1.9	80
62	Gene-culture co-evolution: teaching, learning, and correlations between relatives. Israel Journal of Ecology and Evolution, 2013, 59, 72-91.	0.6	11
63	Sexual selection enables long-term coexistence despite ecological equivalence. Nature, 2012, 484, 506-509.	27.8	85
64	Parallel Genetic Changes and Nonparallel Gene–Environment Interactions Characterize the Evolution of Drug Resistance in Yeast. Genetics, 2012, 192, 241-252.	2.9	55
65	Gene Functional Trade-Offs and the Evolution of Pleiotropy. Genetics, 2012, 192, 1389-1409.	2.9	64
66	Linking the Investigations of Character Evolution and Species Diversification. American Naturalist, 2012, 180, 225-245.	2.1	92
67	PLOIDALLY ANTAGONISTIC SELECTION MAINTAINS STABLE GENETIC POLYMORPHISM. Evolution; International Journal of Organic Evolution, 2012, 66, 55-65.	2.3	39
68	DIFFERENTIAL SELECTION BETWEEN THE SEXES AND SELECTION FOR SEX. Evolution; International Journal of Organic Evolution, 2012, 66, 558-574.	2.3	21
69	FUNCTIONAL PLEIOTROPY AND MATING SYSTEM EVOLUTION IN PLANTS: FREQUENCY-INDEPENDENT MATING. Evolution; International Journal of Organic Evolution, 2012, 66, 957-972.	2.3	14
70	THE MAINTENANCE OF OBLIGATE SEX IN FINITE, STRUCTURED POPULATIONS SUBJECT TO RECURRENT BENEFICIAL AND DELETERIOUS MUTATION. Evolution; International Journal of Organic Evolution, 2012, 66, 3658-3669.	2.3	12
71	The red queen coupled with directional selection favours the evolution of sex. Journal of Evolutionary Biology, 2012, 25, 797-802.	1.7	22
72	Ploidy and the evolution of parasitism. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 2814-2822.	2.6	13

#	Article	IF	CITATIONS
73	Recently Formed Polyploid Plants Diversify at Lower Rates. Science, 2011, 333, 1257-1257.	12.6	424
74	Haploids adapt faster than diploids across a range of environments. Journal of Evolutionary Biology, 2011, 24, 531-540.	1.7	89
75	ESTABLISHMENT AND MAINTENANCE OF ADAPTIVE GENETIC DIVERGENCE UNDER MIGRATION, SELECTION, AND DRIFT. Evolution; International Journal of Organic Evolution, 2011, 65, 2123-2129.	2.3	203
76	RECOMBINATION AND HITCHHIKING OF DELETERIOUS ALLELES. Evolution; International Journal of Organic Evolution, 2011, 65, 2421-2434.	2.3	86
77	LOSS OF SEXUAL RECOMBINATION AND SEGREGATION IS ASSOCIATED WITH INCREASED DIVERSIFICATION IN EVENING PRIMROSES. Evolution; International Journal of Organic Evolution, 2011, 65, 3230-3240.	2.3	56
78	About PAR: The distinct evolutionary dynamics of the pseudoautosomal region. Trends in Genetics, 2011, 27, 358-367.	6.7	184
79	A Likelihood Method for Detecting Trait-Dependent Shifts in the Rate of Molecular Evolution. Molecular Biology and Evolution, 2011, 28, 759-770.	8.9	34
80	Cryptic Fitness Advantage: Diploids Invade Haploid Populations Despite Lacking Any Apparent Advantage as Measured by Standard Fitness Assays. PLoS ONE, 2011, 6, e26599.	2.5	50
81	The Evolution of Sex Ratio Adjustment in the Presence of Sexually Antagonistic Selection. American Naturalist, 2010, 176, 264-275.	2.1	19
82	VARIATION IN THE STRENGTH OF MALE MATE CHOICE ALLOWS LONG-TERM COEXISTENCE OF SPERM-DEPENDENT ASEXUALS AND THEIR SEXUAL HOSTS. Evolution; International Journal of Organic Evolution, 2010, 64, no-no.	2.3	20
83	The Role of Advantageous Mutations in Enhancing the Evolution of a Recombination Modifier. Genetics, 2010, 184, 1153-1164.	2.9	42
84	Aging in a Long-Lived Clonal Tree. PLoS Biology, 2010, 8, e1000454.	5.6	101
85	Probabilistic Models of Chromosome Number Evolution and the Inference of Polyploidy. Systematic Biology, 2010, 59, 132-144.	5.6	190
86	The Evolutionary Enigma of Sex. American Naturalist, 2009, 174, S1-S14.	2.1	465
87	Estimating Trait-Dependent Speciation and Extinction Rates from Incompletely Resolved Phylogenies. Systematic Biology, 2009, 58, 595-611.	5.6	495
88	Conditionâ€Ðependent Sex and the Rate of Adaptation. American Naturalist, 2009, 174, S71-S78.	2.1	41
89	The role of epistasis on the evolution of recombination in host–parasite coevolution. Theoretical Population Biology, 2009, 75, 1-13.	1.1	23
90	Mutating away from your enemies: The evolution of mutation rate in a host–parasite system. Theoretical Population Biology, 2009, 75, 301-311.	1.1	33

#	Article	IF	CITATIONS
91	Genetic control of invasive plants species using selfish genetic elements. Evolutionary Applications, 2009, 2, 555-569.	3.1	19
92	The impact of epistatic selection on the genomic traces of selection. Molecular Ecology, 2009, 18, 4985-4987.	3.9	6
93	EVOLUTION BY FISHERIAN SEXUAL SELECTION IN DIPLOIDS. Evolution; International Journal of Organic Evolution, 2009, 63, 1076-1083.	2.3	12
94	Relaxed selection in the wild. Trends in Ecology and Evolution, 2009, 24, 487-496.	8.7	495
95	Ploidy and the Causes of Genomic Evolution. Journal of Heredity, 2009, 100, 571-581.	2.4	103
96	Adaptive epigenetic memory of ancestral temperature regime in <i>Arabidopsis thaliana</i> This paper is one of a selection of papers published in a Special Issue from the National Research Council of Canada – Plant Biotechnology Institute Botany, 2009, 87, 650-657.	1.0	202
97	When do host–parasite interactions drive the evolution of nonâ€random mating?. Ecology Letters, 2008, 11, 937-946.	6.4	31
98	Can clone size serve as a proxy for clone age?An exploration using microsatellite divergence in <i>Populus tremuloides</i> . Molecular Ecology, 2008, 17, 4897-4911.	3.9	93
99	The evolution of haploidy and diploidy. Current Biology, 2008, 18, R1121-R1124.	3.9	103
100	Ploidy reduction in <i>Saccharomyces cerevisiae</i> . Biology Letters, 2008, 4, 91-94.	2.3	57
101	Frequency-Dependent Selection and the Evolution of Assortative Mating. Genetics, 2008, 179, 2091-2112.	2.9	133
102	The Dynamic Nature of Apomixis in the Angiosperms. International Journal of Plant Sciences, 2008, 169, 169-182.	1.3	173
103	Contrasting Patterns of Transposable-Element Insertion Polymorphism and Nucleotide Diversity in Autotetraploid and Allotetraploid Arabidopsis Species. Genetics, 2008, 179, 581-592.	2.9	29
104	Estimating a Binary Character's Effect on Speciation and Extinction. Systematic Biology, 2007, 56, 701-710.	5.6	933
105	The Evolution of Condition-Dependent Sex in the Face of High Costs. Genetics, 2007, 176, 1713-1727.	2.9	60
106	The Role of Pleiotropy in the Maintenance of Sex in Yeast. Genetics, 2007, 175, 1419-1427.	2.9	20
107	Mitotic recombination counteracts the benefits of genetic segregation. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 1301-1307.	2.6	70
108	Unravelling the evolutionary advantage of sex: a commentary on â€~Mutation–selection balance and the evolutionary advantage of sex and recombination' by Brian Charlesworth. Genetical Research, 2007, 89, 447-449.	0.9	12

#	Article	IF	CITATIONS
109	The Evolution of Sex and Recombination in Response to Abiotic or Coevolutionary Fluctuations in Epistasis. Genetics, 2007, 175, 1835-1853.	2.9	96
110	A short history of recombination in yeast. Trends in Ecology and Evolution, 2007, 22, 223-225.	8.7	14
111	The Evolutionary Consequences of Polyploidy. Cell, 2007, 131, 452-462.	28.9	950
112	Chapter 3: Deriving Classic Models in Ecology and Evolutionary Biology. , 2007, , 54-109.		0
113	Why have sex? The population genetics of sex and recombination. Biochemical Society Transactions, 2006, 34, 519-522.	3.4	87
114	A MODEL OF THE EVOLUTION OF DICHOGAMY INCORPORATING SEX-RATIO SELECTION, ANTHER-STIGMA INTERFERENCE, AND INBREEDING DEPRESSION. Evolution; International Journal of Organic Evolution, 2006, 60, 934-944.	2.3	25
115	Use of Ecotilling as an efficient SNP discovery tool to survey genetic variation in wild populations of Populus trichocarpa. Molecular Ecology, 2006, 15, 1367-1378.	3.9	140
116	Women editors: we need more female scientists. Nature, 2006, 441, 812-812.	27.8	1
117	Interference among deleterious mutations favours sex and recombination in finite populations. Nature, 2006, 443, 89-92.	27.8	328
118	Hostâ€Parasite Coevolution and Selection on Sex through the Effects of Segregation. American Naturalist, 2006, 168, 617-629.	2.1	30
119	The Role of Local Species Abundance in the Evolution of Pollinator Attraction in Flowering Plants. American Naturalist, 2006, 167, 67-80.	2.1	84
120	Genomic Convergence toward Diploidy in Saccharomyces cerevisiae. PLoS Genetics, 2006, 2, e145.	3.5	193
121	Selection for Recombination in Structured Populations. Genetics, 2006, 172, 593-609.	2.9	89
122	Effect of Varying Epistasis on the Evolution of Recombination. Genetics, 2006, 173, 589-597.	2.9	48
123	The Distribution of Beneficial Mutant Effects Under Strong Selection. Genetics, 2006, 174, 2071-2079.	2.9	47
124	A MODEL OF THE EVOLUTION OF DICHOGAMY INCORPORATING SEX-RATIO SELECTION, ANTHER-STIGMA INTERFERENCE, AND INBREEDING DEPRESSION. Evolution; International Journal of Organic Evolution, 2006, 60, 934.	2.3	0
125	The first steps in adaptive evolution. Nature Genetics, 2005, 37, 342-343.	21.4	9
126	Sexual Selection Can Resolve Sex-Linked Sexual Antagonism. Science, 2005, 310, 119-121.	12.6	127

#	Article	IF	CITATIONS
127	The Evolution of Plastic Recombination. Genetics, 2005, 171, 803-812.	2.9	63
128	Evolution of Recombination Due to Random Drift. Genetics, 2005, 169, 2353-2370.	2.9	169
129	Host–Parasite Interactions and the Evolution of Gene Expression. PLoS Biology, 2005, 3, e203.	5.6	33
130	Species Interactions and the Evolution of Sex. Science, 2004, 304, 1018-1020.	12.6	223
131	Two steps forward, one step back: the pleiotropic effects of favoured alleles. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 705-714.	2.6	177
132	Host-parasite interactions and the evolution of ploidy. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 11036-11039.	7.1	73
133	Liberating genetic variance through sex. BioEssays, 2003, 25, 533-537.	2.5	18
134	Phylogenetic analysis of the ecological correlates of dioecy in angiosperms. Journal of Evolutionary Biology, 2003, 16, 1006-1018.	1.7	163
135	THE EVOLUTION OF GENOMIC BASE COMPOSITION IN BACTERIA. Evolution; International Journal of Organic Evolution, 2003, 57, 1783-1792.	2.3	25
136	In polyploids, one plus one does not equal two. Trends in Ecology and Evolution, 2003, 18, 431-433.	8.7	25
137	THE EVOLUTION OF GENOMIC BASE COMPOSITION IN BACTERIA. Evolution; International Journal of Organic Evolution, 2003, 57, 1783.	2.3	8
138	The Advantages of Segregation and the Evolution of Sex. Genetics, 2003, 164, 1099-1118.	2.9	74
139	Segregation and the Evolution of Sex Under Overdominant Selection. Genetics, 2003, 164, 1119-1128.	2.9	19
140	Evidence That Plant-Like Genes in Chlamydia Species Reflect an Ancestral Relationship between Chlamydiaceae, Cyanobacteria, and the Chloroplast. Genome Research, 2002, 12, 1159-1167.	5.5	114
141	When looks can kill: the evolution of sexually dimorphic floral display and the extinction of dioecious plants. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 1187-1194.	2.6	89
142	16 The evolution of gene duplicates. Advances in Genetics, 2002, 46, 451-483.	1.8	131
143	Genomes and evolution Population genetics and molecular evolution of whole genomes. Current Opinion in Genetics and Development, 2002, 12, 631-633.	3.3	1
144	Evolving beyond point mutations. Trends in Ecology and Evolution, 2002, 17, 110.	8.7	1

SARAH OTTO

#	Article	IF	CITATIONS
145	Resolving the paradox of sex and recombination. Nature Reviews Genetics, 2002, 3, 252-261.	16.3	679
146	Eliminating the cost of sex with sexual selection. Trends in Ecology and Evolution, 2001, 16, 602.	8.7	1
147	Masking and purging mutations following EMS treatment in haploid, diploid and tetraploid yeast (Saccharomyces cerevisiae). Genetical Research, 2001, 77, 9-26.	0.9	80
148	SELECTION FOR RECOMBINATION IN SMALL POPULATIONS. Evolution; International Journal of Organic Evolution, 2001, 55, 1921-1931.	2.3	208
149	SELECTION FOR RECOMBINATION IN SMALL POPULATIONS. Evolution; International Journal of Organic Evolution, 2001, 55, 1921.	2.3	62
150	THE CONSEQUENCES OF DIOECY FOR SEED DISPERSAL: MODELING THE SEED-SHADOW HANDICAP. Evolution; International Journal of Organic Evolution, 2001, 55, 880.	2.3	101
151	THE CONSEQUENCES OF DIOECY FOR SEED DISPERSAL: MODELING THE SEED-SHADOW HANDICAP. Evolution; International Journal of Organic Evolution, 2001, 55, 880-888.	2.3	11
152	EVOLUTION: Haploids-Hapless or Happening?. Science, 2001, 292, 2441-2443.	12.6	40
153	COMPENSATING FOR OUR LOAD OF MUTATIONS: FREEZING THE MELTDOWN OF SMALL POPULATIONS. Evolution; International Journal of Organic Evolution, 2000, 54, 1467-1479.	2.3	165
154	Detecting the form of selection from DNA sequence data. Trends in Genetics, 2000, 16, 526-529.	6.7	96
155	POLYPLOID INCIDENCE AND EVOLUTION. Annual Review of Genetics, 2000, 34, 401-437.	7.6	2,008
156	COMPENSATING FOR OUR LOAD OF MUTATIONS: FREEZING THE MELTDOWN OF SMALL POPULATIONS. Evolution; International Journal of Organic Evolution, 2000, 54, 1467.	2.3	49
157	The Evolution of Recombination in a Heterogeneous Environment. Genetics, 2000, 156, 423-438.	2.9	170
158	Detecting the Undetected: Estimating the Total Number of Loci Underlying a Quantitative Trait. Genetics, 2000, 156, 2093-2107.	2.9	144
159	Balanced Polymorphisms and the Evolution of Dominance. American Naturalist, 1999, 153, 561-574.	2.1	88
160	The panda and the phage: compensatory mutations and the persistence of small populations. Trends in Ecology and Evolution, 1999, 14, 295-296.	8.7	25
161	Ecology and the Evolution of Biphasic Life Cycles. American Naturalist, 1999, 154, 306-320.	2.1	132
162	Genes and Other Samples of DNA Sequence Data for Phylogenetic Inference. Biological Bulletin, 1999, 196, 345-350.	1.8	14

#	Article	IF	CITATIONS
163	Mutation and selection within the individual. Genetica, 1998, 102/103, 507-524.	1.1	90
164	The evolution of life cycles with haploid and diploid phases. BioEssays, 1998, 20, 453-462.	2.5	178
165	The evolution of recombination in changing environments. Trends in Ecology and Evolution, 1998, 13, 145-151.	8.7	174
166	Waiting with and without Recombination: The Time to Production of a Double Mutant. Theoretical Population Biology, 1998, 53, 199-215.	1.1	57
167	Deleterious Mutations, Variable Epistatic Interactions, and the Evolution of Recombination. Theoretical Population Biology, 1997, 51, 134-147.	1.1	175
168	Unravelling gene interactions. Nature, 1997, 390, 343-343.	27.8	16
169	The Probability of Fixation in Populations of Changing Size. Genetics, 1997, 146, 723-733.	2.9	293
170	The Evolution of Recombination: Removing the Limits to Natural Selection. Genetics, 1997, 147, 879-906.	2.9	248
171	POPULATION GENETIC PERSPECTIVES ON THE EVOLUTION OF RECOMBINATION. Annual Review of Genetics, 1996, 30, 261-295.	7.6	157
172	Mating systems and the evolutionary transition between haploidy and diploidy. Biological Journal of the Linnean Society, 1996, 57, 197-218.	1.6	62
173	Mating systems and the evolutionary transition between haploidy and diploidy. Biological Journal of the Linnean Society, 1996, 57, 197-218.	1.6	5
174	On the evolution of recombination in haploids and diploids: II. Stochastic models. Complexity, 1995, 1, 49-57.	1.6	6
175	On the evolution of recombination in haploids and diploids: I. Deterministic models. Complexity, 1995, 1, 57-67.	1.6	9
176	Some Advantages and Disadvantages of Recombination. Lecture Notes in Biomathematics, 1994, , 198-211.	0.3	9
177	Evolution of Sex Determination in the Conchostracan Shrimp Eulimnadia texana. American Naturalist, 1993, 141, 329-337.	2.1	61
178	ON GENETIC SEGREGATION AND THE EVOLUTION OF SEX. Evolution; International Journal of Organic Evolution, 1992, 46, 775-782.	2.3	4
179	On Genetic Segregation and the Evolution of Sex. Evolution; International Journal of Organic Evolution, 1992, 46, 775.	2.3	6
180	On Evolution Under Sexual and Viability Selection: A Two-Locus Diploid Model. Evolution; International Journal of Organic Evolution, 1991, 45, 1443.	2.3	9

#	Article	IF	CITATIONS
181	ON EVOLUTION UNDER SEXUAL AND VIABILITY SELECTION: A TWO‣OCUS DIPLOID MODEL. Evolution; International Journal of Organic Evolution, 1991, 45, 1443-1457.	2.3	27
182	A Comparative Approach to the Population-Genetics Theory of Segregation Distortion. American Naturalist, 1991, 137, 443-456.	2.1	28
183	Two-locus autosomal sex determination: on the evolutionary genetic stability of the even sex ratio Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 2013-2017.	7.1	8
184	More on recombination and selection in the modifier theory of sex-ratio distortion. Theoretical Population Biology, 1989, 35, 207-225.	1.1	13