
Xing Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8636910/publications.pdf Version: 2024-02-01

VINC SHEN

#	Article	IF	CITATIONS
1	Solvent-free mechanochemical synthesis of Na-rich Prussian white cathodes for high-performance Na-ion batteries. Chemical Engineering Journal, 2022, 428, 131083.	12.7	33
2	Regulated Synthesis of α-NaVOPO ₄ with an Enhanced Conductive Network as a High-Performance Cathode for Aqueous Na-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 6841-6851.	8.0	12
3	Large Scale One-Pot Synthesis of Monodispersed Na ₃ (VOPO ₄) ₂ F Cathode for Na-Ion Batteries. Energy Material Advances, 2022, 2022, .	11.0	16
4	Rapid and solvent-free mechanochemical synthesis of Na iron hexacyanoferrate for high-performance Na-ion batteries. Materials Today Energy, 2022, 27, 101027.	4.7	1
5	A Novel NASICONâ€Typed Na ₄ VMn _{0.5} Fe _{0.5} (PO ₄) ₃ Cathode for Highâ€Performance Naâ€ion Batteries. Advanced Energy Materials, 2021, 11, 2100729.	19.5	108
6	Rapid mechanochemical synthesis of polyanionic cathode with improved electrochemical performance for Na-ion batteries. Nature Communications, 2021, 12, 2848.	12.8	108
7	O3-NaFe _(1/3–<i>x</i>) Ni _{1/3} Mn _{1/3} Al <i>_x</i> O ₂ Cathodes with Improved Air Stability for Na-Ion Batteries. ACS Applied Materials & amp; Interfaces, 2021, 13, 33015-33023.	lb> 8.0	31
8	Recycling Cathodes from Spent Lithium-Ion Batteries Based on the Selective Extraction of Lithium. ACS Sustainable Chemistry and Engineering, 2021, 9, 10196-10204.	6.7	23
9	One-Step Synthesis of Carbon-Coated Na3(VOPO4)2F Using Biomass as a Reducing Agent and Their Electrochemical Properties. Waste and Biomass Valorization, 2020, 11, 2201-2209.	3.4	7
10	Stable Discrete Pt ₁ (0) in Crown Ether with Ultraâ€High Hydrosilylation Activity. ChemCatChem, 2020, 12, 267-272.	3.7	8
11	Selective recovery of Li and FePO4 from spent LiFePO4 cathode scraps by organic acids and the properties of the regenerated LiFePO4. Waste Management, 2020, 113, 32-40.	7.4	98
12	Controlled Synthesis of Na ₃ (VOPO ₄) ₂ F Cathodes with an Ultralong Cycling Performance. ACS Applied Energy Materials, 2019, 2, 7474-7482.	5.1	31
13	Building aqueous K-ion batteries for energy storage. Nature Energy, 2019, 4, 495-503.	39.5	630