Nadya Shusharina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8636885/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Deep learning-based GTV contouring modeling inter- and intra- observer variability in sarcomas. Radiotherapy and Oncology, 2022, 167, 269-276.	0.6	9
2	Feasibility study of clinical target volume definition for soft-tissue sarcoma using muscle fiber orientations derived from diffusion tensor imaging. Physics in Medicine and Biology, 2022, 67, 155013.	3.0	2
3	Cross-Modality Brain Structures Image Segmentation for the Radiotherapy Target Definition and Plan Optimization. Lecture Notes in Computer Science, 2021, , 3-15.	1.3	6
4	Probabilistic definition of the clinical target volume—implications for tumor control probability modeling and optimization. Physics in Medicine and Biology, 2021, 66, 01NT01.	3.0	5
5	Accounting for uncertainties in the position of anatomical barriers used to define the clinical target volume. Physics in Medicine and Biology, 2021, 66, 15NT01.	3.0	1
6	The role of computational methods for automating and improving clinical target volume definition. Radiotherapy and Oncology, 2020, 153, 15-25.	0.6	31
7	Automated delineation of the clinical target volume using anatomically constrained 3D expansion of the gross tumor volume. Radiotherapy and Oncology, 2020, 146, 37-43.	0.6	31
8	Perspectives on the model-based approach to proton therapy trials: A retrospective study of a lung cancer randomized trial. Radiotherapy and Oncology, 2020, 147, 8-14.	0.6	7
9	Impact of aeration change and beam arrangement on the robustness of proton plans. Journal of Applied Clinical Medical Physics, 2019, 20, 14-21.	1.9	13
10	Differences in lung injury after IMRT or proton therapy assessed by 18FDG PET imaging. Radiotherapy and Oncology, 2018, 128, 147-153.	0.6	17
11	The clinical target distribution: a probabilistic alternative to the clinical target volume. Physics in Medicine and Biology, 2018, 63, 155001.	3.0	20
12	Vision 20/20: Perspectives on automated image segmentation for radiotherapy. Medical Physics, 2014, 41, 050902.	3.0	262
13	Correlation of 18F-FDG Avid Volumes on Pre–Radiation Therapy and Post–Radiation Therapy FDG PET Scans inÂRecurrent Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2014, 89, 137-144.	0.8	22
14	In Reply to Saraiya etÂal. International Journal of Radiation Oncology Biology Physics, 2014, 90, 969-970.	0.8	1
15	Analytic Regularization of Uniform Cubic B-spline Deformation Fields. Lecture Notes in Computer Science, 2012, 15, 122-129	1.3	7