Yangbing Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8636884/publications.pdf Version: 2024-02-01

YANGRING 7HAO

#	Article	IF	CITATIONS
1	CRISPR-engineered T cells in patients with refractory cancer. Science, 2020, 367, .	12.6	872
2	Mesothelin-Specific Chimeric Antigen Receptor mRNA-Engineered T Cells Induce Antitumor Activity in Solid Malignancies. Cancer Immunology Research, 2014, 2, 112-120.	3.4	711
3	Multiplex Genome Editing to Generate Universal CAR T Cells Resistant to PD1 Inhibition. Clinical Cancer Research, 2017, 23, 2255-2266.	7.0	694
4	Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells. Nature, 2018, 558, 307-312.	27.8	574
5	T Cells Expressing Chimeric Antigen Receptors Can Cause Anaphylaxis in Humans. Cancer Immunology Research, 2013, 1, 26-31.	3.4	489
6	Affinity-Tuned ErbB2 or EGFR Chimeric Antigen Receptor T Cells Exhibit an Increased Therapeutic Index against Tumors in Mice. Cancer Research, 2015, 75, 3596-3607.	0.9	426
7	A Chimeric Switch-Receptor Targeting PD1 Augments the Efficacy of Second-Generation CAR T Cells in Advanced Solid Tumors. Cancer Research, 2016, 76, 1578-1590.	0.9	411
8	Dominant-Negative TGF-Î ² Receptor Enhances PSMA-Targeted Human CAR T Cell Proliferation And Augments Prostate Cancer Eradication. Molecular Therapy, 2018, 26, 1855-1866.	8.2	406
9	Enhanced Antitumor Activity of Murine-Human Hybrid T-Cell Receptor (TCR) in Human Lymphocytes Is Associated with Improved Pairing and TCR/CD3 Stability. Cancer Research, 2006, 66, 8878-8886.	0.9	394
10	Multiple Injections of Electroporated Autologous T Cells Expressing a Chimeric Antigen Receptor Mediate Regression of Human Disseminated Tumor. Cancer Research, 2010, 70, 9053-9061.	0.9	388
11	Single and Dual Amino Acid Substitutions in TCR CDRs Can Enhance Antigen-Specific T Cell Functions. Journal of Immunology, 2008, 180, 6116-6131.	0.8	319
12	Augmentation of Antitumor Immunity by Human and Mouse CAR T Cells Secreting IL-18. Cell Reports, 2017, 20, 3025-3033.	6.4	319
13	A versatile system for rapid multiplex genome-edited CAR T cell generation. Oncotarget, 2017, 8, 17002-17011.	1.8	319
14	Safety and Efficacy of Intratumoral Injections of Chimeric Antigen Receptor (CAR) T Cells in Metastatic Breast Cancer. Cancer Immunology Research, 2017, 5, 1152-1161.	3.4	309
15	High-Efficiency Transfection of Primary Human and Mouse T Lymphocytes Using RNA Electroporation. Molecular Therapy, 2006, 13, 151-159.	8.2	260
16	A Herceptin-Based Chimeric Antigen Receptor with Modified Signaling Domains Leads to Enhanced Survival of Transduced T Lymphocytes and Antitumor Activity. Journal of Immunology, 2009, 183, 5563-5574.	0.8	258
17	Identification of Chimeric Antigen Receptors That Mediate Constitutive or Inducible Proliferation of T Cells. Cancer Immunology Research, 2015, 3, 356-367.	3.4	247
18	Adoptive Immunotherapy for Cancer or Viruses. Annual Review of Immunology, 2014, 32, 189-225.	21.8	240

YANGBING ZHAO

#	Article	IF	CITATIONS
19	Gene therapy using genetically modified lymphocytes targeting VEGFR-2 inhibits the growth of vascularized syngenic tumors in mice. Journal of Clinical Investigation, 2010, 120, 3953-3968.	8.2	199
20	Treatment of Advanced Leukemia in Mice with mRNA Engineered T Cells. Human Gene Therapy, 2011, 22, 1575-1586.	2.7	191
21	High-Affinity TCRs Generated by Phage Display Provide CD4+ T Cells with the Ability to Recognize and Kill Tumor Cell Lines. Journal of Immunology, 2007, 179, 5845-5854.	0.8	186
22	Primary Human Lymphocytes Transduced with NY-ESO-1 Antigen-Specific TCR Genes Recognize and Kill Diverse Human Tumor Cell Lines. Journal of Immunology, 2005, 174, 4415-4423.	0.8	175
23	T cells expressing chimeric antigen receptors can cause anaphylaxis in humans. Cancer Immunology Research, 2013, 1, 26-31.	3.4	125
24	Recognition of Fresh Human Tumor by Human Peripheral Blood Lymphocytes Transduced with a Bicistronic Retroviral Vector Encoding a Murine Anti-p53 TCR. Journal of Immunology, 2005, 175, 5799-5808.	0.8	121
25	Blockade of Programmed Death 1 Augments the Ability of Human T Cells Engineered to Target NY-ESO-1 to Control Tumor Growth after Adoptive Transfer. Clinical Cancer Research, 2016, 22, 436-447.	7.0	107
26	Engineered T cells for cancer therapy. Cancer Immunology, Immunotherapy, 2014, 63, 969-975.	4.2	105
27	Regimen-Specific Effects of RNA-Modified Chimeric Antigen Receptor T Cells in Mice with Advanced Leukemia. Human Gene Therapy, 2013, 24, 717-727.	2.7	97
28	Relation of clinical culture method to T-cell memory status and efficacy in xenograft models of adoptive immunotherapy. Cytotherapy, 2014, 16, 619-630.	0.7	90
29	Extrathymic Generation of Tumor-Specific T Cells from Genetically Engineered Human Hematopoietic Stem Cells via Notch Signaling. Cancer Research, 2007, 67, 2425-2429.	0.9	87
30	Advancing chimeric antigen receptor T cell therapy with CRISPR/Cas9. Protein and Cell, 2017, 8, 634-643.	11.0	81
31	Recognition of NY-ESO-1+ tumor cells by engineered lymphocytes is enhanced by improved vector design and epigenetic modulation of tumor antigen expression. Cancer Immunology, Immunotherapy, 2009, 58, 383-394.	4.2	80
32	Lentiviral Vector Design for Optimal T Cell Receptor Gene Expression in the Transduction of Peripheral Blood Lymphocytes and Tumor-Infiltrating Lymphocytes. Human Gene Therapy, 2009, 20, 630-640.	2.7	70
33	A High Molecular Weight Melanoma-Associated Antigen–Specific Chimeric Antigen Receptor Redirects Lymphocytes to Target Human Melanomas. Cancer Research, 2010, 70, 3027-3033.	0.9	70
34	Increasing the safety and efficacy of chimeric antigen receptor T cell therapy. Protein and Cell, 2017, 8, 573-589.	11.0	67
35	Nature of Tumor Control by Permanently and Transiently Modified GD2 Chimeric Antigen Receptor T Cells in Xenograft Models of Neuroblastoma. Cancer Immunology Research, 2014, 2, 1059-1070.	3.4	62
36	CCR5-edited CD4+ T cells augment HIV-specific immunity to enable post-rebound control of HIV replication. Journal of Clinical Investigation, 2021, 131, .	8.2	52

YANGBING ZHAO

#	Article	IF	CITATIONS
37	TCR affinity and specificity requirements for human regulatory T-cell function. Blood, 2012, 119, 3420-3430.	1.4	49
38	iGUIDE: an improved pipeline for analyzing CRISPR cleavage specificity. Genome Biology, 2019, 20, 14.	8.8	45
39	Rigorous optimization and validation of potent RNA CAR T cell therapy for the treatment of common epithelial cancers expressing folate receptor. Oncotarget, 2015, 6, 28911-28928.	1.8	45
40	CRISPR/Cas9 genome editing: Fueling the revolution in cancer immunotherapy. Current Research in Translational Medicine, 2018, 66, 39-42.	1.8	43
41	Inhibition of invariant chain expression in dendritic cells presenting endogenous antigens stimulates CD4+ T-cell responses and tumor immunity. Blood, 2003, 102, 4137-4142.	1.4	33
42	Transduction of an HLA-DP4–restricted NY-ESO-1–specific TCR into Primary Human CD4+ Lymphocytes. Journal of Immunotherapy, 2006, 29, 398-406.	2.4	26
43	Enhanced Function of Redirected Human T Cells Expressing Linker for Activation of T Cells That Is Resistant to Ubiquitylation. Human Gene Therapy, 2013, 24, 27-37.	2.7	18
44	Novel T cells with improved in vivo anti-tumor activity generated by RNA electroporation. Protein and Cell, 2017, 8, 514-526.	11.0	16
45	Development of a genetically-modified novel T-cell receptor for adoptive cell transfer against renal cell carcinoma. Journal of Immunological Methods, 2011, 366, 43-51.	1.4	14
46	Mutant presenilin-1 deregulated peripheral immunity exacerbates Alzheimer-like pathology. Journal of Cellular and Molecular Medicine, 2011, 15, 327-338.	3.6	12
47	Multiplex Cripsr/Cas9 Genome Editing to Generate Potent Universal CART and PD1-Deficient Cells Against Leukemia. Blood, 2015, 126, 4280-4280.	1.4	12
48	First-in-Human Assessment of Feasibility and Safety of Multiplexed Genetic Engineering of Autologous T Cells Expressing NY-ESO -1 TCR and CRISPR/Cas9 Gene Edited to Eliminate Endogenous TCR and PD-1 (NYCE T cells) in Advanced Multiple Myeloma (MM) and Sarcoma. Blood, 2019, 134, 49-49.	1.4	10
49	DONOR-TYPE CHIMERISM DETERMINATION BY COMPETITIVE POLYMERASE CHAIN REACTION (PCR) IN A PRIMATE MODEL FOR BONE MARROW TRANSPLANTATION1. Transplantation, 1999, 68, 1573-1577.	1.0	4
50	Distinct Signaling By Chimeric Antigen Receptors (CARs) Containing CD28 Signaling Domain Versus 4-1BB In Primary Human T Cells. Blood, 2013, 122, 2902-2902.	1.4	3
51	Improved Anti-Leukemia Activities of Adoptively Transferred T Cells Expressing Bites. Blood, 2015, 126, 4431-4431.	1.4	2
52	Construction and Pre-Clinical Evaluation of An Anti-CD19 Chimeric Antigen Receptor. Blood, 2008, 112, 4623-4623.	1.4	1
53	454. Recognition of Tumor Antigens by In Vitro Developed T Cells from Hematopoietic Stem Cells Retrovirally Transduced with TCR Genes. Molecular Therapy, 2006, 13, S175.	8.2	0