
Nuno M Neves

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8636796/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microfluidic mixing system for precise PLGA-PEG nanoparticles size control. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 40, 102482.	3.3	17
2	Precision biomaterials in cancer theranostics and modelling. Biomaterials, 2022, 280, 121299.	11.4	26
3	Microfluidic-assisted electrospinning, an alternative to coaxial, as a controlled dual drug release system to treat inflammatory arthritic diseases. Materials Science and Engineering C, 2022, 134, 112585.	7.3	6
4	Study of the immunologic response of marine-derived collagen and gelatin extracts for tissue engineering applications. Acta Biomaterialia, 2022, 141, 123-131.	8.3	27
5	Sulfated Seaweed Polysaccharides. , 2022, , 307-340.		1
6	Stimulation of Neurite Outgrowth Using Autologous NGF Bound at the Surface of a Fibrous Substrate. Biomolecules, 2022, 12, 25.	4.0	4
7	Development of alginate-based hydrogels for blood vessel engineering. Materials Science and Engineering C, 2022, 134, 112588.	7.3	15
8	Erythrocyte-derived liposomes for the treatment of inflammatory diseases. Journal of Drug Targeting, 2022, 30, 873-883.	4.4	2
9	Microfluidic-driven mixing of high molecular weight polymeric complexes for precise nanoparticle downsizing. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 43, 102560.	3.3	6
10	Metronidazole Delivery Nanosystem Able To Reduce the Pathogenicity of Bacteria in Colorectal Infection. Biomacromolecules, 2022, 23, 2415-2427.	5.4	3
11	Biomimetic Surface Topography from the <i>Rubus fruticosus</i> Leaf as a Guidance of Angiogenesis in Tissue Engineering Applications. ACS Biomaterials Science and Engineering, 2022, 8, 2943-2953.	5.2	4
12	Biomedical Applications of Fibers Produced by Electrospinning, Microfluidic Spinning and Combinations of Both. , 2022, , 251-295.		1
13	Particulate kidney extracellular matrix: bioactivity and proteomic analysis of a novel scaffold from porcine origin. Biomaterials Science, 2021, 9, 186-198.	5.4	11
14	Biofunctionalized Liposomes to Monitor Rheumatoid Arthritis Regression Stimulated by Interleukinâ€⊋3 Neutralization. Advanced Healthcare Materials, 2021, 10, e2001570.	7.6	21
15	Retinoic Acid Benefits Glomerular Organotypic Differentiation from Adult Renal Progenitor Cells In Vitro. Stem Cell Reviews and Reports, 2021, 17, 1406-1419.	3.8	2
16	Antibacterial activity testing methods for hydrophobic patterned surfaces. Scientific Reports, 2021, 11, 6675.	3.3	26
17	Bottom-Up Development of Nanoimprinted PLLA Composite Films with Enhanced Antibacterial Properties for Smart Packaging Applications. Macromol, 2021, 1, 49-63.	4.4	18
18	Modulating inflammation through the neutralization of Interleukin-6 and tumor necrosis factor-α by biofunctionalized nanoparticles. Journal of Controlled Release, 2021, 331, 491-502.	9.9	9

#	Article	IF	CITATIONS
19	Fucoidan/chitosan nanoparticles functionalized with anti-ErbB-2 target breast cancer cells and impair tumor growth in vivo. International Journal of Pharmaceutics, 2021, 600, 120548.	5.2	15
20	A New Chalcone Derivative with Promising Antiproliferative and Anti-Invasion Activities in Glioblastoma Cells. Molecules, 2021, 26, 3383.	3.8	13
21	Glutathione Reductase-Sensitive Polymeric Micelles for Controlled Drug Delivery on Arthritic Diseases. ACS Biomaterials Science and Engineering, 2021, 7, 3229-3241.	5.2	17
22	New Vascular Graft Using the Decellularized Human Chorion Membrane. ACS Biomaterials Science and Engineering, 2021, 7, 3423-3433.	5.2	8
23	Renal Regeneration: The Role of Extracellular Matrix and Current ECMâ€Based Tissue Engineered Strategies. Advanced Healthcare Materials, 2021, 10, e2100160.	7.6	24
24	Recapitulation of Thymic Function by Tissue Engineering Strategies. Advanced Healthcare Materials, 2021, 10, 2100773.	7.6	5
25	Angiogenic potential of airbrushed fucoidan/polycaprolactone nanofibrous meshes. International Journal of Biological Macromolecules, 2021, 183, 695-706.	7.5	6
26	Tumorâ€Associated Protrusion Fluctuations as a Signature of Cancer Invasiveness. Advanced Biology, 2021, 5, e2101019.	2.5	11
27	Decellularized kidney extracellular matrix bioinks recapitulate renal 3D microenvironment in vitro. Biofabrication, 2021, 13, 045006.	7.1	24
28	Cellular Uptake of Three Different Nanoparticles in an Inflammatory Arthritis Scenario versus Normal Conditions. Molecular Pharmaceutics, 2021, 18, 3235-3246.	4.6	9
29	Fishroesomes as carriers with antioxidant and anti-inflammatory bioactivities. Biomedicine and Pharmacotherapy, 2021, 140, 111680.	5.6	8
30	Biomimetic and cell-based nanocarriers – New strategies for brain tumor targeting. Journal of Controlled Release, 2021, 337, 482-493.	9.9	27
31	Fabrication of biomimetic patterned PCL membranes mimicking the complexity of Rubus fruticosus leaves surface. Colloids and Surfaces B: Biointerfaces, 2021, 206, 111910.	5.0	9
32	Arteriovenous access in hemodialysis: A multidisciplinary perspective for future solutions. International Journal of Artificial Organs, 2021, 44, 3-16.	1.4	19
33	RESTORE Survey on the Public Perception of Advanced Therapies and ATMPs in Europe—Why the European Union Should Invest More!. Frontiers in Medicine, 2021, 8, 739987.	2.6	7
34	Impact of surface topography on the bacterial attachment to micro- and nano-patterned polymer films. Surfaces and Interfaces, 2021, 27, 101494.	3.0	18
35	A biocompatible and injectable hydrogel to boost the efficacy of stem cells in neurodegenerative diseases treatment. Life Sciences, 2021, 287, 120108.	4.3	8
36	Chondrogenic differentiation induced by extracellular vesicles bound to a nanofibrous substrate. Npj Regenerative Medicine, 2021, 6, 79.	5.2	12

#	Article	IF	CITATIONS
37	Phospholipidâ€induced silk fibroin hydrogels and their potential as cell carriers for tissue regeneration. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 160-172.	2.7	23
38	Sardine Roe as a Source of Lipids To Produce Liposomes. ACS Biomaterials Science and Engineering, 2020, 6, 1017-1029.	5.2	9
39	Growing evidence supporting the use of mesenchymal stem cell therapies in multiple sclerosis: A systematic review. Multiple Sclerosis and Related Disorders, 2020, 38, 101860.	2.0	13
40	Method to decellularize the human chorion membrane. Methods in Cell Biology, 2020, 157, 23-35.	1.1	2
41	Dual-functional liposomes for curcumin delivery and accelerating silk fibroin hydrogel formation. International Journal of Pharmaceutics, 2020, 589, 119844.	5.2	21
42	Tubular Fibrous Scaffolds Functionalized with Tropoelastin as a Small-Diameter Vascular Graft. Biomacromolecules, 2020, 21, 3582-3595.	5.4	17
43	Antioxidant and Anti-Inflammatory Activities of Cytocompatible Salvia officinalis Extracts: A Comparison between Traditional and Soxhlet Extraction. Antioxidants, 2020, 9, 1157.	5.1	27
44	Fibronectin-Functionalized Fibrous Meshes as a Substrate to Support Cultures of Thymic Epithelial Cells. Biomacromolecules, 2020, 21, 4771-4780.	5.4	11
45	Decellularized Human Chorion Membrane as a Novel Biomaterial for Tissue Regeneration. Biomolecules, 2020, 10, 1208.	4.0	23
46	Coâ€cultures of renal progenitors and endothelial cells on kidney decellularized matrices replicate the renal tubular environment in vitro. Acta Physiologica, 2020, 230, e13491.	3.8	11
47	Fucoidan Immobilized at the Surface of a Fibrous Mesh Presents Toxic Effects over Melanoma Cells, But Not over Noncancer Skin Cells. Biomacromolecules, 2020, 21, 2745-2754.	5.4	13
48	Surface biofunctionalization to improve the efficacy of biomaterial substrates to be used in regenerative medicine. Materials Horizons, 2020, 7, 2258-2275.	12.2	17
49	A review on fucoidan antitumor strategies: From a biological active agent to a structural component of fucoidan-based systems. Carbohydrate Polymers, 2020, 239, 116131.	10.2	77
50	Exploring the Gelation Mechanisms and Cytocompatibility of Gold (III)-Mediated Regenerated and Thiolated Silk Fibroin Hydrogels. Biomolecules, 2020, 10, 466.	4.0	8
51	Spatial immobilization of endogenous growth factors to control vascularization in bone tissue engineering. Biomaterials Science, 2020, 8, 2577-2589.	5.4	38
52	Yicathins B and C and Analogues: Total Synthesis, Lipophilicity and Biological Activities. ChemMedChem, 2020, 15, 749-755.	3.2	12
53	Biofunctional nanostructured systems for regenerative medicine. Nanomedicine, 2020, 15, 1545-1549.	3.3	3
54	Electrospun colourimetric sensors for detecting volatile amines. Sensors and Actuators B: Chemical, 2020, 322, 128570.	7.8	23

#	Article	IF	CITATIONS
55	Fibronectin Bound to a Fibrous Substrate Has Chondrogenic Induction Properties. Biomacromolecules, 2020, 21, 1368-1378.	5.4	10
56	In Vivo Evaluation of the Biocompatibility of Biomaterial Device. Advances in Experimental Medicine and Biology, 2020, 1250, 109-124.	1.6	11
57	Application of Gellan Gum-Based Scaffold for Regenerative Medicine. Advances in Experimental Medicine and Biology, 2020, 1249, 15-37.	1.6	3
58	Bone Regeneration Using Duck's Feet-Derived Collagen Scaffold as an Alternative Collagen Source. Advances in Experimental Medicine and Biology, 2020, 1250, 3-13.	1.6	1
59	Fucoidan from Fucus vesiculosus inhibits new blood vessel formation and breast tumor growth in vivo. Carbohydrate Polymers, 2019, 223, 115034.	10.2	51
60	Chondrogenesis-inductive nanofibrous substrate using both biological fluids and mesenchymal stem cells from an autologous source. Materials Science and Engineering C, 2019, 98, 1169-1178.	7.3	18
61	Biodegradable polymers: an update on drug delivery in bone and cartilage diseases. Expert Opinion on Drug Delivery, 2019, 16, 795-813.	5.0	32
62	Extracellular matrix electrospun membranes for mimicking natural renal filtration barriers. Materials Science and Engineering C, 2019, 103, 109866.	7.3	30
63	Biofunctional Nanofibrous Substrate for Local TNF-Capturing as a Strategy to Control Inflammation in Arthritic Joints. Nanomaterials, 2019, 9, 567.	4.1	9
64	Influence of PDLA nanoparticles size on drug release and interaction with cells. Journal of Biomedical Materials Research - Part A, 2019, 107, 482-493.	4.0	12
65	Micro/Nano Scaffolds for Osteochondral Tissue Engineering. Advances in Experimental Medicine and Biology, 2018, 1058, 125-139.	1.6	11
66	Fish sarcoplasmic proteins as a high value marine material for wound dressing applications. Colloids and Surfaces B: Biointerfaces, 2018, 167, 310-317.	5.0	12
67	Interleukin-6 Neutralization by Antibodies Immobilized at the Surface of Polymeric Nanoparticles as a Therapeutic Strategy for Arthritic Diseases. ACS Applied Materials & Interfaces, 2018, 10, 13839-13850.	8.0	35
68	The Use of Electrospinning Technique on Osteochondral Tissue Engineering. Advances in Experimental Medicine and Biology, 2018, 1058, 247-263.	1.6	19
69	Development of non-orthogonal 3D-printed scaffolds to enhance their osteogenic performance. Biomaterials Science, 2018, 6, 1569-1579.	5.4	23
70	The functionalization of natural polymer-coated gold nanoparticles to carry bFGF to promote tissue regeneration. Journal of Materials Chemistry B, 2018, 6, 2104-2115.	5.8	10
71	P3 UNDERSTANDING THE ENDOTHELIAL – SMOOTH MUSCLE – FIBROBLASTIC CELLS INTERACTIONS ON A TISSUE-ENGINEERED VASCULAR GRAFT. Artery Research, 2018, 24, 80.	0.6	0
72	The Role of Natural-Based Biomaterials in Advanced Therapies for Autoimmune Diseases. Advances in Experimental Medicine and Biology, 2018, 1077, 127-146.	1.6	2

#	Article	lF	CITATIONS
73	Gemcitabine delivered by fucoidan/chitosan nanoparticles presents increased toxicity over human breast cancer cells. Nanomedicine, 2018, 13, 2037-2050.	3.3	47
74	Calcium sequestration by fungal melanin inhibits calcium–calmodulin signalling to prevent LC3-associated phagocytosis. Nature Microbiology, 2018, 3, 791-803.	13.3	66
75	<i>In vitro</i> chondrogenic commitment of human Wharton's jelly stem cells by co-culture with human articular chondrocytes. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1876-1887.	2.7	11
76	Chondroitin sulfate immobilization at the surface of electrospun nanofiber meshes for cartilage tissue regeneration approaches. Applied Surface Science, 2017, 403, 112-125.	6.1	39
77	The Key Role of Sulfation and Branching on Fucoidan Antitumor Activity. Macromolecular Bioscience, 2017, 17, 1600340.	4.1	76
78	Electrospun Nanofibrous Meshes Cultured With Wharton's Jelly Stem Cell: An Alternative for Cartilage Regeneration, Without the Need of Growth Factors. Biotechnology Journal, 2017, 12, 1700073.	3.5	16
79	Selfâ€Assembled Hydrogel Fiber Bundles from Oppositely Charged Polyelectrolytes Mimic Micro…Nanoscale Hierarchy of Collagen. Advanced Functional Materials, 2017, 27, 1606273.	14.9	61
80	Engineering Enriched Microenvironments with Gradients of Platelet Lysate in Hydrogel Fibers. Biomacromolecules, 2016, 17, 1985-1997.	5.4	18
81	Reinforcement of poly-l-lactic acid electrospun membranes with strontium borosilicate bioactive glasses for bone tissue engineering. Acta Biomaterialia, 2016, 44, 168-177.	8.3	53
82	Dual release of a hydrophilic and a hydrophobic osteogenic factor from a single liposome. RSC Advances, 2016, 6, 114599-114612.	3.6	6
83	Advanced polymer composites and structures for bone and cartilage tissue engineering. , 2016, , 123-142.		2
84	Intrinsic Antibacterial Borosilicate Glasses for Bone Tissue Engineering Applications. ACS Biomaterials Science and Engineering, 2016, 2, 1143-1150.	5.2	26
85	Extracellular Vesicles Derived from Osteogenically Induced Human Bone Marrow Mesenchymal Stem Cells Can Modulate Lineage Commitment. Stem Cell Reports, 2016, 6, 284-291.	4.8	81
86	On the use of dexamethasone-loaded liposomes to induce the osteogenic differentiation of human mesenchymal stem cells. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 1056-1066.	2.7	33
87	Hierarchical scaffolds enhance osteogenic differentiation of human Wharton's jelly derived stem cells. Biofabrication, 2015, 7, 035009.	7.1	17
88	Depth (Z-axis) control of cell morphologies on micropatterned surfaces. Journal of Bioactive and Compatible Polymers, 2015, 30, 555-567.	2.1	2
89	Antibacterial activity of chitosan nanofiber meshes with liposomes immobilized releasing gentamicin. Acta Biomaterialia, 2015, 18, 196-205.	8.3	154
90	Nanoparticle-based bioactive agent release systems for bone and cartilage tissue engineering. Regenerative Therapy, 2015, 1, 109-118.	3.0	50

#	Article	IF	CITATIONS
91	Osteogenic differentiation of human mesenchymal stem cells in the absence of osteogenic supplements: A surface-roughness gradient study. Acta Biomaterialia, 2015, 28, 64-75.	8.3	124
92	Regulation of Human Mesenchymal Stem Cell Osteogenesis by Specific Surface Density of Fibronectin: a Gradient Study. ACS Applied Materials & Interfaces, 2015, 7, 2367-2375.	8.0	37
93	Conditioned medium as a strategy for human stem cells chondrogenic differentiation. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 714-723.	2.7	34
94	Size Also Matters in Biodegradable Composite Microfiber Reinforced by Chitosan Nanofibers. Materials Research Society Symposia Proceedings, 2014, 1621, 59-69.	0.1	1
95	Bottom-up approach to construct microfabricated multi-layer scaffolds for bone tissue engineering. Biomedical Microdevices, 2014, 16, 69-78.	2.8	17
96	Immobilization of bioactive factor-loaded liposomes on the surface of electrospun nanofibers targeting tissue engineering. Biomaterials Science, 2014, 2, 1195-1209.	5.4	54
97	Liposomes in tissue engineering and regenerative medicine. Journal of the Royal Society Interface, 2014, 11, 20140459.	3.4	269
98	Biofunctional Nanofibrous Substrate Comprising Immobilized Antibodies and Selective Binding of Autologous Growth Factors. Biomacromolecules, 2014, 15, 2196-2205.	5.4	33
99	Instructive Nanofibrous Scaffold Comprising Runt-Related Transcription Factor 2 Gene Delivery for Bone Tissue Engineering. ACS Nano, 2014, 8, 8082-8094.	14.6	81
100	Hyaluronic acid/poly- <scp>l</scp> -lysine bilayered silica nanoparticles enhance the osteogenic differentiation of human mesenchymal stem cells. Journal of Materials Chemistry B, 2014, 2, 6939-6946.	5.8	41
101	In vitro degradation and in vivo biocompatibility of chitosan–poly(butylene succinate) fiber mesh scaffolds. Journal of Bioactive and Compatible Polymers, 2014, 29, 137-151.	2.1	79
102	Influence of scaffold composition over inÂvitro osteogenic differentiation of hBMSCs and inÂvivo inflammatory response. Journal of Biomaterials Applications, 2014, 28, 1430-1442.	2.4	8
103	Differential regulation of osteogenic differentiation of stem cells on surface roughness gradients. Biomaterials, 2014, 35, 9023-9032.	11.4	226
104	Automating the Processing Steps for Obtaining Bone Tissue-Engineered Substitutes: From Imaging Tools to Bioreactors. Tissue Engineering - Part B: Reviews, 2014, 20, 567-577.	4.8	15
105	Unveiling the effects of the secretome of mesenchymal progenitors from the umbilical cord in different neuronal cell populations. Biochimie, 2013, 95, 2297-2303.	2.6	40
106	Tissue Engineering and Regenerative Medicine. International Review of Neurobiology, 2013, 108, 1-33.	2.0	107
107	An automated two-phase system for hydrogel microbead production. Biofabrication, 2012, 4, 035003.	7.1	11
108	Microfabricated photocrosslinkable polyelectrolyte-complex of chitosan and methacrylated gellan gum. Journal of Materials Chemistry, 2012, 22, 17262.	6.7	44

#	Article	IF	CITATIONS
109	The secretome of stem cells isolated from the adipose tissue and Wharton jelly acts differently on central nervous system derived cell populations. Stem Cell Research and Therapy, 2012, 3, 18.	5.5	111
110	Osteogenic differentiation of two distinct subpopulations of human adipose-derived stem cells: an in vitro and in vivo study. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6, 1-11.	2.7	58
111	Chitosan-poly(butylene succinate) scaffolds and human bone marrow stromal cells induce bone repair in a mouse calvaria model. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6, 21-28.	2.7	66
112	Synergistic effect of scaffold composition and dynamic culturing environment in multilayered systems for bone tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6, e24-e30.	2.7	17
113	Development of micropatterned surfaces of poly(butylene succinate) by micromolding for guided tissue engineering. Acta Biomaterialia, 2012, 8, 1490-1497.	8.3	29
114	Processing ulvan into 2D structures: Cross-linked ulvan membranes as new biomaterials for drug delivery applications. International Journal of Pharmaceutics, 2012, 426, 76-81.	5.2	80
115	Gradual pore formation in natural origin scaffolds throughout subcutaneous implantation. Journal of Biomedical Materials Research - Part A, 2012, 100A, 599-612.	4.0	17
116	Endothelial Differentiation of Human Stem Cells Seeded onto Electrospun Polyhydroxybutyrate/Polyhydroxybutyrate-Co-Hydroxyvalerate Fiber Mesh. PLoS ONE, 2012, 7, e35422.	2.5	73
117	Design of Nano- and Microfiber Combined Scaffolds by Electrospinning of Collagen onto Starch-Based Fiber Meshes: A Man-Made Equivalent of Natural Extracellular Matrix. Tissue Engineering - Part A, 2011, 17, 463-473.	3.1	55
118	Natural Origin Materials for Bone Tissue Engineering – Properties, Processing, and Performance. , 2011, , 557-586.		7
119	Scaffolds Based Bone Tissue Engineering: The Role of Chitosan. Tissue Engineering - Part B: Reviews, 2011, 17, 331-347.	4.8	285
120	Micro- and Nanotechnology in Tissue Engineering. , 2011, , 3-29.		7
121	In vivo biodistribution of carboxymethylchitosan/poly(amidoamine) dendrimer nanoparticles in rats. Journal of Bioactive and Compatible Polymers, 2011, 26, 619-627.	2.1	19
122	Novel Melt-Processable Chitosan–Polybutylene Succinate Fibre Scaffolds for Cartilage Tissue Engineering. Journal of Biomaterials Science, Polymer Edition, 2011, 22, 773-788.	3.5	29
123	Human Bone Marrow Mesenchymal Stem Cells: A Systematic Reappraisal Via the Genostem Experience. Stem Cell Reviews and Reports, 2011, 7, 32-42.	5.6	69
124	Optimized electro- and wet-spinning techniques for the production of polymeric fibrous scaffolds loaded with bisphosphonate and hydroxyapatite. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, 253-263.	2.7	77
125	Chondrogenic differentiation of human bone marrow mesenchymal stem cells in chitosan-based scaffolds using a flow-perfusion bioreactor. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, 722-732.	2.7	78
126	The Influence of Patterned Nanofiber Meshes on Human Mesenchymal Stem Cell Osteogenesis. Macromolecular Bioscience, 2011, 11, 978-987.	4.1	46

#	Article	IF	CITATIONS
105	Performance of biodegradable microcapsules of poly(butylene succinate), poly(butylene) Tj ETQq1 1 0.784314 rg		
127	Colloids and Surfaces B: Biointerfaces, 2011, 84, 498-507.	5.0	36
128	Improvement of electrospun polymer fiber meshes pore size by femtosecond laser irradiation. Applied Surface Science, 2011, 257, 4091-4095.	6.1	27
129	Development of new chitosan/carrageenan nanoparticles for drug delivery applications. Journal of Biomedical Materials Research - Part A, 2010, 92A, 1265-1272.	4.0	150
130	Gellan gum: A new biomaterial for cartilage tissue engineering applications. Journal of Biomedical Materials Research - Part A, 2010, 93A, 852-863.	4.0	185
131	Modified Gellan Gum hydrogels with tunable physical and mechanical properties. Biomaterials, 2010, 31, 7494-7502.	11.4	342
132	Carboxymethylchitosan/Poly(amidoamine) Dendrimer Nanoparticles in Central Nervous Systemsâ€Regenerative Medicine: Effects on Neuron/Glial Cell Viability and Internalization Efficiency. Macromolecular Bioscience, 2010, 10, 1130-1140.	4.1	25
133	Melt Processing of Chitosanâ€Based Fibers and Fiberâ€Mesh Scaffolds for the Engineering of Connective Tissues. Macromolecular Bioscience, 2010, 10, 1495-1504.	4.1	18
134	Osteogenic induction of hBMSCs by electrospun scaffolds with dexamethasone release functionality. Biomaterials, 2010, 31, 5875-5885.	11.4	160
135	Chitosan/polyester-based scaffolds for cartilage tissue engineering: Assessment of extracellular matrix formation. Acta Biomaterialia, 2010, 6, 1149-1157.	8.3	118
136	Surface modification of a biodegradable composite by UV laser ablation: <i>in vitro</i> biological performance. Journal of Tissue Engineering and Regenerative Medicine, 2010, 4, n/a-n/a.	2.7	4
137	Impact of Biological Agents and Tissue Engineering Approaches on the Treatment of Rheumatic Diseases. Tissue Engineering - Part B: Reviews, 2010, 16, 331-339.	4.8	12
138	Dynamic Culture of Osteogenic Cells in Biomimetically Coated Poly(Caprolactone) Nanofibre Mesh Constructs. Tissue Engineering - Part A, 2010, 16, 557-563.	3.1	23
139	Development and Characterization of a Novel Hybrid Tissue Engineering–Based Scaffold for Spinal Cord Injury Repair. Tissue Engineering - Part A, 2010, 16, 45-54.	3.1	103
140	Cartilage Tissue Engineering Using Electrospun PCL Nanofiber Meshes and MSCs. Biomacromolecules, 2010, 11, 3228-3236.	5.4	155
141	Gellan Gum Injectable Hydrogels for Cartilage Tissue Engineering Applications: <i>In Vitro</i> Studies and Preliminary <i>In Vivo</i> Evaluation. Tissue Engineering - Part A, 2010, 16, 343-353.	3.1	142
142	High nonlinear optical anisotropy of urea nanofibers. Europhysics Letters, 2010, 91, 28007.	2.0	15
143	Role of Human Umbilical Cord Mesenchymal Progenitors Conditioned Media in Neuronal/Glial Cell Densities, Viability, and Proliferation. Stem Cells and Development, 2010, 19, 1067-1074.	2.1	39
144	Solving cell infiltration limitations of electrospun nanofiber meshes for tissue engineering applications. Nanomedicine, 2010, 5, 539-554.	3.3	71

#	Article	IF	CITATIONS
145	Biodegradable Nanofibers-Reinforced Microfibrous Composite Scaffolds for Bone Tissue Engineering. Tissue Engineering - Part A, 2010, 16, 3599-3609.	3.1	42
146	Synthesis of polymer-based triglycine sulfate nanofibres by electrospinning. Journal Physics D: Applied Physics, 2009, 42, 205403.	2.8	3
147	Meltâ€based compressionâ€molded scaffolds from chitosan–polyester blends and composites: Morphology and mechanical properties. Journal of Biomedical Materials Research - Part A, 2009, 91A, 489-504.	4.0	89
148	Hierarchical starch-based fibrous scaffold for bone tissue engineering applications. Journal of Tissue Engineering and Regenerative Medicine, 2009, 3, 37-42.	2.7	191
149	Performance of new gellan gum hydrogels combined with human articular chondrocytes for cartilage regeneration when subcutaneously implanted in nude mice. Journal of Tissue Engineering and Regenerative Medicine, 2009, 3, 493-500.	2.7	60
150	Surface Modification of Electrospun Polycaprolactone Nanofiber Meshes by Plasma Treatment to Enhance Biological Performance. Small, 2009, 5, 1195-1206.	10.0	244
151	Degradable particulate composite reinforced with nanofibres for biomedical applications. Acta Biomaterialia, 2009, 5, 1104-1114.	8.3	43
152	Evaluation of Extracellular Matrix Formation in Polycaprolactone and Starch-Compounded Polycaprolactone Nanofiber Meshes When Seeded with Bovine Articular Chondrocytes. Tissue Engineering - Part A, 2009, 15, 377-385.	3.1	60
153	Expression, purification and osteogenic bioactivity of recombinant human BMP-4, -9, -10, -11 and -14. Protein Expression and Purification, 2009, 63, 89-94.	1.3	34
154	Effects of Starch/ Polycaprolactone-based Blends for Spinal Cord Injury Regeneration in Neurons/Clial Cells Viability and Proliferation. Journal of Bioactive and Compatible Polymers, 2009, 24, 235-248.	2.1	17
155	Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells Seeded on Melt Based Chitosan Scaffolds for Bone Tissue Engineering Applications. Biomacromolecules, 2009, 10, 2067-2073.	5.4	120
156	The Effect of Chitosan on the In Vitro Biological Performance of Chitosanâ^'Poly(butylene succinate) Blends. Biomacromolecules, 2008, 9, 1139-1145.	5.4	54
157	Assessment of the Suitability of Chitosan/PolyButylene Succinate Scaffolds Seeded with Mouse Mesenchymal Progenitor Cells for a Cartilage Tissue Engineering Approach. Tissue Engineering - Part A, 2008, 14, 1651-1661.	3.1	48
158	Surface controlled biomimetic coating of polycaprolactone nanofiber meshes to be used as bone extracellular matrix analogues. Journal of Biomaterials Science, Polymer Edition, 2008, 19, 1261-1278.	3.5	91
159	Electrospinning: processing technique for tissue engineering scaffolding. International Materials Reviews, 2008, 53, 257-274.	19.3	147
160	Hydrogels for spinal cord injury regeneration. , 2008, , 570-594.		3
161	Processing of starch-based blends for biomedical applications. , 2008, , 85-105.		1
162	Adhesion, Proliferation, and Osteogenic Differentiation of a Mouse Mesenchymal Stem Cell Line (BMC9) Seeded on Novel Melt-Based Chitosan/Polyester 3D Porous Scaffolds. Tissue Engineering - Part A, 2008, 14, 1049-1057.	3.1	70

#	Article	IF	CITATIONS
163	Phenotypic and functional characterisation of ovine mesenchymal stem cells: application to a cartilage defect model. Annals of the Rheumatic Diseases, 2007, 67, 288-295.	0.9	99
164	Tissue engineering using natural polymers. , 2007, , 197-217.		6
165	Biodegradable Nanomats Produced by Electrospinning: Expanding Multifunctionality and Potential for Tissue Engineering. Journal of Nanoscience and Nanotechnology, 2007, 7, 862-882.	0.9	71
166	Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. Journal of the Royal Society Interface, 2007, 4, 999-1030.	3.4	969
167	Electrospun nanostructured scaffolds for tissue engineering applications. Nanomedicine, 2007, 2, 929-942.	3.3	173
168	Water Absorption and Degradation Characteristics of Chitosan-Based Polyesters and Hydroxyapatite Composites. Macromolecular Bioscience, 2007, 7, 354-363.	4.1	97
169	Patterning of polymer nanofiber meshes by electrospinning for biomedical applications. International Journal of Nanomedicine, 2007, 2, 433-48.	6.7	49
170	Properties of melt processed chitosan and aliphatic polyester blends. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 403, 57-68.	5.6	224
171	Structure/mechanical behavior relationships in crossed-lamellar sea shells. Materials Science and Engineering C, 2005, 25, 113-118.	7.3	64
172	Entrapment ability and release profile of corticosteroids from starch-based microparticles. Journal of Biomedical Materials Research - Part A, 2005, 73A, 234-243.	4.0	33
173	Hydroxyapatite Reinforced Chitosan and Polyester Blends for Biomedical Applications. Macromolecular Materials and Engineering, 2005, 290, 1157-1165.	3.6	63
174	The morphology, mechanical properties and ageing behavior of porous injection molded starch-based blends for tissue engineering scaffolding. Materials Science and Engineering C, 2005, 25, 195-200.	7.3	61
175	Soluble starch and composite starch Bioactive Glass 45S5 particles: Synthesis, bioactivity, and interaction with rat bone marrow cells. Materials Science and Engineering C, 2005, 25, 237-246.	7.3	24
176	Microparticulate Release Systems Based on Natural Origin Materials. Advances in Experimental Medicine and Biology, 2004, 553, 283-300.	1.6	6
177	Fibers and 3D Mesh Scaffolds from Biodegradable Starch-Based Blends: Production and Characterization. Macromolecular Bioscience, 2004, 4, 776-784.	4.1	50
178	Bioinert, biodegradable and injectable polymeric matrix composites for hard tissue replacement: state of the art and recent developments. Composites Science and Technology, 2004, 64, 789-817.	7.8	374
179	The role of the interaction coefficient in the prediction of the fiber orientation in planar injection moldings. Polymer Composites, 2003, 24, 358-366.	4.6	9
180	Experimental Validation of Morphology Simulation in Glass Fibre Reinforced Polycarbonate Discs. Journal of Reinforced Plastics and Composites, 2001, 20, 452-465.	3.1	2

#	Article	IF	CITATIONS
181	On the effect of the fiber orientation on the flexural stiffness of injection molded short fiber reinforced polycarbonate plates. Polymer Composites, 1998, 19, 640-651.	4.6	40
182	The use of birefringence for predicting the stiffness of injection molded polycarbonate discs. Polymer Engineering and Science, 1998, 38, 1770-1777.	3.1	16
183	Spatial Immobilization of Autologous Growth Factors to Control Vascularization in Bone Tissue Engineering. SSRN Electronic Journal, 0, , .	0.4	0
184	Quantifying protrusions as tumor-specific biophysical predictors of cancer invasion in in vitro tumor micro-spheroid models. In Vitro Models, 0, , .	2.0	0
185	Liposomal formulations for lung cancer treatment in the last two decades: a systematic review. Journal of Cancer Research and Clinical Oncology, 0, , .	2.5	2