Nuno M Neves

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8636796/publications.pdf

Version: 2024-02-01

185 papers 9,583 citations

52 h-index 92 g-index

203 all docs

203 docs citations

times ranked

203

12610 citing authors

#	Article	IF	CITATIONS
1	Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. Journal of the Royal Society Interface, 2007, 4, 999-1030.	3.4	969
2	Bioinert, biodegradable and injectable polymeric matrix composites for hard tissue replacement: state of the art and recent developments. Composites Science and Technology, 2004, 64, 789-817.	7.8	374
3	Modified Gellan Gum hydrogels with tunable physical and mechanical properties. Biomaterials, 2010, 31, 7494-7502.	11.4	342
4	Scaffolds Based Bone Tissue Engineering: The Role of Chitosan. Tissue Engineering - Part B: Reviews, 2011, 17, 331-347.	4.8	285
5	Liposomes in tissue engineering and regenerative medicine. Journal of the Royal Society Interface, 2014, 11, 20140459.	3.4	269
6	Surface Modification of Electrospun Polycaprolactone Nanofiber Meshes by Plasma Treatment to Enhance Biological Performance. Small, 2009, 5, 1195-1206.	10.0	244
7	Differential regulation of osteogenic differentiation of stem cells on surface roughness gradients. Biomaterials, 2014, 35, 9023-9032.	11.4	226
8	Properties of melt processed chitosan and aliphatic polyester blends. Materials Science & Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 403, 57-68.	5.6	224
9	Hierarchical starch-based fibrous scaffold for bone tissue engineering applications. Journal of Tissue Engineering and Regenerative Medicine, 2009, 3, 37-42.	2.7	191
10	Gellan gum: A new biomaterial for cartilage tissue engineering applications. Journal of Biomedical Materials Research - Part A, 2010, 93A, 852-863.	4.0	185
11	Electrospun nanostructured scaffolds for tissue engineering applications. Nanomedicine, 2007, 2, 929-942.	3.3	173
12	Osteogenic induction of hBMSCs by electrospun scaffolds with dexamethasone release functionality. Biomaterials, 2010, 31, 5875-5885.	11.4	160
13	Cartilage Tissue Engineering Using Electrospun PCL Nanofiber Meshes and MSCs. Biomacromolecules, 2010, 11, 3228-3236.	5.4	155
14	Antibacterial activity of chitosan nanofiber meshes with liposomes immobilized releasing gentamicin. Acta Biomaterialia, 2015, 18, 196-205.	8.3	154
15	Development of new chitosan/carrageenan nanoparticles for drug delivery applications. Journal of Biomedical Materials Research - Part A, 2010, 92A, 1265-1272.	4.0	150
16	Electrospinning: processing technique for tissue engineering scaffolding. International Materials Reviews, 2008, 53, 257-274.	19.3	147
17	Gellan Gum Injectable Hydrogels for Cartilage Tissue Engineering Applications: <i>In Vitro</i> Studies and Preliminary <i>In Vivo</i> Evaluation. Tissue Engineering - Part A, 2010, 16, 343-353.	3.1	142
18	Osteogenic differentiation of human mesenchymal stem cells in the absence of osteogenic supplements: A surface-roughness gradient study. Acta Biomaterialia, 2015, 28, 64-75.	8.3	124

#	Article	IF	Citations
19	Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells Seeded on Melt Based Chitosan Scaffolds for Bone Tissue Engineering Applications. Biomacromolecules, 2009, 10, 2067-2073.	5.4	120
20	Chitosan/polyester-based scaffolds for cartilage tissue engineering: Assessment of extracellular matrix formation. Acta Biomaterialia, 2010, 6, 1149-1157.	8.3	118
21	The secretome of stem cells isolated from the adipose tissue and Wharton jelly acts differently on central nervous system derived cell populations. Stem Cell Research and Therapy, 2012, 3, 18.	5.5	111
22	Tissue Engineering and Regenerative Medicine. International Review of Neurobiology, 2013, 108, 1-33.	2.0	107
23	Development and Characterization of a Novel Hybrid Tissue Engineering–Based Scaffold for Spinal Cord Injury Repair. Tissue Engineering - Part A, 2010, 16, 45-54.	3.1	103
24	Phenotypic and functional characterisation of ovine mesenchymal stem cells: application to a cartilage defect model. Annals of the Rheumatic Diseases, 2007, 67, 288-295.	0.9	99
25	Water Absorption and Degradation Characteristics of Chitosan-Based Polyesters and Hydroxyapatite Composites. Macromolecular Bioscience, 2007, 7, 354-363.	4.1	97
26	Surface controlled biomimetic coating of polycaprolactone nanofiber meshes to be used as bone extracellular matrix analogues. Journal of Biomaterials Science, Polymer Edition, 2008, 19, 1261-1278.	3.5	91
27	Meltâ€based compressionâ€molded scaffolds from chitosan–polyester blends and composites: Morphology and mechanical properties. Journal of Biomedical Materials Research - Part A, 2009, 91A, 489-504.	4.0	89
28	Instructive Nanofibrous Scaffold Comprising Runt-Related Transcription Factor 2 Gene Delivery for Bone Tissue Engineering. ACS Nano, 2014, 8, 8082-8094.	14.6	81
29	Extracellular Vesicles Derived from Osteogenically Induced Human Bone Marrow Mesenchymal Stem Cells Can Modulate Lineage Commitment. Stem Cell Reports, 2016, 6, 284-291.	4.8	81
30	Processing ulvan into 2D structures: Cross-linked ulvan membranes as new biomaterials for drug delivery applications. International Journal of Pharmaceutics, 2012, 426, 76-81.	5.2	80
31	In vitro degradation and in vivo biocompatibility of chitosan–poly(butylene succinate) fiber mesh scaffolds. Journal of Bioactive and Compatible Polymers, 2014, 29, 137-151.	2.1	79
32	Chondrogenic differentiation of human bone marrow mesenchymal stem cells in chitosan-based scaffolds using a flow-perfusion bioreactor. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, 722-732.	2.7	78
33	Optimized electro- and wet-spinning techniques for the production of polymeric fibrous scaffolds loaded with bisphosphonate and hydroxyapatite. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, 253-263.	2.7	77
34	A review on fucoidan antitumor strategies: From a biological active agent to a structural component of fucoidan-based systems. Carbohydrate Polymers, 2020, 239, 116131.	10.2	77
35	The Key Role of Sulfation and Branching on Fucoidan Antitumor Activity. Macromolecular Bioscience, 2017, 17, 1600340.	4.1	76
36	Endothelial Differentiation of Human Stem Cells Seeded onto Electrospun Polyhydroxybutyrate/Polyhydroxybutyrate-Co-Hydroxyvalerate Fiber Mesh. PLoS ONE, 2012, 7, e35422.	2.5	73

#	Article	IF	Citations
37	Biodegradable Nanomats Produced by Electrospinning: Expanding Multifunctionality and Potential for Tissue Engineering. Journal of Nanoscience and Nanotechnology, 2007, 7, 862-882.	0.9	71
38	Solving cell infiltration limitations of electrospun nanofiber meshes for tissue engineering applications. Nanomedicine, 2010, 5, 539-554.	3.3	71
39	Adhesion, Proliferation, and Osteogenic Differentiation of a Mouse Mesenchymal Stem Cell Line (BMC9) Seeded on Novel Melt-Based Chitosan/Polyester 3D Porous Scaffolds. Tissue Engineering - Part A, 2008, 14, 1049-1057.	3.1	70
40	Human Bone Marrow Mesenchymal Stem Cells: A Systematic Reappraisal Via the Genostem Experience. Stem Cell Reviews and Reports, 2011, 7, 32-42.	5.6	69
41	Chitosan-poly(butylene succinate) scaffolds and human bone marrow stromal cells induce bone repair in a mouse calvaria model. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6, 21-28.	2.7	66
42	Calcium sequestration by fungal melanin inhibits calcium–calmodulin signalling to prevent LC3-associated phagocytosis. Nature Microbiology, 2018, 3, 791-803.	13.3	66
43	Structure/mechanical behavior relationships in crossed-lamellar sea shells. Materials Science and Engineering C, 2005, 25, 113-118.	7.3	64
44	Hydroxyapatite Reinforced Chitosan and Polyester Blends for Biomedical Applications. Macromolecular Materials and Engineering, 2005, 290, 1157-1165.	3.6	63
45	The morphology, mechanical properties and ageing behavior of porous injection molded starch-based blends for tissue engineering scaffolding. Materials Science and Engineering C, 2005, 25, 195-200.	7.3	61
46	Selfâ€Assembled Hydrogel Fiber Bundles from Oppositely Charged Polyelectrolytes Mimic Microâ€Nanoscale Hierarchy of Collagen. Advanced Functional Materials, 2017, 27, 1606273.	14.9	61
47	Performance of new gellan gum hydrogels combined with human articular chondrocytes for cartilage regeneration when subcutaneously implanted in nude mice. Journal of Tissue Engineering and Regenerative Medicine, 2009, 3, 493-500.	2.7	60
48	Evaluation of Extracellular Matrix Formation in Polycaprolactone and Starch-Compounded Polycaprolactone Nanofiber Meshes When Seeded with Bovine Articular Chondrocytes. Tissue Engineering - Part A, 2009, 15, 377-385.	3.1	60
49	Osteogenic differentiation of two distinct subpopulations of human adipose-derived stem cells: an in vitro and in vivo study. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6, 1-11.	2.7	58
50	Design of Nano- and Microfiber Combined Scaffolds by Electrospinning of Collagen onto Starch-Based Fiber Meshes: A Man-Made Equivalent of Natural Extracellular Matrix. Tissue Engineering - Part A, 2011, 17, 463-473.	3.1	55
51	The Effect of Chitosan on the In Vitro Biological Performance of Chitosanâ^'Poly(butylene succinate) Blends. Biomacromolecules, 2008, 9, 1139-1145.	5.4	54
52	Immobilization of bioactive factor-loaded liposomes on the surface of electrospun nanofibers targeting tissue engineering. Biomaterials Science, 2014, 2, 1195-1209.	5.4	54
53	Reinforcement of poly-l-lactic acid electrospun membranes with strontium borosilicate bioactive glasses for bone tissue engineering. Acta Biomaterialia, 2016, 44, 168-177.	8.3	53
54	Fucoidan from Fucus vesiculosus inhibits new blood vessel formation and breast tumor growth in vivo. Carbohydrate Polymers, 2019, 223, 115034.	10.2	51

#	Article	IF	CITATIONS
55	Fibers and 3D Mesh Scaffolds from Biodegradable Starch-Based Blends: Production and Characterization. Macromolecular Bioscience, 2004, 4, 776-784.	4.1	50
56	Nanoparticle-based bioactive agent release systems for bone and cartilage tissue engineering. Regenerative Therapy, 2015, 1, 109-118.	3.0	50
57	Patterning of polymer nanofiber meshes by electrospinning for biomedical applications. International Journal of Nanomedicine, 2007, 2, 433-48.	6.7	49
58	Assessment of the Suitability of Chitosan/PolyButylene Succinate Scaffolds Seeded with Mouse Mesenchymal Progenitor Cells for a Cartilage Tissue Engineering Approach. Tissue Engineering - Part A, 2008, 14, 1651-1661.	3.1	48
59	Gemcitabine delivered by fucoidan/chitosan nanoparticles presents increased toxicity over human breast cancer cells. Nanomedicine, 2018, 13, 2037-2050.	3.3	47
60	The Influence of Patterned Nanofiber Meshes on Human Mesenchymal Stem Cell Osteogenesis. Macromolecular Bioscience, 2011, 11, 978-987.	4.1	46
61	Microfabricated photocrosslinkable polyelectrolyte-complex of chitosan and methacrylated gellan gum. Journal of Materials Chemistry, 2012, 22, 17262.	6.7	44
62	Degradable particulate composite reinforced with nanofibres for biomedical applications. Acta Biomaterialia, 2009, 5, 1104-1114.	8.3	43
63	Biodegradable Nanofibers-Reinforced Microfibrous Composite Scaffolds for Bone Tissue Engineering. Tissue Engineering - Part A, 2010, 16, 3599-3609.	3.1	42
64	Hyaluronic acid/poly- <scp>l</scp> -lysine bilayered silica nanoparticles enhance the osteogenic differentiation of human mesenchymal stem cells. Journal of Materials Chemistry B, 2014, 2, 6939-6946.	5.8	41
65	On the effect of the fiber orientation on the flexural stiffness of injection molded short fiber reinforced polycarbonate plates. Polymer Composites, 1998, 19, 640-651.	4.6	40
66	Unveiling the effects of the secretome of mesenchymal progenitors from the umbilical cord in different neuronal cell populations. Biochimie, 2013, 95, 2297-2303.	2.6	40
67	Role of Human Umbilical Cord Mesenchymal Progenitors Conditioned Media in Neuronal/Glial Cell Densities, Viability, and Proliferation. Stem Cells and Development, 2010, 19, 1067-1074.	2.1	39
68	Chondroitin sulfate immobilization at the surface of electrospun nanofiber meshes for cartilage tissue regeneration approaches. Applied Surface Science, 2017, 403, 112-125.	6.1	39
69	Spatial immobilization of endogenous growth factors to control vascularization in bone tissue engineering. Biomaterials Science, 2020, 8, 2577-2589.	5.4	38
70	Regulation of Human Mesenchymal Stem Cell Osteogenesis by Specific Surface Density of Fibronectin: a Gradient Study. ACS Applied Materials & Samp; Interfaces, 2015, 7, 2367-2375.	8.0	37
71	Performance of biodegradable microcapsules of poly(butylene succinate), poly(butylene) Tj ETQq1 1 0.784314 Colloids and Surfaces B: Biointerfaces, 2011, 84, 498-507.	l rgBT /Over 5.0	lock 10 Tf 50 36
72	Interleukin-6 Neutralization by Antibodies Immobilized at the Surface of Polymeric Nanoparticles as a Therapeutic Strategy for Arthritic Diseases. ACS Applied Materials & Samp; Interfaces, 2018, 10, 13839-13850.	8.0	35

#	Article	IF	CITATIONS
73	Expression, purification and osteogenic bioactivity of recombinant human BMP-4, -9, -10, -11 and -14. Protein Expression and Purification, 2009, 63, 89-94.	1.3	34
74	Conditioned medium as a strategy for human stem cells chondrogenic differentiation. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 714-723.	2.7	34
75	Entrapment ability and release profile of corticosteroids from starch-based microparticles. Journal of Biomedical Materials Research - Part A, 2005, 73A, 234-243.	4.0	33
76	Biofunctional Nanofibrous Substrate Comprising Immobilized Antibodies and Selective Binding of Autologous Growth Factors. Biomacromolecules, 2014, 15, 2196-2205.	5.4	33
77	On the use of dexamethasone-loaded liposomes to induce the osteogenic differentiation of human mesenchymal stem cells. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 1056-1066.	2.7	33
78	Biodegradable polymers: an update on drug delivery in bone and cartilage diseases. Expert Opinion on Drug Delivery, 2019, 16, 795-813.	5.0	32
79	Extracellular matrix electrospun membranes for mimicking natural renal filtration barriers. Materials Science and Engineering C, 2019, 103, 109866.	7.3	30
80	Novel Melt-Processable Chitosan–Polybutylene Succinate Fibre Scaffolds for Cartilage Tissue Engineering. Journal of Biomaterials Science, Polymer Edition, 2011, 22, 773-788.	3.5	29
81	Development of micropatterned surfaces of poly(butylene succinate) by micromolding for guided tissue engineering. Acta Biomaterialia, 2012, 8, 1490-1497.	8.3	29
82	Improvement of electrospun polymer fiber meshes pore size by femtosecond laser irradiation. Applied Surface Science, 2011, 257, 4091-4095.	6.1	27
83	Antioxidant and Anti-Inflammatory Activities of Cytocompatible Salvia officinalis Extracts: A Comparison between Traditional and Soxhlet Extraction. Antioxidants, 2020, 9, 1157.	5.1	27
84	Biomimetic and cell-based nanocarriers $\hat{a}\in$ New strategies for brain tumor targeting. Journal of Controlled Release, 2021, 337, 482-493.	9.9	27
85	Study of the immunologic response of marine-derived collagen and gelatin extracts for tissue engineering applications. Acta Biomaterialia, 2022, 141, 123-131.	8.3	27
86	Intrinsic Antibacterial Borosilicate Glasses for Bone Tissue Engineering Applications. ACS Biomaterials Science and Engineering, 2016, 2, 1143-1150.	5.2	26
87	Antibacterial activity testing methods for hydrophobic patterned surfaces. Scientific Reports, 2021, 11, 6675.	3.3	26
88	Precision biomaterials in cancer theranostics and modelling. Biomaterials, 2022, 280, 121299.	11.4	26
89	Carboxymethylchitosan/Poly(amidoamine) Dendrimer Nanoparticles in Central Nervous Systemsâ€Regenerative Medicine: Effects on Neuron/Glial Cell Viability and Internalization Efficiency. Macromolecular Bioscience, 2010, 10, 1130-1140.	4.1	25
90	Soluble starch and composite starch Bioactive Glass 45S5 particles: Synthesis, bioactivity, and interaction with rat bone marrow cells. Materials Science and Engineering C, 2005, 25, 237-246.	7.3	24

#	Article	IF	CITATIONS
91	Renal Regeneration: The Role of Extracellular Matrix and Current ECMâ€Based Tissue Engineered Strategies. Advanced Healthcare Materials, 2021, 10, e2100160.	7.6	24
92	Decellularized kidney extracellular matrix bioinks recapitulate renal 3D microenvironment in vitro. Biofabrication, 2021, 13, 045006.	7.1	24
93	Dynamic Culture of Osteogenic Cells in Biomimetically Coated Poly(Caprolactone) Nanofibre Mesh Constructs. Tissue Engineering - Part A, 2010, 16, 557-563.	3.1	23
94	Development of non-orthogonal 3D-printed scaffolds to enhance their osteogenic performance. Biomaterials Science, 2018, 6, 1569-1579.	5.4	23
95	Phospholipidâ€induced silk fibroin hydrogels and their potential as cell carriers for tissue regeneration. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 160-172.	2.7	23
96	Decellularized Human Chorion Membrane as a Novel Biomaterial for Tissue Regeneration. Biomolecules, 2020, 10, 1208.	4.0	23
97	Electrospun colourimetric sensors for detecting volatile amines. Sensors and Actuators B: Chemical, 2020, 322, 128570.	7.8	23
98	Dual-functional liposomes for curcumin delivery and accelerating silk fibroin hydrogel formation. International Journal of Pharmaceutics, 2020, 589, 119844.	5.2	21
99	Biofunctionalized Liposomes to Monitor Rheumatoid Arthritis Regression Stimulated by Interleukinâ€23 Neutralization. Advanced Healthcare Materials, 2021, 10, e2001570.	7.6	21
100	In vivo biodistribution of carboxymethylchitosan/poly(amidoamine) dendrimer nanoparticles in rats. Journal of Bioactive and Compatible Polymers, 2011, 26, 619-627.	2.1	19
101	The Use of Electrospinning Technique on Osteochondral Tissue Engineering. Advances in Experimental Medicine and Biology, 2018, 1058, 247-263.	1.6	19
102	Arteriovenous access in hemodialysis: A multidisciplinary perspective for future solutions. International Journal of Artificial Organs, 2021, 44, 3-16.	1.4	19
103	Melt Processing of Chitosanâ€Based Fibers and Fiberâ€Mesh Scaffolds for the Engineering of Connective Tissues. Macromolecular Bioscience, 2010, 10, 1495-1504.	4.1	18
104	Engineering Enriched Microenvironments with Gradients of Platelet Lysate in Hydrogel Fibers. Biomacromolecules, 2016, 17, 1985-1997.	5.4	18
105	Chondrogenesis-inductive nanofibrous substrate using both biological fluids and mesenchymal stem cells from an autologous source. Materials Science and Engineering C, 2019, 98, 1169-1178.	7.3	18
106	Bottom-Up Development of Nanoimprinted PLLA Composite Films with Enhanced Antibacterial Properties for Smart Packaging Applications. Macromol, 2021, 1, 49-63.	4.4	18
107	Impact of surface topography on the bacterial attachment to micro- and nano-patterned polymer films. Surfaces and Interfaces, 2021, 27, 101494.	3.0	18
108	Effects of Starch/ Polycaprolactone-based Blends for Spinal Cord Injury Regeneration in Neurons/Glial Cells Viability and Proliferation. Journal of Bioactive and Compatible Polymers, 2009, 24, 235-248.	2.1	17

7

#	Article	IF	Citations
109	Synergistic effect of scaffold composition and dynamic culturing environment in multilayered systems for bone tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6, e24-e30.	2.7	17
110	Gradual pore formation in natural origin scaffolds throughout subcutaneous implantation. Journal of Biomedical Materials Research - Part A, 2012, 100A, 599-612.	4.0	17
111	Bottom-up approach to construct microfabricated multi-layer scaffolds for bone tissue engineering. Biomedical Microdevices, 2014, 16, 69-78.	2.8	17
112	Hierarchical scaffolds enhance osteogenic differentiation of human Wharton's jelly derived stem cells. Biofabrication, 2015, 7, 035009.	7.1	17
113	Tubular Fibrous Scaffolds Functionalized with Tropoelastin as a Small-Diameter Vascular Graft. Biomacromolecules, 2020, 21, 3582-3595.	5.4	17
114	Surface biofunctionalization to improve the efficacy of biomaterial substrates to be used in regenerative medicine. Materials Horizons, 2020, 7, 2258-2275.	12.2	17
115	Glutathione Reductase-Sensitive Polymeric Micelles for Controlled Drug Delivery on Arthritic Diseases. ACS Biomaterials Science and Engineering, 2021, 7, 3229-3241.	5.2	17
116	Microfluidic mixing system for precise PLGA-PEG nanoparticles size control. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 40, 102482.	3.3	17
117	The use of birefringence for predicting the stiffness of injection molded polycarbonate discs. Polymer Engineering and Science, 1998, 38, 1770-1777.	3.1	16
118	Electrospun Nanofibrous Meshes Cultured With Wharton's Jelly Stem Cell: An Alternative for Cartilage Regeneration, Without the Need of Growth Factors. Biotechnology Journal, 2017, 12, 1700073.	3.5	16
119	High nonlinear optical anisotropy of urea nanofibers. Europhysics Letters, 2010, 91, 28007.	2.0	15
120	Automating the Processing Steps for Obtaining Bone Tissue-Engineered Substitutes: From Imaging Tools to Bioreactors. Tissue Engineering - Part B: Reviews, 2014, 20, 567-577.	4.8	15
121	Fucoidan/chitosan nanoparticles functionalized with anti-ErbB-2 target breast cancer cells and impair tumor growth in vivo. International Journal of Pharmaceutics, 2021, 600, 120548.	5.2	15
122	Development of alginate-based hydrogels for blood vessel engineering. Materials Science and Engineering C, 2022, 134, 112588.	7.3	15
123	Growing evidence supporting the use of mesenchymal stem cell therapies in multiple sclerosis: A systematic review. Multiple Sclerosis and Related Disorders, 2020, 38, 101860.	2.0	13
124	Fucoidan Immobilized at the Surface of a Fibrous Mesh Presents Toxic Effects over Melanoma Cells, But Not over Noncancer Skin Cells. Biomacromolecules, 2020, 21, 2745-2754.	5.4	13
125	A New Chalcone Derivative with Promising Antiproliferative and Anti-Invasion Activities in Glioblastoma Cells. Molecules, 2021, 26, 3383.	3.8	13
126	Impact of Biological Agents and Tissue Engineering Approaches on the Treatment of Rheumatic Diseases. Tissue Engineering - Part B: Reviews, 2010, 16, 331-339.	4.8	12

#	Article	IF	CITATIONS
127	Fish sarcoplasmic proteins as a high value marine material for wound dressing applications. Colloids and Surfaces B: Biointerfaces, 2018, 167, 310-317.	5.0	12
128	Influence of PDLA nanoparticles size on drug release and interaction with cells. Journal of Biomedical Materials Research - Part A, 2019, 107, 482-493.	4.0	12
129	Yicathins B and C and Analogues: Total Synthesis, Lipophilicity and Biological Activities. ChemMedChem, 2020, 15, 749-755.	3.2	12
130	Chondrogenic differentiation induced by extracellular vesicles bound to a nanofibrous substrate. Npj Regenerative Medicine, 2021, 6, 79.	5.2	12
131	An automated two-phase system for hydrogel microbead production. Biofabrication, 2012, 4, 035003.	7.1	11
132	<i>In vitro</i> chondrogenic commitment of human Wharton's jelly stem cells by co-culture with human articular chondrocytes. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1876-1887.	2.7	11
133	Micro/Nano Scaffolds for Osteochondral Tissue Engineering. Advances in Experimental Medicine and Biology, 2018, 1058, 125-139.	1.6	11
134	Fibronectin-Functionalized Fibrous Meshes as a Substrate to Support Cultures of Thymic Epithelial Cells. Biomacromolecules, 2020, 21, 4771-4780.	5.4	11
135	Coâ€cultures of renal progenitors and endothelial cells on kidney decellularized matrices replicate the renal tubular environment in vitro. Acta Physiologica, 2020, 230, e13491.	3.8	11
136	Particulate kidney extracellular matrix: bioactivity and proteomic analysis of a novel scaffold from porcine origin. Biomaterials Science, 2021, 9, 186-198.	5.4	11
137	Tumorâ€Associated Protrusion Fluctuations as a Signature of Cancer Invasiveness. Advanced Biology, 2021, 5, e2101019.	2.5	11
138	In Vivo Evaluation of the Biocompatibility of Biomaterial Device. Advances in Experimental Medicine and Biology, 2020, 1250, 109-124.	1.6	11
139	The functionalization of natural polymer-coated gold nanoparticles to carry bFGF to promote tissue regeneration. Journal of Materials Chemistry B, 2018, 6, 2104-2115.	5.8	10
140	Fibronectin Bound to a Fibrous Substrate Has Chondrogenic Induction Properties. Biomacromolecules, 2020, 21, 1368-1378.	5.4	10
141	The role of the interaction coefficient in the prediction of the fiber orientation in planar injection moldings. Polymer Composites, 2003, 24, 358-366.	4.6	9
142	Biofunctional Nanofibrous Substrate for Local TNF-Capturing as a Strategy to Control Inflammation in Arthritic Joints. Nanomaterials, 2019, 9, 567.	4.1	9
143	Sardine Roe as a Source of Lipids To Produce Liposomes. ACS Biomaterials Science and Engineering, 2020, 6, 1017-1029.	5.2	9
144	Modulating inflammation through the neutralization of Interleukin-6 and tumor necrosis factor- \hat{l}_{\pm} by biofunctionalized nanoparticles. Journal of Controlled Release, 2021, 331, 491-502.	9.9	9

#	Article	IF	CITATIONS
145	Cellular Uptake of Three Different Nanoparticles in an Inflammatory Arthritis Scenario versus Normal Conditions. Molecular Pharmaceutics, 2021, 18, 3235-3246.	4.6	9
146	Fabrication of biomimetic patterned PCL membranes mimicking the complexity of Rubus fruticosus leaves surface. Colloids and Surfaces B: Biointerfaces, 2021, 206, 111910.	5.0	9
147	Influence of scaffold composition over inÂvitro osteogenic differentiation of hBMSCs and inÂvivo inflammatory response. Journal of Biomaterials Applications, 2014, 28, 1430-1442.	2.4	8
148	Exploring the Gelation Mechanisms and Cytocompatibility of Gold (III)-Mediated Regenerated and Thiolated Silk Fibroin Hydrogels. Biomolecules, 2020, 10, 466.	4.0	8
149	New Vascular Graft Using the Decellularized Human Chorion Membrane. ACS Biomaterials Science and Engineering, 2021, 7, 3423-3433.	5.2	8
150	Fishroesomes as carriers with antioxidant and anti-inflammatory bioactivities. Biomedicine and Pharmacotherapy, 2021, 140, 111680.	5 . 6	8
151	A biocompatible and injectable hydrogel to boost the efficacy of stem cells in neurodegenerative diseases treatment. Life Sciences, 2021, 287, 120108.	4.3	8
152	Natural Origin Materials for Bone Tissue Engineering – Properties, Processing, and Performance. , 2011, , 557-586.		7
153	Micro- and Nanotechnology in Tissue Engineering. , 2011, , 3-29.		7
154	RESTORE Survey on the Public Perception of Advanced Therapies and ATMPs in Europeâ€"Why the European Union Should Invest More!. Frontiers in Medicine, 2021, 8, 739987.	2.6	7
155	Microparticulate Release Systems Based on Natural Origin Materials. Advances in Experimental Medicine and Biology, 2004, 553, 283-300.	1.6	6
156	Tissue engineering using natural polymers. , 2007, , 197-217.		6
157	Dual release of a hydrophilic and a hydrophobic osteogenic factor from a single liposome. RSC Advances, 2016, 6, 114599-114612.	3.6	6
158	Angiogenic potential of airbrushed fucoidan/polycaprolactone nanofibrous meshes. International Journal of Biological Macromolecules, 2021, 183, 695-706.	7.5	6
159	Microfluidic-assisted electrospinning, an alternative to coaxial, as a controlled dual drug release system to treat inflammatory arthritic diseases. Materials Science and Engineering C, 2022, 134, 112585.	7.3	6
160	Microfluidic-driven mixing of high molecular weight polymeric complexes for precise nanoparticle downsizing. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 43, 102560.	3.3	6
161	Recapitulation of Thymic Function by Tissue Engineering Strategies. Advanced Healthcare Materials, 2021, 10, 2100773.	7.6	5
162	Surface modification of a biodegradable composite by UV laser ablation: <i>in vitro</i> biological performance. Journal of Tissue Engineering and Regenerative Medicine, 2010, 4, n/a-n/a.	2.7	4

#	Article	IF	Citations
163	Stimulation of Neurite Outgrowth Using Autologous NGF Bound at the Surface of a Fibrous Substrate. Biomolecules, 2022, 12, 25.	4.0	4
164	Biomimetic Surface Topography from the <i>Rubus fruticosus</i> Leaf as a Guidance of Angiogenesis in Tissue Engineering Applications. ACS Biomaterials Science and Engineering, 2022, 8, 2943-2953.	5.2	4
165	Hydrogels for spinal cord injury regeneration. , 2008, , 570-594.		3
166	Synthesis of polymer-based triglycine sulfate nanofibres by electrospinning. Journal Physics D: Applied Physics, 2009, 42, 205403.	2.8	3
167	Biofunctional nanostructured systems for regenerative medicine. Nanomedicine, 2020, 15, 1545-1549.	3.3	3
168	Application of Gellan Gum-Based Scaffold for Regenerative Medicine. Advances in Experimental Medicine and Biology, 2020, 1249, 15-37.	1.6	3
169	Metronidazole Delivery Nanosystem Able To Reduce the Pathogenicity of Bacteria in Colorectal Infection. Biomacromolecules, 2022, 23, 2415-2427.	5.4	3
170	Depth (Z-axis) control of cell morphologies on micropatterned surfaces. Journal of Bioactive and Compatible Polymers, 2015, 30, 555-567.	2.1	2
171	Advanced polymer composites and structures for bone and cartilage tissue engineering. , 2016, , 123-142.		2
172	The Role of Natural-Based Biomaterials in Advanced Therapies for Autoimmune Diseases. Advances in Experimental Medicine and Biology, 2018, 1077, 127-146.	1.6	2
173	Method to decellularize the human chorion membrane. Methods in Cell Biology, 2020, 157, 23-35.	1.1	2
174	Retinoic Acid Benefits Glomerular Organotypic Differentiation from Adult Renal Progenitor Cells In Vitro. Stem Cell Reviews and Reports, 2021, 17, 1406-1419.	3.8	2
175	Experimental Validation of Morphology Simulation in Glass Fibre Reinforced Polycarbonate Discs. Journal of Reinforced Plastics and Composites, 2001, 20, 452-465.	3.1	2
176	Erythrocyte-derived liposomes for the treatment of inflammatory diseases. Journal of Drug Targeting, 2022, 30, 873-883.	4.4	2
177	Liposomal formulations for lung cancer treatment in the last two decades: a systematic review. Journal of Cancer Research and Clinical Oncology, 0, , .	2.5	2
178	Processing of starch-based blends for biomedical applications. , 2008, , 85-105.		1
179	Size Also Matters in Biodegradable Composite Microfiber Reinforced by Chitosan Nanofibers. Materials Research Society Symposia Proceedings, 2014, 1621, 59-69.	0.1	1
180	Bone Regeneration Using Duck's Feet-Derived Collagen Scaffold as an Alternative Collagen Source. Advances in Experimental Medicine and Biology, 2020, 1250, 3-13.	1.6	1

#	ARTICLE	IF	CITATIONS
181	Sulfated Seaweed Polysaccharides. , 2022, , 307-340.		1
182	Biomedical Applications of Fibers Produced by Electrospinning, Microfluidic Spinning and Combinations of Both., 2022,, 251-295.		1
183	P3 UNDERSTANDING THE ENDOTHELIAL – SMOOTH MUSCLE – FIBROBLASTIC CELLS INTERACTIONS ON A TISSUE-ENGINEERED VASCULAR GRAFT. Artery Research, 2018, 24, 80.	0.6	0
184	Spatial Immobilization of Autologous Growth Factors to Control Vascularization in Bone Tissue Engineering. SSRN Electronic Journal, $0, , .$	0.4	0
185	Quantifying protrusions as tumor-specific biophysical predictors of cancer invasion in in vitro tumor micro-spheroid models. In Vitro Models, 0, , .	2.0	0