Michael V Ugrumov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8636390/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Sphingolipid Asset Is Altered in the Nigrostriatal System of Mice Models of Parkinson's Disease. Biomolecules, 2022, 12, 93.	4.0	3
2	A New Method for the Visualization of Living Dopaminergic Neurons and Prospects for Using It to Develop Targeted Drug Delivery to These Cells. International Journal of Molecular Sciences, 2022, 23, 3678.	4.1	2
3	Development of early diagnosis of Parkinson's disease on animal models based on the intranasal administration of α-methyl-p-tyrosine methyl ester in a gel system. Biomedicine and Pharmacotherapy, 2022, 150, 112944.	5.6	0
4	Expression Analysis of Genes Involved in Transport Processes in Mice with MPTP-Induced Model of Parkinson's Disease. Life, 2022, 12, 751.	2.4	5
5	The Periventricular Nucleus as a Brain Center Containing Dopaminergic Neurons and Neurons Expressing Individual Enzymes of Dopamine Synthesis. International Journal of Molecular Sciences, 2022, 23, 6739.	4.1	4
6	Changes in Tyrosine Hydroxylase Activity and Dopamine Synthesis in the Nigrostriatal System of Mice in an Acute Model of Parkinson's Disease as a Manifestation of Neurodegeneration and Neuroplasticity. Brain Sciences, 2022, 12, 779.	2.3	11
7	A Pilot Study of Changes in the Level of Catecholamines and the Activity of α-2-Macroglobulin in the Tear Fluid of Patients with Parkinson's Disease and Parkinsonian Mice. International Journal of Molecular Sciences, 2021, 22, 4736.	4.1	11
8	A Monoiodotyrosine Challenge Test in a Parkinson's Disease Model. Acta Naturae, 2021, 13, 106-109.	1.7	1
9	Hypothesis on the Endocrine System of the Brain: Evidence for the Regulated Delivery of Neurohormones from the Brain to the Cerebrospinal Fluid and Vice Versa in Neonatal and Prepubertal Periods of Ontogenesis. Russian Journal of Developmental Biology, 2021, 52, 414-421.	0.5	1
10	A Comparative Analysis of CSF and the Blood Levels of Monoamines As Neurohormones in Rats during Ontogenesis. , 2021, 13, 89-97.		8
11	Development of early diagnosis of Parkinson's disease: Illusion or reality?. CNS Neuroscience and Therapeutics, 2020, 26, 997-1009.	3.9	45
12	Characteristic of Dopamine-Producing System and Dopamine Receptors in the Suprachiasmatic Nucleus in Rats in Ontogenesis. Doklady Biochemistry and Biophysics, 2020, 490, 34-37.	0.9	2
13	Dopamine-Producing Neurons in Rat Ontogeny: Phenotypic Features Underlying Molecular Mechanisms of Secretion and Regulation. Russian Journal of Developmental Biology, 2020, 51, 57-64.	0.5	1
14	Upgraded Methodology for the Development of Early Diagnosis of Parkinson's Disease Based on Searching Blood Markers in Patients and Experimental Models. Molecular Neurobiology, 2019, 56, 3437-3450.	4.0	24
15	Estimation of Metabolism of Catecholamines in Peripheral Organs As an Indicator of Their Desympathization under the Influence of Neurotoxins. Doklady Biochemistry and Biophysics, 2019, 486, 171-174.	0.9	2
16	The Role of the Brain in the Regulation of Peripheral Noradrenaline-producing Organs in Rats During Morphogenesis. Doklady Biochemistry and Biophysics, 2019, 486, 243-246.	0.9	1
17	Developing brain as a source of circulating norepinephrine in rats during the critical period of morphogenesis. Brain Structure and Function, 2019, 224, 3059-3073.	2.3	1
18	The Role of Catecholamines in the Development of Pathological Retina Neovascularization in an Experimental Model of Retinopathy of Prematurity in Rats. Doklady Biochemistry and Biophysics, 2019, 489, 373-376.	0.9	1

#	Article	IF	CITATIONS
19	Proteins of the Vesicular Cycle as a Marker of Neuroplasticity of Dopaminergic Neurons in the Substantia Nigra of the Brain. Doklady Biochemistry and Biophysics, 2019, 489, 399-402.	0.9	0
20	Synthesis of Dopamine by Non-Dopaminergic Neurons of the Rat Tuberoinfundibular System during Ontogeny. Neurochemical Journal, 2019, 13, 335-343.	0.5	1
21	MPTP Mouse Model of Preclinical and Clinical Parkinson's Disease as an Instrument for Translational Medicine. Molecular Neurobiology, 2018, 55, 2991-3006.	4.0	28
22	Dopamine Synthesis as a Mechanism of Brain Plasticity in Nigrostriatal System Pathology. Doklady Biochemistry and Biophysics, 2018, 479, 83-86.	0.9	5
23	General Sources of Dopamine As a Potential Morphogenic Factor in the Developing Striatum of Rats. Doklady Biochemistry and Biophysics, 2018, 479, 123-126.	0.9	Ο
24	Plasma Metabolome Signature in Patients with Early-stage Parkinson Disease. Current Metabolomics, 2018, 6, .	0.5	17
25	Reversible Pharmacological Induction of Motor Symptoms in MPTP-Treated Mice at the Presymptomatic Stage of Parkinsonism: Potential Use for Early Diagnosis of Parkinson's Disease. Molecular Neurobiology, 2017, 54, 3618-3632.	4.0	6
26	Molecular mechanisms of synthesis of noradrenaline as an inducer of development in the adrenal glands of rats in ontogenesis. Doklady Biochemistry and Biophysics, 2017, 472, 23-26.	0.9	2
27	Cooperative synthesis of dopamine in rat mediobasal hypothalamus as a compensatory mechanism in hyperprolactinemia. Biochemistry (Moscow), 2017, 82, 366-372.	1.5	3
28	Plasticity of central and peripheral sources of noradrenaline in rats during ontogenesis. Biochemistry (Moscow), 2017, 82, 373-379.	1.5	3
29	Cooperative synthesis of dopamine by non-dopaminergic neurons as a compensatory mechanism in the striatum of mice with MPTP-induced Parkinsonism. Neurobiology of Disease, 2017, 98, 108-121.	4.4	42
30	Changes in the secretory activity of organs producing noradrenaline upon inhibition of its synthesis in neonatal rat brain. Russian Journal of Developmental Biology, 2017, 48, 295-300.	0.5	2
31	Transcriptome Profile Changes in Mice with MPTP-Induced Early Stages of Parkinson's Disease. Molecular Neurobiology, 2017, 54, 6775-6784.	4.0	20
32	Gene expression and content of enzymes of noradrenaline synthesis in the rat organ of Zuckerkandl at the critical period of morphogenesis. Doklady Biochemistry and Biophysics, 2017, 474, 200-203.	0.9	0
33	Secretory activity of the brain and peripheral organs: Spontaneous and stimulated release of noradrenaline in the ontogenesis of rats. Doklady Biochemistry and Biophysics, 2016, 467, 153-156.	0.9	1
34	Signal molecules during the organism development: Central and peripheral sources of noradrenaline in rat ontogenesis. Doklady Biochemistry and Biophysics, 2016, 466, 74-76.	0.9	7
35	Missing proof of cooperative synthesis of dopamine by non-dopaminergic neurons. Doklady Biochemistry and Biophysics, 2016, 468, 197-199.	0.9	0
36	Gene expression of proteins of the vesicle cycle in dopaminergic neurons in modeling of Parkinson's disease. Doklady Biochemistry and Biophysics, 2016, 468, 206-208.	0.9	4

#	Article	IF	CITATIONS
37	Gene expression of proteins of the vesicle cycle in the striatum and motor cortex under functional failure of nigrostriatal system. Doklady Biochemistry and Biophysics, 2016, 470, 313-315.	0.9	1
38	Modeling of chronic selective inhibition of noradrenaline synthesis in the brain of neonatal rats. Doklady Biochemistry and Biophysics, 2015, 461, 123-126.	0.9	3
39	The secretion of noradrenaline from the brain into the peripheral blood during rat ontogenesis. Neurochemical Journal, 2015, 9, 95-100.	0.5	3
40	Role of Adenohypophysotropic Neurohormones in Endocrine Paraadenohypophysial Regulation of Peripheral Target Organs in Rat Ontogeny. Bulletin of Experimental Biology and Medicine, 2015, 159, 293-296.	0.8	0
41	Tyrosine hydroxylase expression and activity in nigrostriatal dopaminergic neurons of MPTP-treated mice at the presymptomatic and symptomatic stages of parkinsonism. Journal of the Neurological Sciences, 2014, 340, 198-207.	0.6	67
42	Expression analysis of genes of ubiquitin-proteasome protein degradation system in MPTP-induced mice models of early stages of Parkinson's disease. Doklady Biochemistry and Biophysics, 2014, 456, 116-118.	0.9	18
43	Neurons expressing individual enzymes of dopamine synthesis in the mediobasal hypothalamus of adult rats: Functional significance and topographic interrelations. Neuroscience, 2014, 277, 45-54.	2.3	24
44	Brain Neurons Partly Expressing Dopaminergic Phenotype. Advances in Pharmacology, 2013, 68, 37-91.	2.0	37
45	Developing brain as an endocrine organ: Secretion of dopamine. Molecular and Cellular Endocrinology, 2012, 348, 78-86.	3.2	20
46	High frequency stimulation of the subthalamic nucleus impacts adult neurogenesis in a rat model of Parkinson's disease. Neurobiology of Disease, 2011, 42, 284-291.	4.4	30
47	Endocrine function of dopaminergic neurons in the neonatal rat brain. Neurochemical Journal, 2011, 5, 169-175.	0.5	Ο
48	Modeling of presymptomatic and symptomatic stages of parkinsonism in mice. Neuroscience, 2011, 181, 175-188.	2.3	106
49	Vasopressinergic neurons of the supraoptic nucleus in perinatal rats: reaction to osmotic stimulation and its regulation. Brain Structure and Function, 2011, 215, 195-207.	2.3	11
50	Experimental modeling of preclinical and clinical stages of Parkinson's disease. Bulletin of Experimental Biology and Medicine, 2011, 150, 566-569.	0.8	5
51	Developing Brain as an Endocrine Organ: A Paradoxical Reality. Neurochemical Research, 2010, 35, 837-850.	3.3	46
52	The influence of catecholamine on the migration of gonadotropin-releasing hormone-producing neurons in the rat foetuses. Brain Structure and Function, 2009, 213, 289-300.	2.3	18
53	Development of central and peripheral serotonin-producing systems in rats in ontogenesis. Journal of Evolutionary Biochemistry and Physiology, 2009, 45, 78-85.	0.6	5
54	Role of noradrenaline in the development of dopamine-induced hyperprolactinemia. Neurochemical Journal, 2009, 3, 288-296.	0.5	0

#	Article	IF	CITATIONS
55	Non-dopaminergic neurons partly expressing dopaminergic phenotype: Distribution in the brain, development and functional significance. Journal of Chemical Neuroanatomy, 2009, 38, 241-256.	2.1	90
56	Compensatory reaction during degeneration of arcuate nucleus dopaminergic neurons in rats. Journal of Evolutionary Biochemistry and Physiology, 2008, 44, 82-88.	0.6	4
57	Migration and differentiation of gonadotropin-releasing hormone-producing neurons in the brain of mouse fetus exposed to excess of serotonin. Journal of Evolutionary Biochemistry and Physiology, 2007, 43, 356-364.	0.6	0
58	Expression of tyrosine hydroxylase in vasopressinergic neurons of the supraoptic nucleus in rat ontogenesis and its modulation by noradrenergic afferents. Journal of Evolutionary Biochemistry and Physiology, 2006, 42, 174-181.	0.6	0
59	Tyrosine hydroxylase expression in the olfactory/respiratory epithelium in early sheep fetuses (Ovis) Tj ETQq1	1 0.784314 ı 2.2	gBJ /Overloc
60	Noradrenergic regulation of galanin expression in the supraoptic nucleus in the rat hypothalamus. An ex vivo study. Journal of Neuroscience Research, 2006, 83, 857-863.	2.9	14
61	Brain is an important source of GnRH in general circulation in the rat during prenatal and early postnatal ontogenesis. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2005, 141, 271-279.	1.8	19
62	Axonal projections from the hypothalamus to the pituitary intermediate lobe in rats during ontogenesis: Dil tracing study. Developmental Brain Research, 2005, 155, 117-126.	1.7	9
63	Effects of omega-3 fatty acids on orexigenic and anorexigenic modulators at the onset of anorexia. Brain Research, 2005, 1046, 157-164.	2.2	32
64	Developing Brain as a Giant Multipotent Endocrine Gland. Neurophysiology, 2005, 37, 225-238.	0.3	0
65	Hypothalamic 5-HT1B-receptor changes in anorectic tumor bearing rats. Neuroscience Letters, 2005, 376, 71-75.	2.1	23
66	Normalization of hypothalamic serotonin (5-HT1B) receptor and NPY in cancer anorexia after tumor resection: An immunocytochemical study. Neuroscience Letters, 2005, 383, 322-327.	2.1	21
67	Degeneration of dopaminergic neurons triggers an expression of individual enzymes of dopamine synthesis in non-dopaminergic neurons of the arcuate nucleus in adult rats. Journal of Chemical Neuroanatomy, 2005, 30, 27-33.	2.1	29
68	Longâ€lasting effects of serotonin deficiency on differentiating peptidergic neurons in the rat suprachiasmatic nucleus. International Journal of Developmental Neuroscience, 2005, 23, 85-91.	1.6	16
69	Dopamine synthesis by non-dopaminergic neurons expressing individual complementary enzymes of the dopamine synthetic pathway in the arcuate nucleus of fetal rats. Neuroscience, 2004, 124, 629-635.	2.3	53
70	Decreased NPY innervation of the hypothalamic nuclei in rats with cancer anorexia. Brain Research, 2003, 961, 100-108.	2.2	49
71	Influence of Serotonin on the Development and Migration of Gonadotropinâ€Releasing Hormone Neurones in Rat Foetuses. Journal of Neuroendocrinology, 2003, 15, 549-558.	2.6	44
72	Influence of Monoamines on Differentiating Gonadotropin-Releasing Hormone Neurones in Foetal Mice. Journal of Neuroendocrinology, 2003, 15, 925-932.	2.6	24

#	Article	IF	CITATIONS
73	Prolonged Neurogenesis during Early Development of Gonadotropin-Releasing Hormone Neurones in Sheep <i>(Ovis aries):</i> In vivo and in vitro Studies. Neuroendocrinology, 2003, 77, 177-186.	2.5	9
74	Neurons possessing enzymes of dopamine synthesis in the mediobasal hypothalamus of rats. Journal of Chemical Neuroanatomy, 2002, 24, 95-107.	2.1	22
75	Distribution of serotonin 5-hydroxytriptamine 1B (5-HT1B) receptors in the normal rat hypothalamus. Neuroscience Letters, 2002, 328, 155-159.	2.1	53
76	Dynamical study of tyrosine hydroxylase expression and its correlation with vasopressin turnover in the magnocellular neurons of the supraoptico-posthypophysial system under long-term salt loading of adult rats. Brain Research, 2002, 925, 67-75.	2.2	18
77	Tyrosine hydroxylase- and/or aromatic L-amino acid decarboxylase-expressing neurons in the rat arcuate nucleus: ontogenesis and functional significance. Psychoneuroendocrinology, 2002, 27, 533-548.	2.7	31
78	Magnocellular vasopressin system in ontogenesis: Development and regulation. Microscopy Research and Technique, 2002, 56, 164-171.	2.2	32
79	Differentiation of tyrosine hydroxylase-synthesizing and/or aromaticL-amino acid decarboxylase-synthesizing neurons in the rat mediobasal hypothalamus: Quantitative double-immunofluorescence study. Journal of Comparative Neurology, 2002, 446, 114-122.	1.6	42
80	Title is missing!. Journal of Evolutionary Biochemistry and Physiology, 2002, 38, 575-585.	0.6	0
81	Dopamine Synthesis from L-Tyrosine by Non-Dopaminergic Neurons in Co-Operation. Advances in Behavioral Biology, 2002, , 95-98.	0.2	0
82	Tyrosine Hydroxylase Expression in Differentiating Neurons of the Rat Arcuate Nucleus: Stimulatory Influence of Serotonin Afferents. Neural Plasticity, 2001, 8, 271-284.	2.2	8
83	Axonal projections from the hypothalamus to the median eminence in rats during ontogenesis: Dil tracing study. Anatomy and Embryology, 2001, 204, 239-252.	1.5	11
84	Title is missing!. Journal of Evolutionary Biochemistry and Physiology, 2001, 37, 556-561.	0.6	0
85	Title is missing!. Biology Bulletin, 2001, 28, 64-70.	0.5	0
86	Neurotransplants in Treatment of Parkinson's Disease. , 2001, , 349-363.		2
87	Projections from the hypothalamus to the posterior lobe in rats during ontogenesis: 1,1?-dioctadecyl-3,3,3?,3?-tetramethylindocarbocyanine perchlorate tracing study. Journal of Comparative Neurology, 2000, 422, 327-337.	1.6	22
88	Tyrosine hydroxylase-expressing and/or aromatic L-amino acid decarboxylase-expressing neurons in the mediobasal hypothalamus of perinatal rats: Differentiation and sexual dimorphism. Journal of Comparative Neurology, 2000, 425, 167-176.	1.6	53
89	Hypothalamo-pituitary control of the cell-mediated immunity in rat embryos: role of LHRH in regulation of lymphocyte proliferation. Journal of Reproductive Immunology, 2000, 47, 17-32.	1.9	22
90	Tyrosine Hydroxylase in Vasopressinergic Axons of the Pituitary Posterior Lobe of Rats Under Salt-Loading as a Manifestation of Neurochemical Plasticity. Neural Plasticity. 2000. 7. 179-191.	2.2	17

#	Article	IF	CITATIONS
91	Dopamine turnover in the mediobasal hypothalamus in rat fetuses. Neuroscience, 1999, 89, 235-241.	2.3	35
92	Prolactin secretion and its dopamine inhibitory control in rat fetuses. European Journal of Endocrinology, 1998, 139, 337-342.	3.7	33
93	Long-lasting effect of catecholamine deficiency on differentiating vasopressin and oxytocin neurons in the rat supraoptic nucleus. Neuroscience, 1997, 79, 555-561.	2.3	16
94	Development of the mesencephalic and diencephalic catecholamine systems in human fetuses: uptake and release of catecholamines in vitro. Neuroscience Letters, 1996, 212, 29-32.	2.1	6
95	Birthdates of the Tyrosine Hydroxylase Immunoreactive Neurons in the Hypothalamus of Male and Female Rats. Neuroendocrinology, 1996, 64, 405-411.	2.5	24
96	Pharmacological model of catecholamine depletion in the hypothalamus of fetal and neonatal rats and its application. Cellular and Molecular Neurobiology, 1996, 16, 617-624.	3.3	7
97	Development of the hypothalamic vasopressin system and nephrons in Meriones shawi during ontogenesis. Anatomy and Embryology, 1996, 193, 281-96.	1.5	15
98	Androgen-dependent sex differences in the hypothalamic serotoninergic system. European Journal of Endocrinology, 1996, 134, 232-235.	3.7	18
99	Vasopressin and oxytocin gene expression in intact rats and under catecholamine deficiency during ontogenesis. Brain Research Bulletin, 1995, 37, 437-448.	3.0	25
100	Development of the suprachiasmatic nucleus in rats during ontogenesis: Tyrosine hydroxylase immunopositive cell bodies and fibers. Neuroscience, 1994, 58, 151-160.	2.3	17
101	Development of the suprachiasmatic nucleus in rats during ontogenesis: Serotonin-immunopositive fibers. Neuroscience, 1994, 58, 161-165.	2.3	20
102	Postnatal development of the suprachiasmatic nucleus in the rat. Morpho-functional characteristics and time course of tyrosine hydroxylase immunopositive fibers. Neuroscience, 1994, 63, 603-610.	2.3	28
103	Altered vasoactive intestinal polypeptide gene expression in the fetal rat suprachiasmatic nucleus following prenatal serotonin deficiency. International Journal of Developmental Neuroscience, 1994, 12, 143-149.	1.6	16
104	Development of the tuberoinfundibular system in rats: birthdates of the tyrosine hydroxylase-immunopositive neurons. Developmental Brain Research, 1993, 73, 173-176.	1.7	4
105	Chapter 46: Development of the median eminence during ontogenesis (morpho-functional aspects). Progress in Brain Research, 1992, 91, 349-356.	1.4	17
106	Ontogenesis of the hypothalamic catecholaminergic system in rats: Synthesis, uptake and release of catecholamines. Neuroscience, 1991, 43, 223-229.	2.3	47
107	Developing Hypothalamus in Differentiation of Neurosecretory Neurons and in Establishment of Pathways for Neurohormone Transport. International Review of Cytology, 1991, 129, 207-267.	6.2	31
108	Topographic relations between tyrosine hydroxylase- and luteinizing hormone-releasing hormone-immunoreactive fibers in the median eminence of adult rats. Neuroscience Letters, 1989, 102, 159-164.	2.1	28

#	Article	IF	CITATIONS
109	Ontogenesis of tyrosine hydroxylase-immunopositive structures in the rat hypothalamus. An atlas of neuronal cell bodies. Neuroscience, 1989, 29, 135-156.	2.3	58
110	Ontogenesis of tyrosine hydroxylase-immunopositive structures in the rat hypothalamus. Fiber pathways and terminal fields. Neuroscience, 1989, 29, 157-166.	2.3	41
111	On the distribution and morpho-functional characteristics of 5-HT-immunoreactive cells in the hypothalamus of fetuses and neonatal rats. Developmental Brain Research, 1989, 46, 233-241.	1.7	26
112	Development of the hypothalamic 5-hydroxytryptamine system during ontogenesis in rats: Uptake and release of 5-hydroxytryptaminein vitro. Neuroscience, 1989, 32, 127-131.	2.3	22
113	Ependymal lining of infundibular recess in perinatal rats: Relationships with portal capillaries and permeability. International Journal of Developmental Neuroscience, 1986, 4, 101-111.	1.6	9
114	Development of the hypothalamic serotoninergic system during ontogenesis in rats. Immunocytochemical and radioautographic radioautographic study. Developmental Brain Research, 1986, 30, 75-84.	1.7	30
115	Axovascular relationships in developing median eminence of perinatal rats with special reference to luteinizing hormone-releasing hormone projections. Neuroscience, 1985, 16, 897-906.	2.3	25
116	Permeability of the blood-brain barrier in the median eminence during the perinatal period in rats. Cell and Tissue Research, 1983, 230, 649-660.	2.9	18
117	On degeneration of peptidergic neurosecretory fibres in the albino rat. Cell and Tissue Research, 1975, 160, 113-23.	2.9	6
118	The hypothalamo-hypophysial system of hypophysectomized rats. Cell and Tissue Research, 1974, 155, 541-54.	2.9	21