Lijia Yan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8635518/publications.pdf

Version: 2024-02-01

		567281	642732
23	938	15	23
papers	citations	h-index	g-index
23	23	23	1544
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Accelerating the Screening of Perovskite Compositions for Photovoltaic Applications through Highâ€Throughput Inkjet Printing. Advanced Functional Materials, 2019, 29, 1905487.	14.9	37
2	Investigating the single crystal OFET and photo-responsive characteristics based on an anthracene linked benzo[b]benzo[4,5]thieno[2,3-d]thiophene semiconductor. Organic Electronics, 2019, 72, 1-5.	2.6	22
3	Polysiloxane–poly(vinyl alcohol) composite dielectrics for high-efficiency low voltage organic thin film transistors. Journal of Materials Chemistry C, 2019, 7, 4879-4886.	5.5	13
4	Anthracene-based semiconductors for organic field-effect transistors. Journal of Materials Chemistry C, 2018, 6, 7416-7444.	5 . 5	129
5	Self-supported hysteresis-free flexible organic thermal transistor based on commercial graphite paper. Applied Physics Letters, 2018, 112, 253301.	3.3	9
6	A thermally stable anthracene derivative for application in organic thin film transistors. Organic Electronics, 2017, 43, 105-111.	2.6	34
7	Highly responsive phototransistors based on 2,6-bis(4-methoxyphenyl)anthracene single crystal. Journal of Materials Chemistry C, 2017, 5, 5304-5309.	5.5	34
8	An unusual photoconductive property of polyiodide and enhancement by catenating with 3-thiophenemethylamine salt. Chemical Communications, 2017, 53, 432-435.	4.1	11
9	A Wide Band Gap Naphthalene Semiconductor for Thinâ€Film Transistors. Advanced Electronic Materials, 2017, 3, 1600556.	5.1	15
10	In-plane isotropic charge transport characteristics of single-crystal FETs with high mobility based on 2,6-bis(4-methoxyphenyl)anthracene: experimental cum theoretical assessment. Journal of Materials Chemistry C, 2017, 5, 370-375.	5.5	18
11	A Unique Blend of 2â€Fluorenylâ€2â€anthracene and 2â€Anthrylâ€2â€anthracence Showing White Emission and High Charge Mobility. Angewandte Chemie - International Edition, 2017, 56, 722-727.	13.8	94
12	A Unique Blend of 2â€Fluorenylâ€2â€anthracene and 2â€Anthrylâ€2â€anthracence Showing White Emission and High Charge Mobility. Angewandte Chemie, 2017, 129, 740-745.	2.0	70
13	2D and 3D Crystal Formation of 2,6â€Bis[4â€ethylphenyl]anthracene with Isotropic High Chargeâ€Carrier Mobility. Advanced Electronic Materials, 2017, 3, 1700282.	5.1	13
14	Polarâ€Electrodeâ€Bridged Electroluminescent Displays: 2D Sensors Remotely Communicating Optically. Advanced Materials, 2017, 29, 1703552.	21.0	49
15	Effects of heteroatom substitution in spiro-bifluorene hole transport materials. Chemical Science, 2016, 7, 5007-5012.	7.4	86
16	Liquid Crystals: High Performance OTFTs Fabricated Using a Calamitic Liquid Crystalline Material of 2â€(4â€Dodecyl phenyl)[1]benzothieno[3,2â€ <i>b</i>][1]benzothiophene (Adv. Electron. Mater. 9/2016). Advanced Electronic Materials, 2016, 2, .	5.1	2
17	Metal/Organic Interfaces: Efficient Charge Injection in Organic Fieldâ€Effect Transistors Enabled by Lowâ€Temperature Atomic Layer Deposition of Ultrathin VO _x Interlayer (Adv. Funct. Mater.) Tj ETQq	l 1 4.0 .7843	3 1 4 rgBT /C

 $High \ Performance \ OTFTs \ Fabricated \ Using \ a \ Calamitic \ Liquid \ Crystalline \ Material \ of \ 2 \\ \hat{a} \in Odecyl) \ Tj \ ETQq0 \ 0 \ 0 \ ggBT \ /Overlock \ 10 \ Tf \ Odecylock \ 10 \ Tf$

18

#	Article	IF	CITATIONS
19	Efficient Charge Injection in Organic Fieldâ€Effect Transistors Enabled by Lowâ€Temperature Atomic Layer Deposition of Ultrathin VO _x Interlayer. Advanced Functional Materials, 2016, 26, 4456-4463.	14.9	35
20	Unlocking the potential of diketopyrrolopyrrole-based solar cells by a pre-solvent annealing method in all-solution processing. RSC Advances, 2016, 6, 53587-53595.	3.6	14
21	A Redoxâ€Dependent Electrochromic Material: <i>Tetri</i> i>â€EDOT Substituted Thieno[3,2â€ <i>b</i>]thiophene. Macromolecular Rapid Communications, 2016, 37, 1344-1351.	3.9	19
22	Influence of heteroatoms on the charge mobility of anthracene derivatives. Journal of Materials Chemistry C, 2016, 4, 3517-3522.	5.5	34
23	Side-chain engineering of green color electrochromic polymer materials: toward adaptive camouflage application. Journal of Materials Chemistry C, 2016, 4, 2269-2273.	5 . 5	155