
Shane D Lavery

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8635492/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Finding the adaptive needles in a populationâ€structured haystack: A case study in a New Zealand mollusc. Journal of Animal Ecology, 2022, 91, 1209-1221.	2.8	3
2	Genome-wide SNPs reveal fine-scale genetic structure in ornate spiny lobster <i>Panulirus ornatus</i> throughout Indo-West Pacific Ocean. ICES Journal of Marine Science, 2022, 79, 1931-1941.	2.5	5
3	Genetic divergence between isolated populations of the North Island New Zealand Rifleman () Tj ETQq1 1 0.78 fragmentation. Ecology and Evolution, 2021, 11, 5998-6014.	4314 rgBT 1.9	/Overlock 10 1
4	Demographic history, not larval dispersal potential, explains differences in population structure of two New Zealand intertidal species. Marine Biology, 2021, 168, 1.	1.5	7
5	Towards reproducible metabarcoding data: Lessons from an international crossâ€laboratory experiment. Molecular Ecology Resources, 2021, , .	4.8	25
6	Geographic concordance of genetic barriers in New Zealand coastal marine species. Aquatic Conservation: Marine and Freshwater Ecosystems, 2021, 31, 3607-3625.	2.0	3
7	Hitchhiking consequences for genetic and morphological patterns: the influence of kelp-rafting on a brooding chiton. Biological Journal of the Linnean Society, 2020, 130, 756-770.	1.6	6
8	Marine DNA Metabarcoding. , 2020, , 612-618.		2
9	From feeding habits to food webs: exploring the diet of an opportunistic benthic generalist. Marine Ecology - Progress Series, 2020, 655, 107-121.	1.9	7
10	Phylogeography of the dugong (Dugong dugon) based on historical samples identifies vulnerable Indian Ocean populations. PLoS ONE, 2019, 14, e0219350.	2.5	15
11	Linking Environmental DNA and RNA for Improved Detection of the Marine Invasive Fanworm Sabella spallanzanii. Frontiers in Marine Science, 2019, 6, .	2.5	51
12	Sweepstakes reproductive success is absent in a New Zealand snapper (<i>Chrysophrus auratus</i>) population protected from fishing despite "tiny― <i>N</i> _e / <i>N</i> ratios elsewhere. Molecular Ecology, 2019, 28, 2986-2995.	3.9	9
13	Population structure and male-biased dispersal in the short-tail stingray Bathytoshia brevicaudata (Myliobatoidei: Dasyatidae). Conservation Genetics, 2019, 20, 717-728.	1.5	14
14	The impact of artificial surfaces on marine bacterial and eukaryotic biofouling assemblages: A high-throughput sequencing analysis. Marine Environmental Research, 2018, 133, 57-66.	2.5	54
15	Combining morpho-taxonomy and metabarcoding enhances the detection of non-indigenous marine pests in biofouling communities. Scientific Reports, 2018, 8, 16290.	3.3	46
16	Preliminary analysis of New Zealand scampi (<i>Metanephrops challengeri</i>) diet using metabarcoding. PeerJ, 2018, 6, e5641.	2.0	25
17	On the need to consider multiphasic sensitivity of marine organisms to climate change: a case study of the Antarctic acorn barnacle. Journal of Biogeography, 2017, 44, 2165-2175.	3.0	12
18	Temperate marine protected area provides recruitment subsidies to local fisheries. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171300.	2.6	31

SHANE D LAVERY

#	Article	IF	CITATIONS
19	Population subdivision in the tropical spiny lobster Panulirus ornatus throughout its Indo-West Pacific distribution. ICES Journal of Marine Science, 2017, 74, 759-768.	2.5	11
20	Mechanisms of peripheral phylogeographic divergence in the indo-Pacific: lessons from the spiny lobster Panulirus homarus. BMC Evolutionary Biology, 2017, 17, 195.	3.2	17
21	A correction to "Mitochondrial DNA population structure of the scalloped lobster Panulirus homarus (Linnaeus 1758) from the West Indian Ocean― ICES Journal of Marine Science, 2016, 73, 2747-2747.	2.5	0
22	The population genetics and origin of invasion of the invasive Asian paddle crab, Charybdis japonica (A.) Tj ETQo 1.	q0 0 0 rgB 1.5	[/Overlock 10 4
23	The complete mitochondrial genomes of two chiton species (<i>Sypharochiton) Tj ETQq1 1 0.784314 rgBT /Ov sequencing. Mitochondrial DNA, 2016, 27, 537-538.</i>	erlock 107 0.6	If 50 587 Tc (12
24	Characterisation of eleven new polymorphic microsatellite markers for the coastal stingray Dasyatis brevicaudata (Dasyatidae Hutton 1875), and cross-amplification in seven dasyatid species. Biochemical Systematics and Ecology, 2016, 65, 234-237.	1.3	3
25	Spinning in different directions: western rock lobster larval condition varies with eddy polarity, but does their diet?. Journal of Plankton Research, 2015, 37, 542-553.	1.8	12
26	Discordance between nuclear and mitochondrial DNA analyses of population structure in closely related triplefin fishes (Forsterygion lapillum and F. capito, F. Tripterygiidae) supports speciation with gene flow. Marine Biology, 2015, 162, 1611-1624.	1.5	7
27	Differences in population connectivity of a benthic marine invertebrate Evechinus chloroticus (Echinodermata: Echinoidea) across large and small spatial scales. Conservation Genetics, 2015, 16, 965-978.	1.5	16
28	The meroplankton communities from the coastal Ross Sea: a latitudinal study. Hydrobiologia, 2015, 761, 195-209.	2.0	6
29	Phyllosomata associated with large gelatinous zooplankton: hitching rides and stealing bites. ICES Journal of Marine Science, 2015, 72, i124-i127.	2.5	10
30	Evolutionary Divergence of Geographic Subspecies within the Scalloped Spiny Lobster Panulirus homarus (Linnaeus 1758). PLoS ONE, 2014, 9, e97247.	2.5	39
31	Phylogenetic Species Identification in Rattus Highlights Rapid Radiation and Morphological Similarity of New Guinean Species. PLoS ONE, 2014, 9, e98002.	2.5	14
32	The meroplankton community of the oceanic Ross Sea during late summer. Antarctic Science, 2014, 26, 345-360.	0.9	15
33	DNA identification of the phyllosoma diet of <i>Jasus edwardsii</i> and <i>Scyllarus</i> sp. Z. New Zealand Journal of Marine and Freshwater Research, 2014, 48, 416-429.	2.0	8
34	Determining the diet of larvae of the red rock lobster (Jasus edwardsii) using high-throughput DNA sequencing techniques. Marine Biology, 2014, 161, 551-563.	1.5	41
35	Mitochondrial DNA population structure of the scalloped lobster Panulirus homarus (Linnaeus 1758) from the West Indian Ocean. ICES Journal of Marine Science, 2013, 70, 1491-1498.	2.5	22
36	Speciation of two stingrays with antitropical distributions: low levels of divergence in mitochondrial DNA and morphological characters suggest recent evolution. Aquatic Biology, 2013, 19, 153-165.	1.4	8

#	Article	IF	CITATIONS
37	Extracting DNA from whole organism homogenates and the risk of false positives in PCR based diet studies: A case study using spiny lobster larvae. Journal of Experimental Marine Biology and Ecology, 2013, 441, 1-6.	1.5	20
38	The population genetic structure of the waratah anemone (<i>Actinia tenebrosa</i>) around New Zealand. New Zealand Journal of Marine and Freshwater Research, 2012, 46, 523-536.	2.0	26
39	PCR enrichment techniques to identify the diet of predators. Molecular Ecology Resources, 2012, 12, 5-17.	4.8	56
40	Population Structure and Phylogeography of the Short-Tailed Stingray, Dasyatis brevicaudata (Hutton) Tj ETQq0 (0 0 rgBT /0 2.4	Verlock 107
41	Conservation of coastal stingrays: seasonal abundance and population structure of the short-tailed stingray Dasyatis brevicaudata at a Marine Protected Area. ICES Journal of Marine Science, 2012, 69, 1427-1435.	2.5	30
42	Paternity assignment and demographic closure in the New Zealand southern right whale. Molecular Ecology, 2012, 21, 3960-3973.	3.9	16
43	Determining the Diet of Larvae of Western Rock Lobster (Panulirus cygnus) Using High-Throughput DNA Sequencing Techniques. PLoS ONE, 2012, 7, e42757.	2.5	79
44	Morphological and Molecular Comparison of Hemigrapsus crenulatus (Milne Edwards, 1837) (Brachyura: Varunidae) from New Zealand and Chile: Was Miss Rathbun Right?. Journal of Crustacean Biology, 2011, 31, 582-589.	0.8	10

45	A multi-locus analysis of phylogenetic relationships within cheilostome bryozoans supports multiple origins of ascophoran frontal shields. Molecular Phylogenetics and Evolution, 2011, 61, 351-362.	2.7	27
46	Phylogeography of the snakeskin chiton Sypharochiton pelliserpentis (Mollusca: Polyplacophora) around New Zealand: are seasonal near-shore upwelling events a dynamic barrier to gene flow?. Biological Journal of the Linnean Society, 2011, 104, 552-563.	1.6	30
47	Investigation on Natural Diets of Larval Marine Animals Using Peptide Nucleic Acid-Directed Polymerase Chain Reaction Clamping. Marine Biotechnology, 2011, 13, 305-313.	2.4	46
48	Molecular Species Identification of Astrotoma agassizii from Planktonic Embryos: Further Evidence for a Cryptic Species Complex. Journal of Heredity, 2010, 101, 775-779.	2.4	23
49	Using DNA barcoding and phylogenetics to identify Antarctic invertebrate larvae: Lessons from a large scale study. Marine Genomics, 2010, 3, 165-177.	1.1	54
50	Stable Isotope Ratios of Carbon and Nitrogen and Mercury Concentrations in 13 Toothed Whale Species Taken from the Western Pacific Ocean off Japan. Environmental Science & Technology, 2010, 44, 2675-2681.	10.0	27
51	A Worldwide Perspective on the Population Structure and Genetic Diversity of Bottlenose Dolphins (Tursiops truncatus) in New Zealand. Journal of Heredity, 2009, 100, 11-24.	2.4	91
52	Synopsis of a new collection of sea spiders (Arthropoda: Pycnogonida) from the Ross Sea, Antarctica. Polar Biology, 2009, 32, 1147-1155.	1.2	12

53	New Zealand triplefin fishes (family Tripterygiidae): contrasting population structure and mtDNA diversity within a marine species flock. Molecular Ecology, 2009, 18, 680-696.	3.9	53	
54	High proportion of protected minke whales sold on Japanese markets is due to illegal, unreported or	2.9	15	

High proportion of protected minke whales sold on Japanese markets is due to illegal, unreported or unregulated exploitation. Animal Conservation, 2009, 12, 385-395. 54

SHANE D LAVERY

#	Article	IF	CITATIONS
55	The rise of commercial †byâ€eatch whaling' in Japan and Korea. Animal Conservation, 2009, 12, 398-399.	2.9	5
56	Estimating the number of whales entering trade using DNA profiling and capture-recapture analysis of market products. Molecular Ecology, 2007, 16, 2617-2626.	3.9	55
57	Contamination level of mercury in red meat products from cetaceans available from South Korea markets. Marine Pollution Bulletin, 2007, 54, 669-677.	5.0	10
58	Incomplete reporting of whale, dolphin and porpoise 'bycatch' revealed by molecular monitoring of Korean markets. Animal Conservation, 2006, 9, 474-482.	2.9	45
59	The genetic structure of Australasian green turtles (Chelonia mydas): exploring the geographical scale of genetic exchange. Molecular Ecology, 2006, 15, 3931-3946.	3.9	127
60	Total Mercury, Methyl Mercury, and Selenium Levels in the Red Meat of Small Cetaceans Sold for Human Consumption in Japan. Environmental Science & Technology, 2005, 39, 5703-5708.	10.0	74
61	Phylogenetic relationships and evolutionary history of the shrimp genus Penaeus s.l. derived from mitochondrial DNA. Molecular Phylogenetics and Evolution, 2004, 31, 39-49.	2.7	118
62	Verifying invasive marine fish species using molecular techniques: A model example using triplefin fishes (Family Tripterygiidae). New Zealand Journal of Marine and Freshwater Research, 2004, 38, 439-446.	2.0	13
63	Application of mitochondrial control region in population genetic studies of the shrimp Penaeus. Molecular Ecology Notes, 2003, 3, 120-122.	1.7	44
64	www.DNA-surveillance: applied molecular taxonomy for species conservation and discovery. Trends in Ecology and Evolution, 2003, 18, 271-272.	8.7	35
65	DNA Surveillance: Web-Based Molecular Identification of Whales, Dolphins, and Porpoises. , 2003, 94, 111-114.		99
66	Mitochondrial gene rearrangements confirm the parallel evolution of the crab-like form. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 345-350.	2.6	104
67	Concordance between dispersal and mitochondrial gene flow: isolation by distance in a tropical teleost, Lates calcarifer (Australian barramundi). Heredity, 1998, 80, 187-197.	2.6	82
68	When oceans meet: a teleost shows secondary intergradation at an Indian–Pacific interface. Proceedings of the Royal Society B: Biological Sciences, 1998, 265, 415-420.	2.6	110
69	Concordance between dispersal and mitochondrial gene flow: isolation by distance in a tropical teleost, Lates calcarifer (Australian barramundi). Heredity, 1998, 80, 187-197.	2.6	18
70	Genetic Patterns Suggest Exponential Population Growth in a Declining Species. Molecular Biology and Evolution, 1996, 13, 1106-1113.	8.9	99
71	Indo-Pacific population structure and evolutionary history of the coconut crab Birgus latro. Molecular Ecology, 1996, 5, 557-570.	3.9	133
72	Changing patterns of population structure and gene flow at different spatial scales in Birgus latro (the coconut crab). Heredity, 1995, 74, 531-541.	2.6	48

SHANE D LAVERY

#	Article	IF	CITATIONS
73	Low allozyme variation in the coconut crab Birgus latro. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1993, 104, 353-359.	0.2	2
74	Electrophoretic analysis of Phylogenetic relationships among Australian Carcharhinid Sharks. Marine and Freshwater Research, 1992, 43, 97.	1.3	13
75	Genetic evidence for separation of two sharks,Carcharhinus limbatus andC. tilstoni, from Northern Australia. Marine Biology, 1991, 108, 1-4.	1.5	32
76	Use of Allozyme Electrophoresis for identifying two species of Penaeid Prawn Postlarvae. Marine and Freshwater Research, 1990, 41, 259.	1.3	15
77	Population genetics of two tropical sharks, Carcharhinus tilstoni and C. sorrah, in Northern Australia. Marine and Freshwater Research, 1989, 40, 541.	1.3	40
78	Genogeographic clustering to identify crossâ€species concordance of spatial genetic patterns. Diversity and Distributions, 0, , .	4.1	4