Ai-Jie Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/863524/publications.pdf

Version: 2024-02-01

151 papers

6,622 citations

50276 46 h-index 70 g-index

154 all docs

154 docs citations

154 times ranked

4894 citing authors

#	Article	IF	CITATIONS
1	Micropollutant abatement by the UV/chloramine process in potable water reuse: A review. Journal of Hazardous Materials, 2022, 424, 127341.	12.4	35
2	Complete genome sequences of the antibiotic sulfamethoxazole-mineralizing bacteria Paenarthrobacter sp. P27 and Norcardiodes sp. N27. Environmental Research, 2022, 204, 112013.	7.5	10
3	Cultivation of sulfide-driven partial denitrification granules for efficient nitrite generation from nitrate-sulfide-laden wastewater. Science of the Total Environment, 2022, 804, 150143.	8.0	18
4	Advanced reduction process to achieve efficient degradation of pyridine. Chemosphere, 2022, 287, 132240.	8.2	11
5	Rational design of biogenic PdxAuy nanoparticles with enhanced catalytic performance for electrocatalysis and azo dyes degradation. Environmental Research, 2022, 204, 112086.	7.5	11
6	Microbial community shifts association with physicochemical parameters: Visualizing enset bacterial wilt from different states of enset health. Journal of Environmental Management, 2022, 302, 114084.	7.8	3
7	Stepwise freezing-thawing treatment promotes short-chain fatty acids production from waste activated sludge. Science of the Total Environment, 2022, 818, 151694.	8.0	19
8	Freezing-low temperature treatment facilitates short-chain fatty acids production from waste activated sludge with short-term fermentation. Bioresource Technology, 2022, 347, 126337.	9.6	51
9	Challenges of pathogen inactivation in animal manure through anaerobic digestion: a short review. Bioengineered, 2022, 13, 1149-1161.	3.2	20
10	Thiosulfate as external electron donor accelerating denitrification at low temperature condition in S0–based autotrophic denitrification biofilter. Environmental Research, 2022, 210, 113009.	7.5	22
11	The removal of selenite and cadmium by immobilized biospheres: Efficiency, mechanisms and bacterial community. Environmental Research, 2022, 211, 113025.	7.5	7
12	Integrated constructed wetland and bioelectrochemistry system approach for simultaneous enhancment of p-chloronitrobenzene and nitrogen transformations performance. Water Research, 2022, 217, 118433.	11.3	21
13	Utilization of electrochemical treatment and surface reconstruction to achieve long lasting catalyst for NOx removal. Journal of Hazardous Materials, 2021, 401, 123440.	12.4	21
14	Extracellular electron transfer through visible light induced excited-state outer membrane C-type cytochromes of Geobacter sulfurreducens. Bioelectrochemistry, 2021, 138, 107683.	4.6	9
15	Evaluating the health risks of heavy metals from vegetables grown on soil irrigated with untreated and treated wastewater in Arba Minch, Ethiopia. Science of the Total Environment, 2021, 761, 143302.	8.0	62
16	Combined bioaugmentation with electro-biostimulation for improved bioremediation of antimicrobial triclocarban and PAHs complexly contaminated sediments. Journal of Hazardous Materials, 2021, 403, 123937.	12.4	30
17	Total nitrogen removal in biochar amended non-aerated vertical flow constructed wetlands for secondary wastewater effluent with low C/N ratio: Microbial community structure and dissolved organic carbon release conditions. Bioresource Technology, 2021, 322, 124430.	9.6	52
18	Response of anaerobic digestion of waste activated sludge to residual ferric ions. Bioresource Technology, 2021, 322, 124536.	9.6	53

#	Article	IF	CITATIONS
19	Editorial perspective: Viruses in wastewater: Wading into the knowns and unknowns. Environmental Research, 2021, 196, 110255.	7.5	7
20	Microbial fuel cell-upflow biofilter coupling system for deep denitrification and power recovery: Efficiencies, bacterial succession and interactions. Environmental Research, 2021, 196, 110331.	7.5	16
21	Relationship between functional bacteria in a denitrification desulfurization system under autotrophic, heterotrophic, and mixotrophic conditions. Water Research, 2021, 188, 116526.	11.3	117
22	Resorcinol as a highly efficient aromatic electron donor in bioelectrochemical system. Journal of Hazardous Materials, 2021, 408, 124416.	12.4	7
23	Fate of antibiotic resistance genes during temperature-changed psychrophilic anaerobic digestion of municipal sludge. Water Research, 2021, 194, 116926.	11.3	25
24	Microbial electrolysis enhanced bioconversion of waste sludge lysate for hydrogen production compared with anaerobic digestion. Science of the Total Environment, 2021, 767, 144344.	8.0	33
25	Spectroscopic fingerprinting of dissolved organic matter in a constructed wetland-reservoir ecosystem for source water improvement-a case study in Yanlong project, eastern China. Science of the Total Environment, 2021, 770, 144791.	8.0	13
26	Evaluating the effect of fenton pretreated pyridine wastewater under different biological conditions: Microbial diversity and biotransformation pathways. Journal of Environmental Management, 2021, 287, 112297.	7.8	15
27	Sulfur autotrophic denitrification filter and heterotrophic denitrification filter: Comparison on denitrification performance, hydrodynamic characteristics and operating cost. Environmental Research, 2021, 197, 111029.	7.5	35
28	Effect of preferential UV photolysis on the source control of antibiotic resistome during subsequent biological treatment systems. Journal of Hazardous Materials, 2021, 414, 125484.	12.4	12
29	Occurrence, effect, and fate of residual microplastics in anaerobic digestion of waste activated sludge: A state-of-the-art review. Bioresource Technology, 2021, 331, 125035.	9.6	53
30	Accelerated bioremediation of a complexly contaminated river sediment through ZVI-electrode combined stimulation. Journal of Hazardous Materials, 2021, 413, 125392.	12.4	14
31	Optimal control towards sustainable wastewater treatment plants based on multi-agent reinforcement learning. Chemosphere, 2021, 279, 130498.	8.2	42
32	Sessile methanogens dominated cathodic biofilm: Distribution and network in physiological transitions. Science of the Total Environment, 2021, 795, 148724.	8.0	5
33	Responses of anaerobic digestion of waste activated sludge to long-term stress of benzalkonium chlorides: Insights to extracellular polymeric substances and microbial communities. Science of the Total Environment, 2021, 796, 148957.	8.0	24
34	Stepwise alkaline treatment coupled with ammonia stripping to enhance short-chain fatty acids production from waste activated sludge. Bioresource Technology, 2021, 341, 125824.	9.6	20
35	Tropical and temperate wastewater treatment plants assemble different and diverse microbiomes. Applied Microbiology and Biotechnology, 2021, 105, 853-867.	3.6	5
36	Mutual effect between electrochemically active bacteria (EAB) and azo dye in bio-electrochemical system (BES). Chemosphere, 2020, 239, 124787.	8.2	29

#	Article	IF	CITATIONS
37	Hydrodynamics of up-flow hybrid anaerobic digestion reactors with built-in bioelectrochemical system. Journal of Hazardous Materials, 2020, 382, 121046.	12.4	14
38	Mixed dye wastewater treatment in a bioelectrochemical system-centered process. Bioresource Technology, 2020, 297, 122420.	9.6	35
39	Bioaugmentation of triclocarban and its dechlorinated congeners contaminated soil with functional degraders and the bacterial community response. Environmental Research, 2020, 180, 108840.	7.5	23
40	Reinjection oilfield wastewater treatment using bioelectrochemical system and consequent corrosive community evolution on pipe material. Journal of Bioscience and Bioengineering, 2020, 129, 199-205.	2.2	16
41	Fate, risk and removal of triclocarban: A critical review. Journal of Hazardous Materials, 2020, 387, 121944.	12.4	54
42	Palladium/iron nanoparticles stimulate tetrabromobisphenol a microbial reductive debromination and further mineralization in sediment. Environment International, 2020, 135, 105353.	10.0	26
43	Recirculation ratio regulates denitrifying sulfide removal and elemental sulfur recovery by altering sludge characteristics and microbial community composition in an EGSB reactor. Environmental Research, 2020, 181, 108905.	7.5	20
44	Insights into palladium nanoparticles produced by Shewanella oneidensis MR-1: Roles of NADH dehydrogenases and hydrogenases. Environmental Research, 2020, 191, 110196.	7.5	17
45	Bacteria-affinity aminated carbon nanotubes bridging reduced graphene oxide for highly efficient microbial electrocatalysis. Environmental Research, 2020, 191, 110212.	7.5	7
46	Natural iridoids from Patrinia heterophylla showing anti-inflammatory activities in vitro and in vivo. Bioorganic Chemistry, 2020, 104, 104331.	4.1	9
47	Bioaugmentation with Thiobacillus sp. H1 in an autotrophic denitrification desulfurization microbial reactor: Microbial community changes and relationship. Environmental Research, 2020, 189, 109927.	7.5	25
48	Intermittent electro field regulated mutualistic interspecies electron transfer away from the electrodes for bioenergy recovery from wastewater. Water Research, 2020, 185, 116238.	11.3	52
49	Wire-drawing process with graphite lubricant as an industrializable approach to prepare graphite coated stainless-steel anode for bioelectrochemical systems. Environmental Research, 2020, 191, 110093.	7.5	16
50	Succession of functional bacteria in a denitrification desulphurisation system under mixotrophic conditions. Environmental Research, 2020, 188, 109708.	7.5	13
51	Semiquantitative Detection of Hydrogen-Associated or Hydrogen-Free Electron Transfer within Methanogenic Biofilm of Microbial Electrosynthesis. Applied and Environmental Microbiology, 2020, 86, .	3.1	24
52	Bioenergy recovery from wastewater accelerated by solar power: Intermittent electro-driving regulation and capacitive storage in biomass. Water Research, 2020, 175, 115696.	11.3	104
53	Rift Valley Lake as a potential magnesium source to recover phosphorus from urine. Environmental Research, 2020, 184, 109363.	7. 5	7
54	Bioelectrochemical system for the enhancement of methane production by anaerobic digestion of alkaline pretreated sludge. Bioresource Technology, 2020, 304, 123000.	9.6	45

#	Article	IF	Citations
55	Shewanella oneidensis MR-1 self-assembled Pd-cells-rGO conductive composite for enhancing electrocatalysis. Environmental Research, 2020, 184, 109317.	7. 5	16
56	UV photolysis as an efficient pretreatment method for antibiotics decomposition and their antibacterial activity elimination. Journal of Hazardous Materials, 2020, 392, 122321.	12.4	54
57	Florfenicol restructured the microbial interaction network for wastewater treatment by microbial electrolysis cells. Environmental Research, 2020, 183, 109145.	7.5	14
58	<i>Casimicrobium huifangae</i> gen. nov., sp. nov., a Ubiquitous "Most-Wanted―Core Bacterial Taxon from Municipal Wastewater Treatment Plants. Applied and Environmental Microbiology, 2020, 86, .	3.1	26
59	Efficient treatment of alizarin yellow R contained wastewater in an electrostimulated anaerobic-oxic integrated system. Environmental Research, 2020, 185, 109403.	7.5	6
60	Perylene pigment wastewater treatment by fenton-enhanced biological process. Environmental Research, 2020, 186, 109522.	7.5	16
61	Enhanced methane production by alleviating sulfide inhibition with a microbial electrolysis coupled anaerobic digestion reactor. Environment International, 2020, 136, 105503.	10.0	42
62	Weakened adhesion force between extracellular polymeric substances of waste activated sludge caused by rhamnolipid leading to more efficient carbon release. Science of the Total Environment, 2019, 692, 892-902.	8.0	17
63	In-situ utilization of soluble microbial product (SMP) cooperated with enhancing SMP-dependent denitrification in aerobic-anoxic sequencing batch reactor. Science of the Total Environment, 2019, 693, 133558.	8.0	59
64	Accelerated microbial reductive dechlorination of 2,4,6-trichlorophenol by weak electrical stimulation. Water Research, 2019, 162, 236-245.	11.3	181
65	Efficient azo dye wastewater treatment in a hybrid anaerobic reactor with a built-in integrated bioelectrochemical system and an aerobic biofilm reactor: Evaluation of the combined forms and reflux ratio. Bioresource Technology, 2019, 292, 122001.	9.6	33
66	Anaerobic biodegradation of trimethoprim with sulfate as an electron acceptor. Frontiers of Environmental Science and Engineering, 2019, 13, 1.	6.0	24
67	Characterization of an efficient chloramphenicol-mineralizing bacterial consortium. Chemosphere, 2019, 222, 149-155.	8.2	29
68	Electro-driven methanogenic microbial community diversity and variability in the electron abundant niche. Science of the Total Environment, 2019, 661, 178-186.	8.0	26
69	Applying rhamnolipid to enhance hydrolysis and acidogenesis of waste activated sludge: retarded methanogenic community evolution and methane production. RSC Advances, 2019, 9, 2034-2041.	3.6	14
70	Enhanced nitrate removal in an Fe ⁰ -driven autotrophic denitrification system using hydrogen-rich water. Environmental Science: Water Research and Technology, 2019, 5, 1380-1388.	2.4	11
71	Building electrode with three-dimensional macroporous interface from biocompatible polypyrrole and conductive graphene nanosheets to achieve highly efficient microbial electrocatalysis. Biosensors and Bioelectronics, 2019, 141, 111444.	10.1	81
72	Continuous sulfur biotransformation in an anaerobic-anoxic sequential batch reactor involving sulfate reduction and denitrifying sulfide oxidization. Chemosphere, 2019, 234, 568-578.	8.2	16

#	Article	IF	Citations
73	Enhanced treatment of coal gasification wastewater in a membraneless sleeve-type bioelectrochemical system. Bioelectrochemistry, 2019, 129, 154-161.	4.6	18
74	Enhanced short-chain fatty acids production from waste activated sludge with alkaline followed by potassium ferrate treatment. Bioresource Technology, 2019, 289, 121642.	9.6	106
75	Bioelectrochemical assisted dechlorination of tetrachloroethylene and 1,2-dichloroethane by acclimation of anaerobic sludge. Chemosphere, 2019, 227, 514-521.	8.2	33
76	Identification of biofilm formation and exoelectrogenic population structure and function with graphene/polyanliline modified anode in microbial fuel cell. Chemosphere, 2019, 219, 358-364.	8.2	52
77	Coupled Sulfur and Iron(II) Carbonate-Driven Autotrophic Denitrification for Significantly Enhanced Nitrate Removal. Environmental Science & Environme	10.0	110
78	Bioremediation of contaminated urban river sediment with methanol stimulation: Metabolic processes accompanied with microbial community changes. Science of the Total Environment, 2019, 653, 649-657.	8.0	43
79	Response of chloramphenicol-reducing biocathode resistome to continuous electrical stimulation. Water Research, 2019, 148, 398-406.	11.3	90
80	A novel bioelectrochemical method for real-time nitrate monitoring. Bioelectrochemistry, 2019, 125, 33-37.	4.6	13
81	mcrA sequencing reveals the role of basophilic methanogens in a cathodic methanogenic community. Water Research, 2018, 136, 192-199.	11.3	77
82	Enhanced performance and microbial community analysis of bioelectrochemical system integrated with bio-contact oxidation reactor for treatment of wastewater containing azo dye. Science of the Total Environment, 2018, 634, 616-627.	8.0	51
83	Enhanced bioelectroremediation of a complexly contaminated river sediment through stimulating electroactive degraders with methanol supply. Journal of Hazardous Materials, 2018, 349, 168-176.	12.4	37
84	High recycling efficiency and elemental sulfur purity achieved in a biofilm formed membrane filtration reactor. Water Research, 2018 , 130 , $1-12$.	11.3	37
85	Effects of surface charge, hydrophilicity and hydrophobicity on functional biocathode catalytic efficiency and community structure. Chemosphere, 2018, 202, 105-110.	8.2	10
86	Divergent Responses of Forest Soil Microbial Communities under Elevated CO 2 in Different Depths of Upper Soil Layers. Applied and Environmental Microbiology, 2018, 84, .	3.1	31
87	Potassium ferrate addition as an alternative pre-treatment to enhance short-chain fatty acids production from waste activated sludge. Bioresource Technology, 2018, 247, 174-181.	9.6	122
88	Improving biocathode community multifunctionality by polarity inversion for simultaneous bioelectroreduction processes in domestic wastewater. Chemosphere, 2018, 194, 553-561.	8.2	43
89	Elevated CO2 and Warming Altered Grassland Microbial Communities in Soil Top-Layers. Frontiers in Microbiology, 2018, 9, 1790.	3.5	51
90	Enhanced biohydrogen production from nutrient-free anaerobic fermentation medium with edible fungal pretreated rice straw. RSC Advances, 2018, 8, 22924-22930.	3.6	29

#	Article	IF	CITATIONS
91	Graphene Modified Electro-Fenton Catalytic Membrane for in Situ Degradation of Antibiotic Florfenicol. Environmental Science &	10.0	194
92	Electrocatalytic dechlorination of halogenated antibiotics via synergistic effect of chlorine-cobalt bond and atomic H*. Journal of Hazardous Materials, 2018, 358, 294-301.	12.4	44
93	Micro-oxygen bioanode: An efficient strategy for enhancement of phenol degradation and current generation in mix-cultured MFCs. Bioresource Technology, 2018, 268, 176-182.	9.6	53
94	Facile fabrication of carbon brush with reduced graphene oxide (rGO) for decreasing resistance and accelerating pollutants removal in bio-electrochemical systems. Journal of Hazardous Materials, 2018, 354, 244-249.	12.4	21
95	Kinetic competition between microbial anode respiration and nitrate respiration in a bioelectrochemical system. Bioelectrochemistry, 2018, 123, 241-247.	4.6	20
96	Elemental sulfur recovery and spatial distribution of functional bacteria and expressed genes under different carbon/nitrate/sulfide loadings in up-flow anaerobic sludge blanket reactors. Journal of Hazardous Materials, 2017, 324, 48-53.	12.4	33
97	Enhanced Biotransformation of Triclocarban by Ochrobactrum sp. TCC-1 Under Anoxic Nitrate Respiration Conditions. Current Microbiology, 2017, 74, 491-498.	2.2	16
98	Polarity inversion of bioanode for biocathodic reduction of aromatic pollutants. Journal of Hazardous Materials, 2017, 331, 280-288.	12.4	58
99	Efficient Methane Production from Beer Wastewater in a Membraneless Microbial Electrolysis Cell with a Stacked Cathode: The Effect of the Cathode/Anode Ratio on Bioenergy Recovery. Energy & Fuels, 2017, 31, 615-620.	5.1	52
100	Performance of low temperature Microbial Fuel Cells (MFCs) catalyzed by mixed bacterial consortia. Journal of Environmental Sciences, 2017, 52, 284-292.	6.1	42
101	Functional Characterization of a Novel Amidase Involved in Biotransformation of Triclocarban and its Dehalogenated Congeners in <i>Ochrobactrum</i> sp. TCC-2. Environmental Science & amp; Technology, 2017, 51, 291-300.	10.0	79
102	Response of antimicrobial nitrofurazone-degrading biocathode communities to different cathode potentials. Bioresource Technology, 2017, 241, 951-958.	9.6	46
103	Fenton pre-treatment of rice straw with citric acid as an iron chelate reagent for enhancing saccharification. RSC Advances, 2017, 7, 32076-32086.	3.6	17
104	Corrugated stainless-steel mesh as a simple engineerable electrode module in bio-electrochemical system: Hydrodynamics and the effects on decolorization performance. Journal of Hazardous Materials, 2017, 338, 287-295.	12.4	28
105	Increasing the bio-electrochemical system performance in azo dye wastewater treatment: Reduced electrode spacing for improved hydrodynamics. Bioresource Technology, 2017, 245, 962-969.	9.6	37
106	Microbial Photoelectrotrophic Denitrification as a Sustainable and Efficient Way for Reducing Nitrate to Nitrogen. Environmental Science & Environment	10.0	67
107	Palladized cells as suspension catalyst and electrochemical catalyst for reductively degrading aromatics contaminants: Roles of Pd size and distribution. Water Research, 2017, 125, 288-297.	11.3	34
108	Computational and experimental analysis of organic degradation positively regulated by bioelectrochemistry in an anaerobic bioreactor system. Water Research, 2017, 125, 170-179.	11.3	64

#	Article	IF	Citations
109	Biodiversity and species competition regulate the resilience of microbial biofilm community. Molecular Ecology, 2017, 26, 6170-6182.	3.9	299
110	Activating electrochemical catalytic activity of bio-palladium by hybridizing with carbon nanotube as "eâ^² Bridge― Scientific Reports, 2017, 7, 16588.	3.3	13
111	Bio-immobilization of dark fermentative bacteria for enhancing continuous hydrogen production from cornstalk hydrolysate. Bioresource Technology, 2017, 243, 548-555.	9.6	41
112	Evaluation of anaerobic sludge volume for improving azo dye decolorization in a hybrid anaerobic reactor with built-in bioelectrochemical system. Chemosphere, 2017, 169, 18-22.	8.2	24
113	Microbial network for waste activated sludge cascade utilization in an integrated system of microbial electrolysis and anaerobic fermentation. Biotechnology for Biofuels, 2016, 9, 83.	6.2	82
114	Bioaugmentation of activated sludge with elemental sulfur producing strain Thiopseudomonas denitrificans X2 against nitrate shock load. Bioresource Technology, 2016, 220, 647-650.	9.6	35
115	Clarification of phosphorus fractions and phosphorus release enhancement mechanism related to pH during waste activated sludge treatment. Bioresource Technology, 2016, 222, 217-225.	9.6	70
116	Azo dye decolorization in an up-flow bioelectrochemical reactor with domestic wastewater as a cost-effective yet highly efficient electron donor source. Water Research, 2016, 105, 520-526.	11.3	82
117	Efficient azo dye decolorization in a continuous stirred tank reactor (CSTR) with built-in bioelectrochemical system. Bioresource Technology, 2016, 218, 1307-1311.	9.6	22
118	Biocathodic Methanogenic Community in an Integrated Anaerobic Digestion and Microbial Electrolysis System for Enhancement of Methane Production from Waste Sludge. ACS Sustainable Chemistry and Engineering, 2016, 4, 4913-4921.	6.7	106
119	Lignocellulosic saccharification by a newly isolated bacterium, Ruminiclostridium thermocellum M3 and cellular cellulase activities for high ratio of glucose to cellobiose. Biotechnology for Biofuels, 2016, 9, 172.	6.2	37
120	Electroactive Biofilm Serving as the Green Synthesizer and Stabilizer for <i>in Situ</i> Fabricating 3D Nanopalladium Network: An Efficient Electrocatalyst. ACS Sustainable Chemistry and Engineering, 2016, 4, 5392-5397.	6.7	29
121	Response of anodic bacterial community to the polarity inversion for chloramphenicol reduction. Bioresource Technology, 2016, 221, 666-670.	9.6	42
122	Low temperature acclimation with electrical stimulation enhance the biocathode functioning stability for antibiotics detoxification. Water Research, 2016, 100, 157-168.	11.3	47
123	Role of extracellular polymeric substances in enhancement of phosphorus release from waste activated sludge by rhamnolipid addition. Bioresource Technology, 2016, 202, 59-66.	9.6	41
124	Methane production enhancement by an independent cathode in integrated anaerobic reactor with microbial electrolysis. Bioresource Technology, 2016, 208, 13-18.	9.6	73
125	Enhanced hydrogen production in microbial electrolysis cell with 3D self-assembly nickel foam-graphene cathode. Biosensors and Bioelectronics, 2016, 80, 118-122.	10.1	87
126	Efficient treatment of azo dye containing wastewater in a hybrid acidogenic bioreactor stimulated by biocatalyzed electrolysis. Journal of Environmental Sciences, 2016, 39, 198-207.	6.1	25

#	Article	IF	CITATIONS
127	Efficient regulation of elemental sulfur recovery through optimizing working height of upflow anaerobic sludge blanket reactor during denitrifying sulfide removal process. Bioresource Technology, 2016, 200, 1019-1023.	9.6	37
128	Investigation of colloidal biogenic sulfur flocculation: Optimization using response surface analysis. Journal of Environmental Sciences, 2016, 42, 227-235.	6.1	31
129	Effects of temperature on hydrolysis performance and short-chain fatty acids production during thermophilic micro-aerobic fermentation of waste activated sludge. Desalination and Water Treatment, 2016, 57, 13183-13189.	1.0	3
130	Enhanced short chain fatty acids production from waste activated sludge conditioning with typical agricultural residues: carbon source composition regulates community functions. Biotechnology for Biofuels, 2015, 8, 192.	6.2	51
131	Stimulation of oxygen to bioanode for energy recovery from recalcitrant organic matter aniline inÂmicrobial fuel cells (MFCs). Water Research, 2015, 81, 72-83.	11.3	76
132	Direct hydrogen production from lignocellulose by the newly isolated Thermoanaerobacterium thermosaccharolyticum strain DD32. RSC Advances, 2015, 5, 99781-99788.	3.6	34
133	Cathodic degradation of antibiotics: Characterization and pathway analysis. Water Research, 2015, 72, 281-292.	11.3	166
134	Anaerobic mineralization of 2,4,6-tribromophenol to CO2 by a synthetic microbial community comprising Clostridium, Dehalobacter, and Desulfatiglans. Bioresource Technology, 2015, 176, 225-232.	9.6	45
135	Citric acid and ethylene diamine tetra-acetic acid as effective washing agents to treat sewage sludge for agricultural reuse. Waste Management, 2015, 46, 440-448.	7.4	61
136	A horizontal plug-flow baffled bioelectrocatalyzed reactor for the reductive decolorization of Alizarin Yellow R. Bioresource Technology, 2015, 195, 73-77.	9.6	16
137	Enhanced elementary sulfur recovery with sequential sulfate-reducing, denitrifying sulfide-oxidizing processes in a cylindrical-type anaerobic baffled reactor. Bioresource Technology, 2015, 192, 478-485.	9.6	36
138	Temporal-Spatial Changes in Viabilities and Electrochemical Properties of Anode Biofilms. Environmental Science & Environmenta	10.0	175
139	Microbial community structure and function in response to the shift of sulfide/nitrate loading ratio during the denitrifying sulfide removal process. Bioresource Technology, 2015, 197, 227-234.	9.6	76
140	Freezing/thawing pretreatment coupled with biological process of thermophilic Geobacillus sp. G1: Acceleration on waste activated sludge hydrolysis and acidification. Bioresource Technology, 2015, 175, 509-516.	9.6	89
141	Consolidated bioprocessing performance of Thermoanaerobacterium thermosaccharolyticum M18 on fungal pretreated cornstalk for enhanced hydrogen production. Biotechnology for Biofuels, 2014, 7, 178.	6.2	31
142	Optimized culture condition for enhancing lytic performance of waste activated sludge by Geobacillus sp. G1. Water Science and Technology, 2014, 70, 200-208.	2.5	6
143	Bioreactor performance and functional gene analysis of microbial community in a limited-oxygen fed bioreactor for co-reduction of sulfate and nitrate with high organic input. Journal of Hazardous Materials, 2014, 278, 250-257.	12.4	49
144	Effect of temperature switchover on the degradation of antibiotic chloramphenicol by biocathode bioelectrochemical system. Journal of Environmental Sciences, 2014, 26, 1689-1697.	6.1	37

#	Article	IF	CITATIONS
145	Geobacter anodireducens sp. nov., an exoelectrogenic microbe in bioelectrochemical systems. International Journal of Systematic and Evolutionary Microbiology, 2014, 64, 3485-3491.	1.7	103
146	Enhanced decolorization of azo dye in a small pilot-scale anaerobic baffled reactor coupled with biocatalyzed electrolysis system (ABR–BES): A design suitable for scaling-up. Bioresource Technology, 2014, 163, 254-261.	9.6	81
147	Trehalose enhancing microbial electrolysis cell for hydrogen generation in low temperature (0°C). Bioresource Technology, 2014, 166, 458-463.	9.6	22
148	Enzymatic saccharification of cornstalk by onsite cellulases produced by <i>Trichoderma viride</i> for enhanced biohydrogen production. GCB Bioenergy, 2013, 5, 591-598.	5.6	30
149	Fungal pretreatment of cornstalk with Phanerochaete chrysosporium for enhancing enzymatic saccharification and hydrogen production. Bioresource Technology, 2012, 114, 365-369.	9.6	117
150	Isolation and Characterization of <i>Shigella flexneri</i> G3, Capable of Effective Cellulosic Saccharification under Mesophilic Conditions. Applied and Environmental Microbiology, 2011, 77, 517-523.	3.1	22
151	Bioaugmented hydrogen production from microcrystalline cellulose using co-culture—Clostridium acetobutylicum X9X9 and Ethanoigenens harbinense B49B49. International Journal of Hydrogen Energy, 2008, 33, 912-917.	7.1	113