Marieke F Fransen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8634809/publications.pdf

Version: 2024-02-01

414414 394421 33 1,843 19 32 citations h-index g-index papers 35 35 35 3392 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Immunological Responses to Cancer Therapy. International Journal of Molecular Sciences, 2022, 23, 6989.	4.1	O
2	Local delivery of low-dose anti–CTLA-4 to the melanoma lymphatic basin leads to systemic T _{reg} reduction and effector T cell activation. Science Immunology, 2022, 7, .	11.9	18
3	Immunotherapy Goes Local: The Central Role of Lymph Nodes in Driving Tumor Infiltration and Efficacy. Frontiers in Immunology, 2021, 12, 643291.	4.8	52
4	Immune Checkpoint Therapy: Tumor Draining Lymph Nodes in the Spotlights. International Journal of Molecular Sciences, 2021, 22, 9401.	4.1	16
5	Targeting Endoglin Expressing Cells in the Tumor Microenvironment Does Not Inhibit Tumor Growth in a Pancreatic Cancer Mouse Model. OncoTargets and Therapy, 2021, Volume 14, 5205-5220.	2.0	5
6	Dendritic cells dictate responses to PD-L1 blockade cancer immunotherapy. Science Translational Medicine, 2020, 12, .	12.4	229
7	Immunogenicity of rat-neu+ mouse mammary tumours determines the T cell-dependent therapeutic efficacy of anti-neu monoclonal antibody treatment. Scientific Reports, 2020, 10, 3933.	3.3	6
8	Targeting Endoglin-Expressing Regulatory T Cells in the Tumor Microenvironment Enhances the Effect of PD1 Checkpoint Inhibitor Immunotherapy. Clinical Cancer Research, 2020, 26, 3831-3842.	7.0	28
9	Thermosensitive hydrogels as sustained drug delivery system for CTLA-4 checkpoint blocking antibodies. Journal of Controlled Release, 2020, 323, 1-11.	9.9	47
10	Functional diversification of hybridoma-produced antibodies by CRISPR/HDR genomic engineering. Science Advances, 2019, 5, eaaw1822.	10.3	13
11	FcγR interaction is not required for effective antiâ€PD‣1 immunotherapy but can add additional benefit depending on the tumor model. International Journal of Cancer, 2019, 144, 345-354.	5.1	12
12	A Restricted Role for $Fc^{\hat{1}3}R$ in the Regulation of Adaptive Immunity. Journal of Immunology, 2018, 200, 2615-2626.	0.8	14
13	High $Fc\hat{l}^3R$ Expression on Intratumoral Macrophages Enhances Tumor-Targeting Antibody Therapy. Journal of Immunology, 2018, 201, 3741-3749.	0.8	11
14	A Dual-Color Bioluminescence Reporter Mouse for Simultaneous in vivo Imaging of T Cell Localization and Function. Frontiers in Immunology, 2018, 9, 3097.	4.8	32
15	Tumor-draining lymph nodes are pivotal in PD-1/PD-L1 checkpoint therapy. JCI Insight, 2018, 3, .	5.0	216
16	Fc \hat{I}^3 RI expression on macrophages is required for antibody-mediated tumor protection by cytomegalovirus-based vaccines. Oncotarget, 2018, 9, 29392-29402.	1.8	10
17	Self-Assembling Peptide Epitopes as Novel Platform for Anticancer Vaccination. Molecular Pharmaceutics, 2017, 14, 1482-1493.	4.6	46
18	PD-L1 expression on malignant cells is no prerequisite for checkpoint therapy. Oncolmmunology, 2017, 6, e1294299.	4.6	114

#	Article	IF	Citations
19	PD-L1 immune suppression in cancer: Tumor cells or host cells?. Oncolmmunology, 2017, 6, e1325982.	4.6	11
20	Photodynamic-Immune Checkpoint Therapy Eradicates Local and Distant Tumors by CD8+ T Cells. Cancer Immunology Research, 2017, 5, 832-838.	3.4	95
21	Combination of Photodynamic Therapy and Specific Immunotherapy Efficiently Eradicates Established Tumors. Clinical Cancer Research, 2016, 22, 1459-1468.	7.0	90
22	Cationic Nanogels: Reduction-Sensitive Dextran Nanogels Aimed for Intracellular Delivery of Antigens (Adv. Funct. Mater. 20/2015). Advanced Functional Materials, 2015, 25, 2992-2992.	14.9	1
23	Polymeric microparticles for sustained and local delivery of antiCD40 and antiCTLA-4 in immunotherapy of cancer. Biomaterials, 2015, 61, 33-40.	11.4	89
24	Polymeric nanoparticles for co-delivery of synthetic long peptide antigen and poly IC as therapeutic cancer vaccine formulation. Journal of Controlled Release, 2015, 203, 16-22.	9.9	87
25	Reductionâ€Sensitive Dextran Nanogels Aimed for Intracellular Delivery of Antigens. Advanced Functional Materials, 2015, 25, 2993-3003.	14.9	77
26	Near-infrared labeled, ovalbumin loaded polymeric nanoparticles based on a hydrophilic polyester as model vaccine: InÂvivo tracking and evaluation of antigen-specific CD8 + T cell immune response. Biomaterials, 2015, 37, 469-477.	11.4	64
27	Effectiveness of slow-release systems in CD40 agonistic antibody immunotherapy of cancer. Vaccine, 2014, 32, 1654-1660.	3.8	22
28	lgG-Mediated Anaphylaxis to a Synthetic Long Peptide Vaccine Containing a B Cell Epitope Can Be Avoided by Slow-Release Formulation. Journal of Immunology, 2014, 192, 5813-5820.	0.8	14
29	Local targets for immune therapy to cancer: Tumor draining lymph nodes and tumor microenvironment. International Journal of Cancer, 2013, 132, 1971-1976.	5.1	68
30	Controlled Local Delivery of CTLA-4 Blocking Antibody Induces CD8+ T-Cell–Dependent Tumor Eradication and Decreases Risk of Toxic Side Effects. Clinical Cancer Research, 2013, 19, 5381-5389.	7.0	172
31	Local immunomodulation for cancer therapy: Providing treatment where needed. Oncolmmunology, 2013, 2, e26493.	4.6	24
32	Local Activation of CD8 T Cells and Systemic Tumor Eradication without Toxicity via Slow Release and Local Delivery of Agonistic CD40 Antibody. Clinical Cancer Research, 2011, 17, 2270-2280.	7.0	147
33	Separate Roles for Antigen Recognition and Lymph Node Inflammation in CD8+ Memory T Cell Formation. Journal of Immunology, 2010, 185, 3167-3173.	0.8	5