Jarmo Käpylä

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8634742/publications.pdf

Version: 2024-02-01

ΙΛΡΜΟΚΔάνιΔά

#	Article	IF	CITATIONS
1	Integrin $\hat{1}\pm11\hat{1}^21$ is a receptor for collagen XIII. Cell and Tissue Research, 2021, 383, 1135-1153.	2.9	14
2	The binding mechanism of the virulence factor Streptococcus suis adhesin P subtype to globotetraosylceramide is associated with systemic disease. Journal of Biological Chemistry, 2020, 295, 14305-14324.	3.4	10
3	Proline hydroxylation in collagen supports integrin binding by two distinct mechanisms. Journal of Biological Chemistry, 2018, 293, 7645-7658.	3.4	57
4	The binding capacity of α1β1-, α2β1- and α10β1-integrins depends on non-collagenous surface macromolecule rather than the collagens in cartilage fibrils. Matrix Biology, 2017, 63, 91-105.	^{2S} 3.6	44
5	Joint inflammation related citrullination of functional arginines in extracellular proteins. Scientific Reports, 2017, 7, 8246.	3.3	18
6	Extracellular citrullination inhibits the function of matrix associated TGF-β. Matrix Biology, 2016, 55, 77-89.	3.6	16
7	Sulfonamide inhibitors of <i>î±</i> 2 <i>î²</i> 1 integrin reveal the essential role of collagen receptors in in vivo models of inflammation. Pharmacology Research and Perspectives, 2015, 3, e00146.	2.4	9
8	Leukocyte Integrins α L β 2 , α M β 2 and α X β 2 as Collagen Receptors ―Receptor Activation and Recognitio GFOGER Motif. FASEB Journal, 2015, 29, LB167.	n 8f _{.5}	0
9	Citrullination of collagen II affects integrinâ€mediated cell adhesion in a receptorâ€specific manner. FASEB Journal, 2014, 28, 3758-3768.	0.5	39
10	In vitro blood and fibroblast responses to BisGMA–TEGDMA/bioactive glass composite implants. Journal of Materials Science: Materials in Medicine, 2014, 25, 151-162.	3.6	11
11	Early Chordate Origin of the Vertebrate Integrin αl Domains. PLoS ONE, 2014, 9, e112064.	2.5	7
12	Molecular mechanism of T-cell protein tyrosine phosphatase (TCPTP) activation by mitoxantrone. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 1988-1997.	2.3	14
13	Evolution of Cell Adhesion to Extracellular Matrix. Biology of Extracellular Matrix, 2013, , 243-283.	0.3	4
14	Leukocyte integrins αLβ2, αMβ2 and αXβ2 as collagen receptors—Receptor activation and recognition of GFOGER motif. International Journal of Biochemistry and Cell Biology, 2013, 45, 1204-1211.	2.8	25
15	Novel α2β1 Integrin Inhibitors Reveal That Integrin Binding to Collagen under Shear Stress Conditions Does Not Require Receptor Preactivation. Journal of Biological Chemistry, 2012, 287, 44694-44702.	3.4	37
16	Fluorescent Small Molecule Probe to Modulate and Explore α2β1 Integrin Function. Journal of the American Chemical Society, 2011, 133, 14558-14561.	13.7	15
17	Collagen XXIII, Novel Ligand for Integrin α2β1 in the Epidermis. Journal of Biological Chemistry, 2011, 286, 27804-27813.	3.4	39
18	Structure of Collagen Receptor Integrin α11 Domain Carrying the Activating Mutation E317A. Journal of Biological Chemistry, 2011, 286, 43343-43351.	3.4	20

Jarmo KÃ**p**ylä

#	Article	IF	CITATIONS
19	A small-molecule inhibitor of integrin α2β1 introduces a new strategy for antithrombotic therapy. Thrombosis and Haemostasis, 2010, 103, 387-397.	3.4	40
20	Lumican inhibits cell migration through $\hat{1}\pm 2\hat{1}^21$ integrin. Experimental Cell Research, 2010, 316, 2922-2931.	2.6	88
21	Molecular mechanism of α2β1 integrin interaction with human echovirus 1. EMBO Journal, 2010, 29, 196-208.	7.8	83
22	Effects of conformational activation of integrin α11 and α21 domains on selective recognition of laminin and collagen subtypes. Experimental Cell Research, 2008, 314, 1734-1743.	2.6	32
23	Small Molecule Designed to Target Metal Binding Site in the α21 Domain Inhibits Integrin Function. Journal of Medicinal Chemistry, 2007, 50, 2742-2746.	6.4	24
24	Analysis of an ascidian integrin provides new insight into early evolution of collagen recognition. FEBS Letters, 2007, 581, 2434-2440.	2.8	12
25	Integrin-mediated Cell Adhesion to Type I Collagen Fibrils. Journal of Biological Chemistry, 2004, 279, 31956-31963.	3.4	311
26	Jararhagin-derived RKKH Peptides Induce Structural Changes in α11 Domain of Human Integrin α1β1. Journal of Biological Chemistry, 2004, 279, 7962-7970.	3.4	35
27	Structural and Functional Analysis of Integrin α2I Domain Interaction with Echovirus 1. Journal of Biological Chemistry, 2004, 279, 11632-11638.	3.4	55
28	The Fibril-associated Collagen IX Provides a Novel Mechanism for Cell Adhesion to Cartilaginous Matrix. Journal of Biological Chemistry, 2004, 279, 51677-51687.	3.4	65
29	α11β1 Integrin Recognizes the GFOGER Sequence in Interstitial Collagens. Journal of Biological Chemistry, 2003, 278, 7270-7277.	3.4	143
30	Selective Binding of Collagen Subtypes by Integrin α1I, α2I, and α10I Domains. Journal of Biological Chemistry, 2001, 276, 48206-48212.	3.4	221
31	Integrin α2I Domain Recognizes Type I and Type IV Collagens by Different Mechanisms. Journal of Biological Chemistry, 2000, 275, 3348-3354.	3.4	65
32	Distinct Recognition of Collagen Subtypes by α1β1 and α2β1Integrins. Journal of Biological Chemistry, 2000, 275, 8255-8261.	3.4	151
33	A Peptide Inhibiting the Collagen Binding Function of Integrin α2I Domain. Journal of Biological Chemistry, 1999, 274, 3513-3521.	3.4	81
34	"RKKH―Peptides from the Snake Venom Metalloproteinase ofBothrops jararaca Bind Near the Metal Ion-dependent Adhesion Site of the Human Integrin α2 I-domain. Journal of Biological Chemistry, 1999, 274, 31493-31505.	3.4	33
35	Production, crystallization and preliminary X-ray analysis of the human integrin alpha_1 I domain. Acta Crystallographica Section D: Biological Crystallography, 1999, 55, 1365-1367.	2.5	13
36	The R78K and D117E active-site variants of Saccharomyces cerevisiae soluble inorganic pyrophosphatase: structural studies and mechanistic implications 1 1Edited by D. Rees. Journal of Molecular Biology, 1998, 284, 1565-1580.	4.2	21

#	Article	IF	CITATIONS
37	Effect of E20D Substitution in the Active Site ofEscherichia coliInorganic Pyrophosphatase on Its Quaternary Structure and Catalytic Propertiesâ€. Biochemistry, 1996, 35, 4662-4669.	2.5	24
38	Effect of D97E Substitution on the Kinetic and Thermodynamic Properties of Escherichia coli Inorganic Pyrophosphatase. Biochemistry, 1995, 34, 792-800.	2.5	43