Jarmo Käpylä

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8634742/publications.pdf

Version: 2024-02-01

38 papers	1,919 citations	279798 23 h-index	330143 37 g-index
38 all docs	38 docs citations	38 times ranked	2352 citing authors

#	Article	IF	CITATIONS
1	Integrin-mediated Cell Adhesion to Type I Collagen Fibrils. Journal of Biological Chemistry, 2004, 279, 31956-31963.	3.4	311
2	Selective Binding of Collagen Subtypes by Integrin $\hat{l}\pm1l$, $\hat{l}\pm2l$, and $\hat{l}\pm10l$ Domains. Journal of Biological Chemistry, 2001, 276, 48206-48212.	3.4	221
3	Distinct Recognition of Collagen Subtypes by $\hat{l}\pm1\hat{l}^21$ and $\hat{l}\pm2\hat{l}^21$ Integrins. Journal of Biological Chemistry, 2000, 275, 8255-8261.	3.4	151
4	$\hat{l}\pm11\hat{l}^21$ Integrin Recognizes the GFOGER Sequence in Interstitial Collagens. Journal of Biological Chemistry, 2003, 278, 7270-7277.	3.4	143
5	Lumican inhibits cell migration through $\hat{l}\pm2\hat{l}^21$ integrin. Experimental Cell Research, 2010, 316, 2922-2931.	2.6	88
6	Molecular mechanism of $\hat{l}\pm2\hat{l}^21$ integrin interaction with human echovirus 1. EMBO Journal, 2010, 29, 196-208.	7.8	83
7	A Peptide Inhibiting the Collagen Binding Function of Integrin α2I Domain. Journal of Biological Chemistry, 1999, 274, 3513-3521.	3.4	81
8	Integrin α21 Domain Recognizes Type I and Type IV Collagens by Different Mechanisms. Journal of Biological Chemistry, 2000, 275, 3348-3354.	3.4	65
9	The Fibril-associated Collagen IX Provides a Novel Mechanism for Cell Adhesion to Cartilaginous Matrix. Journal of Biological Chemistry, 2004, 279, 51677-51687.	3.4	65
10	Proline hydroxylation in collagen supports integrin binding by two distinct mechanisms. Journal of Biological Chemistry, 2018, 293, 7645-7658.	3.4	57
11	Structural and Functional Analysis of Integrin $\hat{l}\pm2l$ Domain Interaction with Echovirus 1. Journal of Biological Chemistry, 2004, 279, 11632-11638.	3.4	55
12	The binding capacity of $\hat{l}\pm1\hat{l}^21$ -, $\hat{l}\pm2\hat{l}^21$ - and $\hat{l}\pm10\hat{l}^21$ -integrins depends on non-collagenous surface macromolecules rather than the collagens in cartilage fibrils. Matrix Biology, 2017, 63, 91-105.	^{\$} 3.6	44
13	Effect of D97E Substitution on the Kinetic and Thermodynamic Properties of Escherichia coli Inorganic Pyrophosphatase. Biochemistry, 1995, 34, 792-800.	2.5	43
14	A small-molecule inhibitor of integrin $\hat{l}\pm2\hat{l}^21$ introduces a new strategy for antithrombotic therapy. Thrombosis and Haemostasis, 2010, 103, 387-397.	3.4	40
15	Collagen XXIII, Novel Ligand for Integrin $\hat{l}\pm2\hat{l}^21$ in the Epidermis. Journal of Biological Chemistry, 2011, 286, 27804-27813.	3.4	39
16	Citrullination of collagen II affects integrinâ€mediated cell adhesion in a receptorâ€specific manner. FASEB Journal, 2014, 28, 3758-3768.	0.5	39
17	Novel $\hat{l}\pm2\hat{l}^21$ Integrin Inhibitors Reveal That Integrin Binding to Collagen under Shear Stress Conditions Does Not Require Receptor Preactivation. Journal of Biological Chemistry, 2012, 287, 44694-44702.	3.4	37
18	Jararhagin-derived RKKH Peptides Induce Structural Changes in $\hat{l}\pm 1l$ Domain of Human Integrin $\hat{l}\pm 1\hat{l}^21$. Journal of Biological Chemistry, 2004, 279, 7962-7970.	3.4	35

#	Article	IF	CITATIONS
19	"RKKH―Peptides from the Snake Venom Metalloproteinase ofBothrops jararaca Bind Near the Metal lon-dependent Adhesion Site of the Human Integrin α2 I-domain. Journal of Biological Chemistry, 1999, 274, 31493-31505.	3.4	33
20	Effects of conformational activation of integrin $\hat{l}\pm 1l$ and $\hat{l}\pm 2l$ domains on selective recognition of laminin and collagen subtypes. Experimental Cell Research, 2008, 314, 1734-1743.	2.6	32
21	Leukocyte integrins αLβ2, αMβ2 and αXβ2 as collagen receptors—Receptor activation and recognition of GFOGER motif. International Journal of Biochemistry and Cell Biology, 2013, 45, 1204-1211.	2.8	25
22	Effect of E20D Substitution in the Active Site ofEscherichia colilnorganic Pyrophosphatase on Its Quaternary Structure and Catalytic Propertiesâ€. Biochemistry, 1996, 35, 4662-4669.	2.5	24
23	Small Molecule Designed to Target Metal Binding Site in the α21 Domain Inhibits Integrin Function. Journal of Medicinal Chemistry, 2007, 50, 2742-2746.	6.4	24
24	The R78K and D117E active-site variants of Saccharomyces cerevisiae soluble inorganic pyrophosphatase: structural studies and mechanistic implications 1 1Edited by D. Rees. Journal of Molecular Biology, 1998, 284, 1565-1580.	4.2	21
25	Structure of Collagen Receptor Integrin $\hat{l}\pm 1l$ Domain Carrying the Activating Mutation E317A. Journal of Biological Chemistry, 2011, 286, 43343-43351.	3.4	20
26	Joint inflammation related citrullination of functional arginines in extracellular proteins. Scientific Reports, 2017, 7, 8246.	3.3	18
27	Extracellular citrullination inhibits the function of matrix associated TGF- \hat{l}^2 . Matrix Biology, 2016, 55, 77-89.	3.6	16
28	Fluorescent Small Molecule Probe to Modulate and Explore $\hat{l}\pm2\hat{l}^21$ Integrin Function. Journal of the American Chemical Society, 2011, 133, 14558-14561.	13.7	15
29	Molecular mechanism of T-cell protein tyrosine phosphatase (TCPTP) activation by mitoxantrone. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 1988-1997.	2.3	14
30	Integrin $\hat{l}\pm11\hat{l}^21$ is a receptor for collagen XIII. Cell and Tissue Research, 2021, 383, 1135-1153.	2.9	14
31	Production, crystallization and preliminary X-ray analysis of the human integrin alpha_1 I domain. Acta Crystallographica Section D: Biological Crystallography, 1999, 55, 1365-1367.	2.5	13
32	Analysis of an ascidian integrin provides new insight into early evolution of collagen recognition. FEBS Letters, 2007, 581, 2434-2440.	2.8	12
33	In vitro blood and fibroblast responses to BisGMA–TEGDMA/bioactive glass composite implants. Journal of Materials Science: Materials in Medicine, 2014, 25, 151-162.	3.6	11
34	The binding mechanism of the virulence factor Streptococcus suis adhesin P subtype to globotetraosylceramide is associated with systemic disease. Journal of Biological Chemistry, 2020, 295, 14305-14324.	3.4	10
35	Sulfonamide inhibitors of $\langle i \rangle \hat{l} \pm \langle i \rangle 2 \langle i \rangle \hat{l}^2 \langle i \rangle 1$ integrin reveal the essential role of collagen receptors in in vivo models of inflammation. Pharmacology Research and Perspectives, 2015, 3, e00146.	2.4	9
36	Early Chordate Origin of the Vertebrate Integrin αl Domains. PLoS ONE, 2014, 9, e112064.	2.5	7

#	Article	IF	CITATIONS
37	Evolution of Cell Adhesion to Extracellular Matrix. Biology of Extracellular Matrix, 2013, , 243-283.	0.3	4
38	Leukocyte Integrins α L β 2 , α M β 2 and α X β 2 as Collagen Receptors ―Receptor Activation and Recognition of GFOGER Motif. FASEB Journal. 2015. 29. LB167.		0