Alexandru Mihai Grumezescu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8634444/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biomedical Applications of Silver Nanoparticles: An Up-to-Date Overview. Nanomaterials, 2018, 8, 681.	4.1	828
2	Natural and synthetic polymers for wounds and burns dressing. International Journal of Pharmaceutics, 2014, 463, 127-136.	5.2	826
3	Treatment Strategies for Infected Wounds. Molecules, 2018, 23, 2392.	3.8	421
4	Tumor Angiogenesis and Anti-Angiogenic Strategies for Cancer Treatment. Journal of Clinical Medicine, 2020, 9, 84.	2.4	286
5	Nanomaterials for Wound Healing and Infection Control. Materials, 2019, 12, 2176.	2.9	263
6	Methods of Synthesis, Properties and Biomedical Applications of CuO Nanoparticles. Pharmaceuticals, 2016, 9, 75.	3.8	257
7	Fabrication and Applications of Microfluidic Devices: A Review. International Journal of Molecular Sciences, 2021, 22, 2011.	4.1	241
8	Applications and Toxicity of Silver Nanoparticles: A Recent Review. Current Topics in Medicinal Chemistry, 2015, 15, 1596-1604.	2.1	201
9	Recent trends and methodologies in gold nanoparticle synthesis – A prospective review on drug delivery aspect. OpenNano, 2017, 2, 37-46.	4.8	196
10	Blood-Brain Delivery Methods Using Nanotechnology. Pharmaceutics, 2018, 10, 269.	4.5	191
11	An Overview of Oxidative Stress, Neuroinflammation, and Neurodegenerative Diseases. International Journal of Molecular Sciences, 2022, 23, 5938.	4.1	176
12	Biomedical Applications of Gold Nanoparticles. Current Topics in Medicinal Chemistry, 2015, 15, 1605-1613.	2.1	168
13	Impact of Nanoparticles on Brain Health: An Up to Date Overview. Journal of Clinical Medicine, 2018, 7, 490.	2.4	142
14	Nanomaterials for Wound Dressings: An Up-to-Date Overview. Molecules, 2020, 25, 2699.	3.8	126
15	An Updated Review on Silver Nanoparticles in Biomedicine. Nanomaterials, 2020, 10, 2318.	4.1	121
16	Magnetite nanoparticles: Synthesis methods – A comparative review. Methods, 2022, 199, 16-27.	3.8	118
17	Hybrid magnetite nanoparticles/Rosmarinus officinalis essential oil nanobiosystem with antibiofilm activity. Nanoscale Research Letters, 2012, 7, 209.	5.7	111
18	Neurotoxicity of Nanomaterials: An Up-to-Date Overview. Nanomaterials, 2019, 9, 96.	4.1	109

#	Article	IF	CITATIONS
19	Photodynamic Therapy—An Up-to-Date Review. Applied Sciences (Switzerland), 2021, 11, 3626.	2.5	105
20	Nanomaterials for Drug Delivery to the Central Nervous System. Nanomaterials, 2019, 9, 371.	4.1	96
21	Nanocoatings for Chronic Wound Repair—Modulation of Microbial Colonization and Biofilm Formation. International Journal of Molecular Sciences, 2018, 19, 1179.	4.1	90
22	Hydrogel Dressings for the Treatment of Burn Wounds: An Up-To-Date Overview. Materials, 2020, 13, 2853.	2.9	90
23	Polymeric Nanoparticles for Antimicrobial Therapies: An up-to-date Overview. Polymers, 2021, 13, 724.	4.5	86
24	Biohybrid Nanostructured Iron Oxide Nanoparticles and Satureja hortensis to Prevent Fungal Biofilm Development. International Journal of Molecular Sciences, 2013, 14, 18110-18123.	4.1	84
25	Nanobiomaterials Used in Cancer Therapy: An Up-To-Date Overview. Molecules, 2019, 24, 3547.	3.8	81
26	Inorganic Nanoparticles and Composite Films for Antimicrobial Therapies. International Journal of Molecular Sciences, 2021, 22, 4595.	4.1	81
27	Nanomaterials Synthesis through Microfluidic Methods: An Updated Overview. Nanomaterials, 2021, 11, 864.	4.1	77
28	The Effect of Silver Nanoparticles on Antioxidant/Pro-Oxidant Balance in a Murine Model. International Journal of Molecular Sciences, 2020, 21, 1233.	4.1	75
29	Electrospun Fiber Pads of Cellulose Acetate and Essential Oils with Antimicrobial Activity. Nanomaterials, 2017, 7, 84.	4.1	74
30	Neurotransmitters—Key Factors in Neurological and Neurodegenerative Disorders of the Central Nervous System. International Journal of Molecular Sciences, 2022, 23, 5954.	4.1	71
31	In vitro and in vivo studies of novel fabricated bioactive dressings based on collagen and zinc oxide 3D scaffolds. International Journal of Pharmaceutics, 2019, 557, 199-207.	5.2	68
32	Water dispersible cross-linked magnetic chitosan beads for increasing the antimicrobial efficiency of aminoglycoside antibiotics. International Journal of Pharmaceutics, 2013, 454, 233-240.	5.2	67
33	Applications of Chitosan-Alginate-Based Nanoparticles—An Up-to-Date Review. Nanomaterials, 2022, 12, 186.	4.1	67
34	Antioxidant Therapies for Neuroprotection—A Review. Journal of Clinical Medicine, 2019, 8, 1659.	2.4	65
35	Functionalized antibiofilm thin coatings based on PLA–PVA microspheres loaded with usnic acid natural compounds fabricated by MAPLE. Applied Surface Science, 2014, 302, 262-267.	6.1	64
36	New Insights of Scaffolds Based on Hydrogels in Tissue Engineering. Polymers, 2022, 14, 799.	4.5	63

#	Article	IF	CITATIONS
37	Biocompatible Fe3O4 Increases the Efficacy of Amoxicillin Delivery against Gram-Positive and Gram-Negative Bacteria. Molecules, 2014, 19, 5013-5027.	3.8	59
38	An Up-to-Date Review of Biomaterials Application in Wound Management. Polymers, 2022, 14, 421.	4.5	59
39	Magnetite Nanostructures as Novel Strategies for Anti-Infectious Therapy. Molecules, 2014, 19, 12710-12726.	3.8	58
40	Neuronanomedicine: An Up-to-Date Overview. Pharmaceutics, 2019, 11, 101.	4.5	54
41	Inhibitory Activity of \${m Fe}_{3} {m O}_{4}\$/Oleic Acid/Usnic Acid—Core/Shell/Extra-Shell Nanofluid on S. aureus Biofilm Development. IEEE Transactions on Nanobioscience, 2011, 10, 269-274.	3.3	53
42	Synthesis, characterization and in vitro assessment of the magnetic chitosan–carboxymethylcellulose biocomposite interactions with the prokaryotic and eukaryotic cells. International Journal of Pharmaceutics, 2012, 436, 771-777.	5.2	53
43	Cardiovascular Stents: A Review of Past, Current, and Emerging Devices. Materials, 2021, 14, 2498.	2.9	53
44	Clinical Applications of Artificial Intelligence—An Updated Overview. Journal of Clinical Medicine, 2022, 11, 2265.	2.4	53
45	Polymeric protective agents for nanoparticles in drug delivery and targeting. International Journal of Pharmaceutics, 2016, 510, 419-429.	5.2	52
46	Magnetite nanoparticles for functionalized textile dressing to prevent fungal biofilms development. Nanoscale Research Letters, 2012, 7, 501.	5.7	51
47	MAPLE fabricated magnetite@eugenol and (3-hidroxybutyric acid-co-3-hidroxyvaleric acid)–polyvinyl alcohol microspheres coated surfaces with anti-microbial properties. Applied Surface Science, 2014, 306, 16-22.	6.1	51
48	Modified wound dressing with phyto-nanostructured coating to prevent staphylococcal and pseudomonal biofilm development. Nanoscale Research Letters, 2012, 7, 690.	5.7	50
49	Cellulose acetate - essential oil nanocapsules with antimicrobial activity for biomedical applications. Colloids and Surfaces B: Biointerfaces, 2018, 172, 471-479.	5.0	50
50	Water dispersible magnetite nanoparticles influence the efficacy of antibiotics against planktonic and biofilm embedded Enterococcus faecalis cells. Anaerobe, 2013, 22, 14-19.	2.1	49
51	Efficiency of Vanilla, Patchouli and Ylang Ylang Essential Oils Stabilized by Iron Oxide@C14 Nanostructures against Bacterial Adherence and Biofilms Formed by Staphylococcus aureus and Klebsiella pneumoniae Clinical Strains. Molecules, 2014, 19, 17943-17956.	3.8	49
52	Improved antibacterial activity of cephalosporins loaded in magnetic chitosan microspheres. International Journal of Pharmaceutics, 2012, 436, 201-205.	5.2	47
53	In vitro activity of the new water-dispersible Fe3O4@usnic acid nanostructure against planktonic and sessile bacterial cells. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	47
54	Polylactic Acid—Lemongrass Essential Oil Nanocapsules with Antimicrobial Properties. Pharmaceuticals, 2016, 9, 42.	3.8	46

#	Article	IF	CITATIONS
55	Body Fluid Biomarkers for Alzheimer's Disease—An Up-To-Date Overview. Biomedicines, 2020, 8, 421.	3.2	46
56	ZnO Nanoparticles-Modified Dressings to Inhibit Wound Pathogens. Materials, 2021, 14, 3084.	2.9	46
57	Recent Developments in Metallic Nanomaterials for Cancer Therapy, Diagnosing and Imaging Applications. Pharmaceutics, 2022, 14, 435.	4.5	46
58	Usnic acid-loaded biocompatible magnetic PLGA-PVA microsphere thin films fabricated by MAPLE with increased resistance to staphylococcal colonization. Biofabrication, 2014, 6, 035002.	7.1	45
59	Microelectromechanical Systems (MEMS) for Biomedical Applications. Micromachines, 2022, 13, 164.	2.9	44
60	Current Strategies to Enhance Delivery of Drugs across the Blood–Brain Barrier. Pharmaceutics, 2022, 14, 987.	4.5	44
61	All natural cellulose acetate—Lemongrass essential oil antimicrobial nanocapsules. International Journal of Pharmaceutics, 2016, 510, 508-515.	5.2	42
62	Recent Advances in Surface Nanoengineering for Biofilm Prevention and Control. Part II: Active, Combined Active and Passive, and Smart Bacteria-Responsive Antibiofilm Nanocoatings. Nanomaterials, 2020, 10, 1527.	4.1	41
63	Surface modification – A step forward to overcome the current challenges in orthopedic industry and to obtain an improved osseointegration and antimicrobial properties. Materials Chemistry and Physics, 2020, 243, 122579.	4.0	39
64	MAPLE Fabricated Fe3O4@Cinnamomum verum Antimicrobial Surfaces for Improved Gastrostomy Tubes. Molecules, 2014, 19, 8981-8994.	3.8	38
65	Silver Nanocoatings for Reducing the Exogenous Microbial Colonization of Wound Dressings. Materials, 2016, 9, 345.	2.9	38
66	Recent Advances in Surface Nanoengineering for Biofilm Prevention and Control. Part I: Molecular Basis of Biofilm Recalcitrance. Passive Anti-Biofouling Nanocoatings. Nanomaterials, 2020, 10, 1230.	4.1	38
67	Anionic polymers and 10nm Fe3O4@UA wound dressings support human foetal stem cells normal development and exhibit great antimicrobial properties. International Journal of Pharmaceutics, 2014, 463, 146-154.	5.2	37
68	Keratin-Based Biomaterials for Biomedical Applications. Current Drug Targets, 2014, 15, 518-530.	2.1	37
69	Hyaluronic acid-based scaffolds for tissue engineering. Romanian Journal of Morphology and Embryology, 2018, 59, 71-76.	0.8	37
70	Hybrid Nanomaterial for Stabilizing the Antibiofilm Activity of Eugenia carryophyllata Essential Oil. IEEE Transactions on Nanobioscience, 2012, 11, 360-365.	3.3	36
71	Functionalized magnetite silica thin films fabricated by MAPLE with antibiofilm properties. Biofabrication, 2013, 5, 015007.	7.1	36
72	Magnetite Nanoparticles and Essential Oils Systems for Advanced Antibacterial Therapies. International Journal of Molecular Sciences, 2020, 21, 7355.	4.1	36

#	Article	IF	CITATIONS
73	Marine Biocompounds for Neuroprotection—A Review. Marine Drugs, 2020, 18, 290.	4.6	36
74	Trends in the Immunomodulatory Effects of Cordyceps militaris: Total Extracts, Polysaccharides and Cordycepin. Frontiers in Pharmacology, 2020, 11, 575704.	3.5	35
75	Novel Tumor-Targeting Nanoparticles for Cancer Treatment—A Review. International Journal of Molecular Sciences, 2022, 23, 5253.	4.1	35
76	Fabrication and Cytotoxicity of Gemcitabine-Functionalized Magnetite Nanoparticles. Molecules, 2017, 22, 1080.	3.8	34
77	Bone Regeneration and Oxidative Stress: An Updated Overview. Antioxidants, 2022, 11, 318.	5.1	34
78	Bioactive mesoporous silica nanostructures with anti-microbial and anti-biofilm properties. International Journal of Pharmaceutics, 2017, 531, 35-46.	5.2	33
79	Electrospun Polyethylene Terephthalate Nanofibers Loaded with Silver Nanoparticles: Novel Approach in Anti-Infective Therapy. Journal of Clinical Medicine, 2019, 8, 1039.	2.4	33
80	Recent Advances in the Treatment of Bone Metastases and Primary Bone Tumors: An Up-to-Date Review. Cancers, 2021, 13, 4229.	3.7	33
81	Fabrication, characterization and in vitro profile based interaction with eukaryotic and prokaryotic cells of alginate–chitosan–silica biocomposite. International Journal of Pharmaceutics, 2013, 441, 555-561.	5.2	32
82	Plackett–Burman experimental design for bacterial cellulose–silica composites synthesis. Materials Science and Engineering C, 2014, 42, 280-288.	7.3	32
83	Antimicrobial nanospheres thin coatings prepared by advanced pulsed laser technique. Beilstein Journal of Nanotechnology, 2014, 5, 872-880.	2.8	31
84	Bioactive Surfaces of Polylactide and Silver Nanoparticles for the Prevention of Microbial Contamination. Materials, 2020, 13, 768.	2.9	31
85	Antimicrobial Lemongrass Essential Oil—Copper Ferrite Cellulose Acetate Nanocapsules. Molecules, 2016, 21, 520.	3.8	30
86	Control of biofilm-associated infections by signaling molecules and nanoparticles. International Journal of Pharmaceutics, 2016, 510, 409-418.	5.2	30
87	Nanosystems for Improved Targeted Therapies in Melanoma. Journal of Clinical Medicine, 2020, 9, 318.	2.4	30
88	Identification and phenotypic characterization of the most frequent bacterial etiologies in chronic skin ulcers. Romanian Journal of Morphology and Embryology, 2014, 55, 1401-8.	0.8	29
89	Efficient surface functionalization of wound dressings by a phytoactive nanocoating refractory to <i>Candida albicans</i> biofilm development. Biointerphases, 2013, 8, 12.	1.6	28
90	MAPLE Coatings Embedded with Essential Oil-Conjugated Magnetite for Anti-Biofilm Applications. Materials, 2021, 14, 1612.	2.9	27

#	Article	IF	CITATIONS
91	Eugenol-Functionalized Magnetite Nanoparticles Modulate Virulence and Persistence in Pseudomonas aeruginosa Clinical Strains. Molecules, 2021, 26, 2189.	3.8	27
92	Hybrid nanostructured coating for increased resistance of prosthetic devices to staphylococcal colonization. Nanoscale Research Letters, 2013, 8, 6.	5.7	26
93	Antimicrobial Nanostructured Bioactive Coating Based on Fe3O4 and Patchouli Oil for Wound Dressing. Metals, 2016, 6, 103.	2.3	26
94	Bioactive ZnO Coatings Deposited by MAPLE—An Appropriate Strategy to Produce Efficient Anti-Biofilm Surfaces. Molecules, 2016, 21, 220.	3.8	26
95	Modified Composite Based on Magnetite and Polyvinyl Alcohol: Synthesis, Characterization, and Degradation Studies of the Methyl Orange Dye from Synthetic Wastewater. Polymers, 2021, 13, 3911.	4.5	26
96	Inorganic Nanoparticles in Bone Healing Applications. Pharmaceutics, 2022, 14, 770.	4.5	26
97	Fabrication of magnetite-based core–shell coated nanoparticles with antibacterial properties. Biofabrication, 2015, 7, 015014.	7.1	25
98	Silver nanoparticles in cancer therapy. , 2016, , 29-56.		25
99	Magnetic Particles for Advanced Molecular Diagnosis. Materials, 2019, 12, 2158.	2.9	25
100	Prevention of Microbial Communities: Novel Approaches Based Natural Products. Current Pharmaceutical Biotechnology, 2015, 16, 94-111.	1.6	25
101	An Up-to-Date Review of Natural Nanoparticles for Cancer Management. Pharmaceutics, 2022, 14, 18.	4.5	25
102	MAPLE fabrication of thin films based on kanamycin functionalized magnetite nanoparticles with anti-pathogenic properties. Applied Surface Science, 2015, 336, 188-195.	6.1	24
103	MAPLE deposition of Nigella sativa functionalized Fe3O4 nanoparticles for antimicrobial coatings. Applied Surface Science, 2018, 455, 513-521.	6.1	24
104	Biosensors-on-Chip: An Up-to-Date Review. Molecules, 2020, 25, 6013.	3.8	24
105	Scar-Free Healing: Current Concepts and Future Perspectives. Nanomaterials, 2020, 10, 2179.	4.1	24
106	Biomedical Applications of Synthetic, Biodegradable Polymers for the Development of Anti-Infective Strategies. Current Medicinal Chemistry, 2014, 21, 3383-3390.	2.4	24
107	Essential Oils and Nanotechnology for Combating Microbial Biofilms. Current Organic Chemistry, 2013, 17, 90-96.	1.6	24
108	Coreâ€shell structure microcapsules with dual pHâ€responsive drug release function. Electrophoresis, 2014, 35, 2673-2680.	2.4	23

#	Article	IF	CITATIONS
109	Antibiofilm Coatings Based on PLGA and Nanostructured Cefepime-Functionalized Magnetite. Nanomaterials, 2018, 8, 633.	4.1	23
110	Fabrication, Characterization, and Evaluation of Bionanocomposites Based on Natural Polymers and Antibiotics for Wound Healing Applications. Molecules, 2016, 21, 761.	3.8	22
111	Smart Synthetic Polymer Nanocarriers for Controlled and Site-Specific Drug Delivery. Current Topics in Medicinal Chemistry, 2015, 15, 1424-1490.	2.1	22
112	Novel Trends into the Development of Natural Hydroxyapatite-Based Polymeric Composites for Bone Tissue Engineering. Polymers, 2022, 14, 899.	4.5	22
113	Magnetic core/shell nanoparticle thin films deposited by MAPLE: Investigation by chemical, morphological and in vitro biological assays. Applied Surface Science, 2012, 258, 9250-9255.	6.1	21
114	New silica nanostructure for the improved delivery of topical antibiotics used in the treatment of staphylococcal cutaneous infections. International Journal of Pharmaceutics, 2014, 463, 170-176.	5.2	21
115	New Molecular Strategies for Reducing Implantable Medical Devices Associated Infections. Current Medicinal Chemistry, 2014, 21, 3375-3382.	2.4	21
116	Synthesis of uniform core–shell gelatin–alginate microparticles as intestineâ€released oral delivery drug carrier. Electrophoresis, 2014, 35, 330-336.	2.4	21
117	Inorganic nanoarchitectonics designed for drug delivery and anti-infective surfaces. , 2016, , 301-327.		21
118	Contrast Agents Delivery: An Up-to-Date Review of Nanodiagnostics in Neuroimaging. Nanomaterials, 2019, 9, 542.	4.1	21
119	Metallic-Based Micro and Nanostructures with Antimicrobial Activity. Current Topics in Medicinal Chemistry, 2015, 15, 1577-1582.	2.1	21
120	Polymer-Based Nanosystems—A Versatile Delivery Approach. Materials, 2021, 14, 6812.	2.9	21
121	Mesoporous silica coatings for cephalosporin active release at the bone-implant interface. Applied Surface Science, 2016, 374, 165-171.	6.1	20
122	Regenerative Wound Dressings for Skin Cancer. Cancers, 2020, 12, 2954.	3.7	20
123	Iron oxide nanoparticles modulate the interaction of different antibiotics with cellular membranes. Romanian Journal of Morphology and Embryology, 2014, 55, 849-56.	0.8	20
124	Gamma-cyclodextrin/usnic acid thin film fabricated by MAPLE for improving the resistance of medical surfaces to Staphylococcus aureus colonization. Applied Surface Science, 2015, 336, 407-412.	6.1	19
125	Biocompatible cephalosporin-hydroxyapatite-poly(lactic-co-glycolic acid)-coatings fabricated by MAPLE technique for the prevention of bone implant associated infections. Applied Surface Science, 2016, 374, 387-396.	6.1	19
126	Novel Drug Delivery Magnetite Nano-systems Used in Antimicrobial Therapy. Current Organic Chemistry, 2014, 18, 185-191.	1.6	19

#	Article	IF	CITATIONS
127	Bee-Derived Products: Chemical Composition and Applications in Skin Tissue Engineering. Pharmaceutics, 2022, 14, 750.	4.5	19
128	In vitro evaluation of anti-pathogenic surface coating nanofluid, obtained by combining Fe3O4/C12 nanostructures and 2-((4-ethylphenoxy)methyl)-N-(substituted-phenylcarbamothioyl)-benzamides. Nanoscale Research Letters, 2012, 7, 513.	5.7	18
129	Thin coatings based on ZnO@C18-usnic acid nanoparticles prepared by MAPLE inhibit the development of Salmonella enterica early biofilm growth. Applied Surface Science, 2016, 374, 318-325.	6.1	18
130	Natural products used forÂfood preservation. , 2017, , 365-411.		18
131	Anti-Cancer Nanopowders and MAPLE-Fabricated Thin Films Based on SPIONs Surface Modified with Paclitaxel Loaded I ² -Cyclodextrin. Pharmaceutics, 2021, 13, 1356.	4.5	18
132	Biomedical Applications of Natural Polymers for Drug Delivery. Current Organic Chemistry, 2014, 18, 152-164.	1.6	18
133	Surface Modification to Modulate Microbial Biofilms—Applications in Dental Medicine. Materials, 2021, 14, 6994.	2.9	18
134	Biocompatible Magnetic Hollow Silica Microspheres for Drug Delivery. Current Organic Chemistry, 2013, 17, 1029-1033.	1.6	17
135	Magnetite Nanoparticles Functionalized with Therapeutic Agents for Enhanced ENT Antimicrobial Properties. Antibiotics, 2022, 11, 623.	3.7	17
136	Synthesis of uniform poly(d,l″actide) and poly(d,l″actideâ€ <i>co</i> â€glycolide) microspheres using a microfluidic chip for comparison. Electrophoresis, 2014, 35, 316-322.	2.4	16
137	Unexpected Ferromagnetism—A Review. Applied Sciences (Switzerland), 2021, 11, 6707.	2.5	16
138	Metal Based Frameworks for Drug Delivery Systems. Current Topics in Medicinal Chemistry, 2015, 15, 1532-1542.	2.1	16
139	MAPLE fabricated coatings based on magnetite nanoparticles embedded into biopolymeric spheres resistant to microbial colonization. Applied Surface Science, 2018, 448, 230-236.	6.1	15
140	Novel Hybrid Formulations Based on Thiourea Derivatives and Core@Shell Fe3O4@C18 Nanostructures for the Development of Antifungal Strategies. Nanomaterials, 2018, 8, 47.	4.1	15
141	Nanomaterial-Based Approaches for Neural Regeneration. Pharmaceutics, 2019, 11, 266.	4.5	15
142	Bioactive Coatings Based on Hydroxyapatite, Kanamycin, and Growth Factor for Biofilm Modulation. Antibiotics, 2021, 10, 160.	3.7	15
143	Nanoparticles for the Treatment of Inner Ear Infections. Nanomaterials, 2021, 11, 1311.	4.1	15
144	Biomaterials for the Prevention of Oral Candidiasis Development. Pharmaceutics, 2021, 13, 803.	4.5	15

#	Article	IF	CITATIONS
145	Antimicrobial coatings based on zinc oxide and orange oil for improved bioactive wound dressings and other applications. Romanian Journal of Morphology and Embryology, 2016, 57, 107-14.	0.8	15
146	A Microfluidic Chip Using Phenol Formaldehyde Resin for Uniform-Sized Polycaprolactone and Chitosan Microparticle Generation. Molecules, 2013, 18, 6521-6531.	3.8	14
147	Antimicrobial applications of MAPLE processed coatings based on PLGA and lincomycin functionalized magnetite nanoparticles. Applied Surface Science, 2019, 484, 587-599.	6.1	14
148	Essential Oils for Bone Repair and Regeneration—Mechanisms and Applications. Materials, 2021, 14, 1867.	2.9	14
149	Biofilm-Resistant Nanocoatings Based on ZnO Nanoparticles and Linalool. Nanomaterials, 2021, 11, 2564.	4.1	14
150	Anti-Biofilm Coatings Based on Chitosan and Lysozyme Functionalized Magnetite Nanoparticles. Antibiotics, 2021, 10, 1269.	3.7	14
151	New Applications of Lipid and Polymer-Based Nanoparticles for Nucleic Acids Delivery. Pharmaceutics, 2021, 13, 2053.	4.5	14
152	PEG-Functionalized Magnetite Nanoparticles for Modulation of Microbial Biofilms on Voice Prosthesis. Antibiotics, 2022, 11, 39.	3.7	14
153	Caprolactam-silica network, a strong potentiator of the antimicrobial activity of kanamycin against Gram-positive and Gram-negative bacterial strains. International Journal of Pharmaceutics, 2013, 446, 63-69.	5.2	13
154	Synthesis and Characterization of Oil-Chitosan Composite Spheres. Molecules, 2013, 18, 5749-5760.	3.8	13
155	Hydroxyapatite Particles—Directing the Cellular Activity in Bone Regeneration Processes: An Up-To-Date Review. Applied Sciences (Switzerland), 2020, 10, 3483.	2.5	13
156	Synthesis of Magnetite Nanoparticles through a Lab-On-Chip Device. Materials, 2021, 14, 5906.	2.9	13
157	Novel Strategies for Spinal Cord Regeneration. International Journal of Molecular Sciences, 2022, 23, 4552.	4.1	13
158	Bioevaluation of Novel Anti-Biofilm Coatings Based on PVP/Fe3O4 Nanostructures and 2-((4-Ethylphenoxy)methyl)-N- (arylcarbamothioyl)benzamides. Molecules, 2014, 19, 12011-12030.	3.8	12
159	Carvone functionalized iron oxide nanostructures thin films prepared by MAPLE for improved resistance to microbial colonization. Journal of Sol-Gel Science and Technology, 2015, 73, 605-611.	2.4	12
160	Natural and synthetic polymers for drug delivery and targeting. , 2016, , 229-284.		12
161	MAPLE fabricated magnetite@Melissa officinalis and poly lactic acid: chitosan coated surfaces with anti-staphylococcal properties. Journal of Sol-Gel Science and Technology, 2015, 73, 612-619.	2.4	11
162	Methods for Synthesizing the Macromolecular Constituents of Smart Nanosized Carriers for Controlled Drug Delivery. Current Medicinal Chemistry, 2014, 21, 3333-3374.	2.4	11

#	Article	lF	CITATIONS
163	In vivo evaluation of Feâ,ƒOâ," nanoparticles. Romanian Journal of Morphology and Embryology, 2014, 55, 1013-8.	0.8	11
164	Optimized Anti-pathogenic Agents Based on Core/Shell Nanostructures and 2-((4-Ethylphenoxy)ethyl)-N-(substituted-phenylcarbamothioyl)-benzamides. International Journal of Molecular Sciences, 2012, 13, 12584-12597.	4.1	10
165	Editorial (Thematic Issue: Prevention of Microbial Biofilms - The Contribution of Micro and) Tj ETQq1 1 0.784314	rgBT /Ove 2.4	rlock 10 Tf 5
166	Fabrication and characterization of functionalized surfaces with 3-amino propyltrimethoxysilane films for anti-infective therapy applications. Applied Surface Science, 2015, 336, 401-406.	6.1	10
167	Suberin/ <i>trans-</i> Cinnamaldehyde Oil Nanoparticles with Antimicrobial Activity and Anticancer Properties When Loaded with Paclitaxel. ACS Applied Bio Materials, 2019, 2, 3484-3497.	4.6	10
168	Quorum Sensing Inhibitors from the Sea: Lessons from Marine Symbiotic Relationships. Current Organic Chemistry, 2014, 18, 823-839.	1.6	10
169	Recent Advances in Managing Spinal Intervertebral Discs Degeneration. International Journal of Molecular Sciences, 2022, 23, 6460.	4.1	10
170	Carboxymethyl-cellulose/Fe3O4 nanostructures for antimicrobial substances delivery. Bio-Medical Materials and Engineering, 2014, 24, 1639-1646.	0.6	9
171	Microbial colonization of biopolymeric thin films containing natural compounds and antibiotics fabricated by MAPLE. Applied Surface Science, 2015, 336, 234-239.	6.1	9
172	Biocompatible hybrid silica nanobiocomposites for the efficient delivery of anti-staphylococcal drugs. International Journal of Pharmaceutics, 2016, 510, 532-542.	5.2	9
173	Gold nanoparticles: advances in water purification approaches. , 2017, , 447-477.		9
174	Natural Compounds for Preventing Ear, Nose, and Throat-Related Oral Infections. Plants, 2021, 10, 1847.	3.5	9
175	Magnetic Nanoparticles for Controlling in vitro Fungal Biofilms. Current Organic Chemistry, 2013, 17, 1023-1028.	1.6	9
176	Carbon nanotubes for cancer therapy and neurodegenerative diseases. Romanian Journal of Morphology and Embryology, 2015, 56, 349-56.	0.8	9
177	Bioactive Coatings Loaded with Osteogenic Protein for Metallic Implants. Polymers, 2021, 13, 4303.	4.5	9
178	Tumor Marker Detection by Aptamer-Functionalized Graphene Oxide. Current Organic Chemistry, 2013, 17, 132-136.	1.6	8
179	One-step synthesis of platinum nanoparticles loaded in alginate bubbles. Nanoscale Research Letters, 2014, 9, 277.	5.7	8

Bioengineered nanomaterials for chemotherapy. , 2017, , 23-49.

#	Article	IF	CITATIONS
181	Polyphenols of Honeybee Origin with Applications in Dental Medicine. Antibiotics, 2020, 9, 856.	3.7	8
182	Wound Dressing Based Collagen Biomaterials Containing Usnic Acid as Quorum Sensing Inhibitor Agent: Synthesis, Characterization and Bioevaluation. Current Organic Chemistry, 2013, 17, 125-131.	1.6	8
183	Design, Characterization, and Antibacterial Performance of MAPLE-Deposited Coatings of Magnesium Phosphate-Containing Silver Nanoparticles in Biocompatible Concentrations. International Journal of Molecular Sciences, 2022, 23, 7910.	4.1	8
184	Synthesis, characterization and bioevaluation of irinotecan-collagen hybrid materials for biomedical applications as drug delivery systems in tumoral treatments. Open Chemistry, 2013, 11, 2134-2143.	1.9	7
185	Poly(lactic-co-glycolic) acid/chitosan microsphere thin films functionalized with Cinnamomi aetheroleum and magnetite nanoparticles for preventing the microbial colonization of medical surfaces. Journal of Sol-Gel Science and Technology, 2015, 73, 679-686.	2.4	7
186	Preface for Volume 4: Ingredients Extraction by Physicochemical Methods in Food. , 2017, , xxi-xxiv.		7
187	Nanostructurated materials for prolonged and safe food preservation. , 2017, , 305-335.		7
188	Preface for Volume 18: Food Processing for Increased Quality and Consumption. , 2018, , xxiii-xxvi.		7
189	Biocompatible hydrodispersible magnetite nanoparticles used as antibiotic drug carriers. Romanian Journal of Morphology and Embryology, 2015, 56, 365-70.	0.8	7
190	Metal-based nanosystems for diagnosis. Romanian Journal of Morphology and Embryology, 2015, 56, 635-49.	0.8	7
191	Nano-hydroxyapatite. , 2016, , 189-213.		6
192	Nanostructurated membranes for the microbiological purification of drinking water. , 2017, , 421-446.		6
193	Nanostructures for cancer therapy: from targeting to selective toxicology. , 2017, , 831-847.		6
194	Successful Release of Voriconazole and Flavonoids from MAPLE Deposited Bioactive Surfaces. Applied Sciences (Switzerland), 2019, 9, 786.	2.5	6
195	Anti-biofilm Fe3O4@C18-[1,3,4]thiadiazolo[3,2-a]pyrimidin-4-ium-2-thiolate Derivative Core-shell Nanocoatings. Materials, 2020, 13, 4640.	2.9	6
196	Nanostructured Thin Coatings Containing Anthriscus sylvestris Extract with Dual Bioactivity. Molecules, 2020, 25, 3866.	3.8	6
197	Antitumor Activity of Magnetite Nanoparticles: Influence of Hydrocarbonated Chain of Saturated Aliphatic Monocarboxylic Acids. Current Organic Chemistry, 2013, 17, 831-840.	1.6	6
198	Nanostructured Bioactive Polymers Used in Food-Packaging. Current Pharmaceutical Biotechnology, 2015, 16, 121-127.	1.6	6

#	Article	IF	CITATIONS
199	Preface for Volume 13: Food Quality: Balancing Health and Disease. , 2018, , xxi-xxiv.		6
200	Atmospheric Pressure Plasma Activation of Hydroxyapatite to Improve Fluoride Incorporation and Modulate Bacterial Biofilm. International Journal of Molecular Sciences, 2021, 22, 13103.	4.1	6
201	Influence of hybrid inorganic/organic mesoporous and nanostructured materials on the cephalosporins' efficacy on different bacterial strains. IET Nanobiotechnology, 2012, 6, 156-161.	3.8	5
202	Soft tissue engineering and microbial infections. , 2016, , 1-29.		5
203	Biocompatible 3D Matrix with Antimicrobial Properties. Molecules, 2016, 21, 115.	3.8	5
204	Preparation and characterization of undoped and cobalt doped ZnO for antimicrobial use. International Journal of Pharmaceutics, 2016, 510, 430-438.	5.2	5
205	Preparation and Antimicrobial Activity of Inorganic Nanoparticles. , 2017, , 325-340.		5
206	Isoflavonoid-Antibiotic Thin Films Fabricated by MAPLE with Improved Resistance to Microbial Colonization. Molecules, 2021, 26, 3634.	3.8	5
207	Prosthetic Devices with Nanostructurated Surfaces for Increased Resistance to Microbial Colonization. Current Pharmaceutical Biotechnology, 2015, 16, 112-120.	1.6	5
208	Development of Scaffolds for Vascular Tissue Engineering: Biomaterial Mediated Neovascularization. Current Stem Cell Research and Therapy, 2016, 12, 155-164.	1.3	5
209	Magnetite nanostructures functionalized with cytostatic drugs exhibit great anti-tumoral properties without application of high amplitude alternating magnetic fields. Romanian Journal of Morphology and Embryology, 2014, 55, 357-62.	0.8	5
210	In vivo biodistribution of CNTs using a BALB/c mouse experimental model. Romanian Journal of Morphology and Embryology, 2015, 56, 1481-93.	0.8	5
211	Nanostructured mesoporous silica: new perspectives for fighting antimicrobial resistance. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	4
212	Preface for Volume 5: Microbial Production of Food Ingredients and Additives. , 2017, , xxi-xxiv.		4
213	Preventing Biofilm Formation and Development on Ear, Nose and Throat Medical Devices. Biomedicines, 2021, 9, 1025.	3.2	4
214	Prosthetic Devices with Functionalized Anti-biofilm Surface Based NanoAg@C18. Current Organic Chemistry, 2013, 17, 105-112.	1.6	4
215	Silica network improve the effect of fludarabine and paclitaxel on HCT8 cell line. Romanian Journal of Morphology and Embryology, 2014, 55, 545-51.	0.8	4
216	Microorganisms: new trends in environment-friendly and energy-saving water purification. , 2017, , 263-288.		3

#	Article	IF	CITATIONS
217	Antimicrobial Potential of Benzamides and Derived Nanosystems for Controlling in vitro Biofilm Development on Medical Devices. Current Organic Chemistry, 2013, 17, 162-175.	1.6	3
218	Comparative Dynamic Characteristics of Electrospun Ultrathin Fibers and Films Based on Poly(3-hydroxybutyrate). Chemistry and Chemical Technology, 2016, 10, 151-158.	1.1	3
219	Microfluidics – Organ-on-chip. Biomedical Engineering International, 2019, 1, 2-8.	0.5	3
220	Tailored Gold Nanoparticles for Cancer Imaging and Therapy. Materials International, 2019, 1, 013-024.	0.6	3
221	Renoprotective Effects of Shout Camphor Medicinal Mushroom (Taiwanofungus camphorates,) Tj ETQq1 1 0.784 of Medicinal Mushrooms, 2016, 18, 1105-1114.	314 rgBT 1.5	/Overlock 1 3
222	In vitro and in vivo applications of 3D dendritic gold nanostructures. Romanian Journal of Morphology and Embryology, 2015, 56, 915-24.	0.8	3
223	Improved wound dressing: Novel approaches. International Journal of Pharmaceutics, 2014, 463, 117-118.	5.2	2
224	Magnetite Nanocomposites Thin Coatings Prepared by MAPLE to Prevent Microbial Colonization of Medical Surfaces. Advanced Structured Materials, 2015, , 311-339.	0.5	2
225	Iron oxide nanomaterials for functional imaging. , 2016, , 279-301.		2
226	Preface for Volume 17: Alternative and Replacement Foods. , 2018, , xxiii-xxvi.		2
227	Composite P(3HB-3HV)-CS Spheres for Enhanced Antibiotic Efficiency. Polymers, 2021, 13, 989.	4.5	2
228	Diagnosis of Cardiac Abnormalities in Muscular Dystrophies. Medicina (Lithuania), 2021, 57, 488.	2.0	2
229	Biodistribution of essential oil-conjugated silver nanoparticles. Romanian Journal of Morphology and Embryology, 2021, 61, 1099-1109.	0.8	2
230	A Novel Continuous Extrusion Process to Fabricate Wedge-Shaped Light Guide Plates. International Journal of Polymer Science, 2013, 2013, 1-6.	2.7	1
231	Editorial (Thematic Issue: Antimicrobial Strategies based on Natural Products: Recent Progress in Bio) Tj ETQq1 1	0.784314	rgBT /Over
232	Editorial (Thematic Issue: Micro and Nanoscale Materials for Boosting the Antimicrobial Fight). Current Topics in Medicinal Chemistry, 2015, 15, 1551-1551.	2.1	1
233	Understanding dental implants. , 2016, , 27-47.		1
234	Antimicrobial Thin Coatings Prepared by Laser Processing. , 2017, , 223-236.		1

#	Article	IF	CITATIONS
235	Zinc Oxide Nanostrucures. , 2017, , 503-514.		1
236	Silver-based nanostructures for cancer therapy. , 2017, , 405-428.		1
237	Nanotherapeutics in the management of infections and cancer. , 2017, , 163-189.		1
238	Clinical applications of bioactive materials. , 2019, , 527-543.		1
239	Electrochemotherapy and Other Clinical Applications of Electroporation for the Targeted Therapy of Metastatic Melanoma. Materials, 2021, 14, 3985.	2.9	1
240	Alignment of Stretchable Nanoparticle Chains with Tunable Optical Properties Formed from Molecular Machinery. Current Organic Chemistry, 2013, 17, 144-148.	1.6	1
241	Editorial (Thematic Issue: Novel Strategies to Eradicate Bacterial Communities Based on Nano and) Tj ETQq1 1 0.	784314 rg 1.6	gBT /Overlack
242	Editorial (Thematic Issue: Nanobioactive Structures for Drug Targeting and Delivery). Current Topics in Medicinal Chemistry, 2015, 15, 1423-1423.	2.1	0
243	Magnetite Nanostructures. , 2015, , 51-67.		0
244	Toxicity of inorganic nanoparticles against prokaryotic cells. , 2016, , 29-65.		0
245	Editorial (Thematic Issue: Nanobiomaterials for Improving Stem Cell Applications in Tissue Engineering) Tj ETQq1	1 0.78431 1.3	l4rgBT /Ove
246	Specifically targeted imaging using functionalized nanoparticles. , 2016, , 1-44.		0
247	Metallic nanosystems in hard tissue implants. , 2016, , 381-412.		0
248	Advanced nano- and bio-materials: A pharmaceutical approach. International Journal of Pharmaceutics, 2016, 510, 407-408.	5.2	0
249	Preface for Volume 6: Genetically Engineered Foods. , 2018, , xxiii-xxvi.		0
250	Preface for Volume 8: Therapeutic Foods. , 2018, , xxiii-xxvi.		0
251	Preface for Volume 20: Biopolymers for Food Design. , 2018, , xxi-xxiv.		0
252	Recent progress in polyester–urethanes. , 2019, , 409-423.		0

#	Article	IF	CITATIONS
253	Degradation versus resorption. , 2019, , 1-18.		0
254	SYNTHESIS AND BIOEVALUATION OF MAGNETIC PARTICLES BASED ON CHITOSAN AND PHYTOCOMPONENTS FROM Eugenia carryophyllata AQUEOUS EXTRACT. Environmental Engineering and Management Journal, 2015, 14, 855-861.	0.6	0
255	Biomedical Engineering International joins the Family of Platinum Open Access Journals. Biomedical Engineering International, 2019, 1, 1-1.	0.5	0
256	Innovative Biomaterials in Bone Tissue Engineering. Materials International, 2019, 1, 002-012.	0.6	0
257	Bioengineering International joins the Family of Platinum Open Access Journals. Bioengineering International, 2019, 1, 001-001.	0.0	0