
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8634419/publications.pdf Version: 2024-02-01



IANUISZ RAK

| #  | Article                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Low-Energy Tautomers and Conformers of Neutral and Protonated Arginine. Journal of the American<br>Chemical Society, 2001, 123, 11695-11707.                                                              | 13.7 | 133       |
| 2  | Calculation of Quantum-Mechanical Descriptors for QSPR at the DFT Level: Is It Necessary?. Journal of Chemical Information and Modeling, 2008, 48, 1174-1180.                                             | 5.4  | 110       |
| 3  | Consequences of proton transfer in guanidine. Journal of Physical Organic Chemistry, 2003, 16, 91-106.                                                                                                    | 1.9  | 109       |
| 4  | AT Base Pair Anions versus (9-Methyl-A)(1-Methyl-T) Base Pair Anions. Journal of the American Chemical<br>Society, 2005, 127, 6443-6450.                                                                  | 13.7 | 84        |
| 5  | Stabilization of very rare tautomers of uracil by an excess electron. Physical Chemistry Chemical Physics, 2005, 7, 2116.                                                                                 | 2.8  | 73        |
| 6  | Mechanisms of Damage to DNA Labeled with Electrophilic Nucleobases Induced by Ionizing or UV<br>Radiation. Journal of Physical Chemistry B, 2015, 119, 8227-8238.                                         | 2.6  | 73        |
| 7  | Toward an Understanding of the Chemiluminescence Accompanying the Reaction of<br>9-Carboxy-10-methylacridinium Phenyl Ester with Hydrogen Peroxide. Journal of Organic Chemistry,<br>1999, 64, 3002-3008. | 3.2  | 67        |
| 8  | Quasidegeneracy of Zwitterionic and Canonical Tautomers of Arginine Solvated by an Excess<br>Electron. Journal of the American Chemical Society, 2001, 123, 11073-11074.                                  | 13.7 | 64        |
| 9  | Properties of Closed-Shell, Octahedral, Multiply-Charged Hexafluorometallates MF63-, M = Sc, Y, La, ZrF62-, and TaF6 Journal of the American Chemical Society, 1996, 118, 1173-1180.                      | 13.7 | 59        |
| 10 | Photoelectron spectroscopy of adiabatically bound valence anions of rare tautomers of the nucleic acid bases. Journal of Chemical Physics, 2007, 127, 174309.                                             | 3.0  | 59        |
| 11 | How to Find Out Whether a 5-Substituted Uracil Could Be a Potential DNA Radiosensitizer. Journal of<br>Physical Chemistry Letters, 2013, 4, 2853-2857.                                                    | 4.6  | 59        |
| 12 | Fundamental Mechanisms of DNA Radiosensitization: Damage Induced by Low-Energy Electrons in<br>Brominated Oligonucleotide Trimers. Journal of Physical Chemistry B, 2012, 116, 9676-9682.                 | 2.6  | 57        |
| 13 | Barrier-free intermolecular proton transfer induced by excess electron attachment to the complex of alanine with uracil. Journal of Chemical Physics, 2004, 120, 6064-6071.                               | 3.0  | 55        |
| 14 | Intermolecular Proton Transfer in Anionic Complexes of Uracil with Alcohols. Journal of Physical Chemistry B, 2005, 109, 13383-13391.                                                                     | 2.6  | 55        |
| 15 | Excess Electron Attachment Induces Barrier-Free Proton Transfer in Binary Complexes of Uracil with H2Se and H2S but Not with H2O. Journal of Physical Chemistry B, 2003, 107, 7889-7895.                  | 2.6  | 53        |
| 16 | Electron-Induced Elimination of the Bromide Anion from Brominated Nucleobases. A Computational Study. Journal of Physical Chemistry B, 2012, 116, 5612-5619.                                              | 2.6  | 52        |
| 17 | Anab initiostudy of the betaine anion–dipole-bound anionic state of a model zwitterion system.<br>Journal of Chemical Physics, 2001, 114, 10673-10681.                                                    | 3.0  | 49        |
| 18 | Computational Study of Hydrogen-Bonded Complexes between the Most Stable Tautomers of Glycine<br>and Uracil. Journal of Physical Chemistry A, 2002, 106, 7423-7433.                                       | 2.5  | 49        |

| #  | Article                                                                                                                                                                                                                                         | IF           | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|
| 19 | Barrier-free proton transfer in anionic complex of thymine with glycine. Physical Chemistry Chemical Physics, 2004, 6, 4351-4357.                                                                                                               | 2.8          | 49        |
| 20 | The origin of luminescence accompanying electrochemical reduction or chemical decomposition of peroxydisulfates. Journal of Luminescence, 2003, 105, 27-34.                                                                                     | 3.1          | 44        |
| 21 | Excess Electron Attachment Induces Barrier-Free Proton Transfer in Anionic Complexes of Thymine and Uracil with Formic Acid. Journal of Physical Chemistry B, 2004, 108, 6919-6921.                                                             | 2.6          | 44        |
| 22 | On the Unusual Stability of Valence Anions of Thymine Based on Very Rare Tautomers:Â A Computational<br>Study. Journal of Physical Chemistry B, 2006, 110, 24696-24707.                                                                         | 2.6          | 44        |
| 23 | TG-FTIR, DSC and quantum chemical studies of the thermal decomposition of quaternary methylammonium halides. Chemical Physics, 2006, 324, 425-437.                                                                                              | 1.9          | 40        |
| 24 | Hartreeâ^`Fock and Density Functional Methods and IR and NMR Spectroscopies in the Examination of<br>Tautomerism and Features of Neutral 9-Acridinamine in Gaseous and Condensed Media. Journal of<br>Physical Chemistry A, 1997, 101, 283-292. | 2.5          | 39        |
| 25 | Valence Anions in Complexes of Adenine and 9-Methyladenine with Formic Acid:Â Stabilization by<br>Intermolecular Proton Transfer. Journal of the American Chemical Society, 2007, 129, 1216-1224.                                               | 13.7         | 37        |
| 26 | Effects of intra base-pairs flexibility on hole transfer coupling in DNA. Chemical Physics Letters, 2006,<br>429, 546-550.                                                                                                                      | 2.6          | 35        |
| 27 | Interaction with Glycine Increases Stability of a Mutagenic Tautomer of Uracil. A Density Functional<br>Theory Study. Journal of the American Chemical Society, 2005, 127, 2238-2248.                                                           | 13.7         | 34        |
| 28 | Valence Anions of 9-Methylguanineâ^'1-Methylcytosine Complexes. Computational and Photoelectron<br>Spectroscopy Studies. Journal of the American Chemical Society, 2009, 131, 2663-2669.                                                        | 13.7         | 33        |
| 29 | Stabilization of Very Rare Tautomers of 1-Methylcytosine by an Excess Electronâ€. Journal of Physical Chemistry A, 2005, 109, 11495-11503.                                                                                                      | 2.5          | 32        |
| 30 | A first-principles study of electron attachment to the fully hydrated bromonucleobases. Chemical<br>Physics Letters, 2014, 595-596, 133-137.                                                                                                    | 2.6          | 32        |
| 31 | Lowâ€Energyâ€Barrier Proton Transfer Induced by Electron Attachment to the Guanineâ‹â‹â‹Cytosine Base<br>ChemPhysChem, 2010, 11, 880-888.                                                                                                       | Pair.<br>2.1 | 31        |
| 32 | 5-Thiocyanato-2′-deoxyuridine as a possible radiosensitizer: electron-induced formation of<br>uracil-C5-thiyl radical and its dimerization. Physical Chemistry Chemical Physics, 2015, 17, 16907-16916.                                         | 2.8          | 29        |
| 33 | Effect of Hydrogen Bonding on Barrier-Free Proton Transfer in Anionic Complexes of Uracil with<br>Weak Acids: (U…HCN)â~'versus (U…H2S)â~'. Israel Journal of Chemistry, 2004, 44, 157-170.                                                      | 2.3          | 28        |
| 34 | Findings on the Electron-Attachment-Induced Abasic Site in a DNA Double Helix. Angewandte Chemie -<br>International Edition, 2007, 46, 3479-3481.                                                                                               | 13.8         | 27        |
| 35 | Effect of proton transfer on the electronic coupling in DNA. Chemical Physics, 2006, 325, 567-574.                                                                                                                                              | 1.9          | 26        |
| 36 | Valence Anion of Thymine in the DNA π-Stack. Journal of the American Chemical Society, 2008, 130,<br>15683-15687.                                                                                                                               | 13.7         | 26        |

| #  | Article                                                                                                                                                                                                                                        | IF      | CITATIONS   |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------|
| 37 | Theoretical studies on the prototropic tautomerism, structure, and features of acridine and<br>9-acridinamine free bases and their protonated forms. Journal of Organic Chemistry, 1992, 57, 3720-3725.                                        | 3.2     | 25          |
| 38 | The Effect of Pyrimidine Bases on the Hole-Transfer Coupling in DNAâ€. Journal of Physical Chemistry B, 2002, 106, 7919-7926.                                                                                                                  | 2.6     | 24          |
| 39 | 2,6-diaminopurine promotes repair of DNA lesions under prebiotic conditions. Nature<br>Communications, 2021, 12, 3018.                                                                                                                         | 12.8    | 24          |
| 40 | Theoretical Studies on the Structure, Stability, Ability To Undergo Internal Transformations, and<br>Tautomerization, as Well as Reactivity, of H2PPH2 and HPPH3 Molecules. Journal of the American<br>Chemical Society, 1995, 117, 2638-2648. | 13.7    | 23          |
| 41 | Anion of the formic acid dimer as a model for intermolecular proton transfer induced by a π* excess electron. Journal of Chemical Physics, 2005, 122, 204304.                                                                                  | 3.0     | 23          |
| 42 | Single Strand Break in DNA Coupled to the O—P Bond Cleavage. A Computational Study. Journal of Physical Chemistry B, 2011, 115, 1911-1917.                                                                                                     | 2.6     | 23          |
| 43 | Electron-Induced Degradation of 8-Bromo-2′-deoxyadenosine 3′,5′-Diphosphate, a DNA Radiosensitizing<br>Nucleotide. Journal of Physical Chemistry B, 2013, 117, 8681-8688.                                                                      | 2.6     | 23          |
| 44 | The effect of two- and three-body interactions in ArnCO2 (n=1,2) on the asymmetric stretching CO2 coordinate: An ab initio study. Journal of Chemical Physics, 1997, 106, 10215-10221.                                                         | 3.0     | 22          |
| 45 | Electron stimulated desorption of anions from native and brominated single stranded oligonucleotide trimers. Journal of Chemical Physics, 2012, 136, 075101.                                                                                   | 3.0     | 22          |
| 46 | 5-Selenocyanatouracil: A Potential Hypoxic Radiosensitizer. Electron Attachment Induced Formation of Selenium Centered Radical. Journal of Physical Chemistry B, 2017, 121, 6139-6147.                                                         | 2.6     | 22          |
| 47 | Electron-Induced Dissociation of the Potential Radiosensitizer 5-Selenocyanato-2′-deoxyuridine.<br>Journal of Physical Chemistry B, 2019, 123, 1274-1282.                                                                                      | 2.6     | 22          |
| 48 | Splitting of Cyclobutane-Type Uracil Dimer Cation Radicals. Hartreeâ^'Fock, MP2, and Density Functional<br>Studies. Journal of Physical Chemistry A, 1998, 102, 7168-7175.                                                                     | 2.5     | 21          |
| 49 | Effect of Proton Transfer on the Anionic and Cationic Pathways of Pyrimidine Photodimer Cleavage. A<br>Computational Study. Journal of Physical Chemistry A, 1999, 103, 3569-3574.                                                             | 2.5     | 21          |
| 50 | Barrier-free proton transfer in the valence anion of 2′-deoxyadenosine-5′-monophosphate. II. A<br>computational study. Journal of Chemical Physics, 2008, 128, 044315.                                                                         | 3.0     | 21          |
| 51 | Visibleâ€Light Photocatalytic Activity of Ionic Liquid TiO <sub>2</sub> Spheres: Effect of the Ionic<br>Liquid's Anion Structure. ChemCatChem, 2017, 9, 4377-4388.                                                                             | 3.7     | 21          |
| 52 | Origins and modeling of many-body exchange effects in van der Waals clusters. Journal of Chemical<br>Physics, 1997, 106, 3301-3310.                                                                                                            | 3.0     | 20          |
| 53 | Intermolecular proton transfer induced by excess electron attachment to adenine(formic acid)n (n=2,) Tj ETQq1 1                                                                                                                                | 0.78431 | 4 rgBT /Ove |
| 54 | Electrophilic 5â€Substituted Uracils as Potential Radiosensitizers: A Density Functional Theory Study.                                                                                                                                         | 2.1     | 20          |

ChemPhysChem, 2016, 17, 2572-2578.

2.1 20

| #  | Article                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | TG-FTIR, DSC, and Quantum-Chemical Studies on the Thermal Decomposition of Quaternary<br>Ethylammonium Halides. Journal of Physical Chemistry A, 2006, 110, 5066-5074.                                                                               | 2.5 | 19        |
| 56 | Benign Decay vs. Photolysis in the Photophysics and Photochemistry of 5-Bromouracil. A<br>Computational Study. Journal of Physical Chemistry A, 2009, 113, 5489-5495.                                                                                | 2.5 | 19        |
| 57 | Theoretical studies on structure, thermochemistry, vibrational spectroscopy, and other features of<br>ZrX2â°'6(X=F,Cl,Br,I): Coulombic energy in inorganic and organic hexahalogenozirconates. Journal of<br>Chemical Physics, 1994, 100, 5810-5820. | 3.0 | 18        |
| 58 | ls 9-acridinamine anion a dispersion-bound anion?. Journal of Chemical Physics, 2001, 115, 11193-11199.                                                                                                                                              | 3.0 | 18        |
| 59 | Electron induced single strand break and cyclization: a DFT study on the radiosensitization<br>mechanism of the nucleotide of 8-bromoguanine. Physical Chemistry Chemical Physics, 2014, 16,<br>6568-6574.                                           | 2.8 | 17        |
| 60 | Photoinduced Single Strand Breaks and Intrastrand Cross-Links in an Oligonucleotide Labeled with<br>5-Bromouracil. Journal of Physical Chemistry B, 2014, 118, 5009-5016.                                                                            | 2.6 | 17        |
| 61 | 5-Selenocyanato and 5-trifluoromethanesulfonyl derivatives of 2′-deoxyuridine: synthesis, radiation and computational chemistry as well as cytotoxicity. RSC Advances, 2018, 8, 21378-21388.                                                         | 3.6 | 16        |
| 62 | Stable Valence Anions of Nucleic Acid Bases and DNA Strand Breaks Induced by Low Energy Electrons.<br>Challenges and Advances in Computational Chemistry and Physics, 2008, , 619-667.                                                               | 0.6 | 15        |
| 63 | An ESR and DFT study of hydration of the 2′-deoxyuridine-5-yl radical: a possible hydroxyl radical<br>intermediate. Chemical Communications, 2014, 50, 14605-14608.                                                                                  | 4.1 | 15        |
| 64 | Anab initiostudy of (H3Bâ†NH3)â^'—a dipole-bound anion supported by the dative charge-transfer bond in the neutral host. Journal of Chemical Physics, 2000, 113, 8961-8968.                                                                          | 3.0 | 14        |
| 65 | Structure, Properties, Thermodynamics, and Isomerization Ability of 9-Acridinones. Journal of Physical<br>Chemistry A, 2002, 106, 3957-3963.                                                                                                         | 2.5 | 14        |
| 66 | Electron-induced single strand break in the nucleotide of 5- and 6-bromouridine. A DFT study.<br>Chemical Physics Letters, 2014, 612, 289-294.                                                                                                       | 2.6 | 14        |
| 67 | Design, synthesis and biological evaluation of betulin-3-yl 2-amino-2-deoxy-Î <sup>2</sup> -d-glycopyranosides.<br>Bioorganic Chemistry, 2020, 96, 103568.                                                                                           | 4.1 | 14        |
| 68 | Theoretical Studies on the Structure, Thermochemistry, Vibrational Spectroscopy, and Other Features<br>of HfX62- (X = F, Cl, Br, I). Electrostatic Energy in Hexahalogenohafnates. Inorganic Chemistry, 1994, 33,<br>6187-6193.                      | 4.0 | 13        |
| 69 | UV-Induced Strand Breaks in Double-Stranded DNA Labeled with 5-Bromouracil: Frank or Secondary?.<br>Journal of Physical Chemistry Letters, 2013, 4, 4014-4018.                                                                                       | 4.6 | 13        |
| 70 | 5-Bromo-2′-deoxycytidine—a potential DNA photosensitizer. Organic and Biomolecular Chemistry, 2016,<br>14, 9312-9321.                                                                                                                                | 2.8 | 13        |
| 71 | 5-Iodo-4-thio-2′-Deoxyuridine as a Sensitizer of X-ray Induced Cancer Cell Killing. International Journal<br>of Molecular Sciences, 2019, 20, 1308.                                                                                                  | 4.1 | 13        |
| 72 | Uracil-5-yl O-Sulfamate: An Illusive Radiosensitizer. Pitfalls in Modeling the Radiosensitizing<br>Derivatives of Nucleobases. Journal of Physical Chemistry B, 2020, 124, 5600-5613.                                                                | 2.6 | 13        |

| #  | Article                                                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | NMR and DFT investigations of the substituent and solvent effect on amino-imino tautomerism in acridin-9-amines substituted at the exocyclic nitrogen atom. Journal of Physical Organic Chemistry, 2005, 18, 870-879.                                                                             | 1.9 | 12        |
| 74 | PCR synthesis of double stranded DNA labeled with 5-bromouridine. A step towards finding a<br>bromonucleoside for clinical trials. Journal of Pharmaceutical and Biomedical Analysis, 2011, 56,<br>671-677.                                                                                       | 2.8 | 12        |
| 75 | Stability of the valence anion of cytosine is governed by nucleobases sequence in the double stranded DNA π-stack: A computational study. Journal of Chemical Physics, 2009, 131, 085103.                                                                                                         | 3.0 | 11        |
| 76 | The radiosensitivity of 5- and 6-bromocytidine derivatives – electron induced DNA degradation.<br>Physical Chemistry Chemical Physics, 2014, 16, 19424.                                                                                                                                           | 2.8 | 11        |
| 77 | Radiation damage to single stranded oligonucleotide trimers labelled with 5-iodopyrimidines. Organic<br>and Biomolecular Chemistry, 2016, 14, 9331-9337.                                                                                                                                          | 2.8 | 11        |
| 78 | The Transformation Mechanism of 3,4,6-Tri-O-acetyl-1,5-anhydro-2-deoxy-d-arabino-hex-1-enitol in Water. Journal of Organic Chemistry, 1996, 61, 2988-2994.                                                                                                                                        | 3.2 | 10        |
| 79 | Theoretical Studies on the Effect of the Medium on Tautomeric Phenomena in Neutral and Protonated<br>Acridin-9-amine. Mechanism of Tautomerization in Neutral Entities. Australian Journal of Chemistry,<br>1997, 50, 97.                                                                         | 0.9 | 10        |
| 80 | Molecular features of thymidine analogues governing the activity of human thymidine kinase.<br>Structural Chemistry, 2018, 29, 1367-1374.                                                                                                                                                         | 2.0 | 10        |
| 81 | Cytotoxicity of doxorubicin conjugated with C60 fullerene. Structural and in vitro studies.<br>Structural Chemistry, 2019, 30, 2327-2338.                                                                                                                                                         | 2.0 | 10        |
| 82 | Why Does the Type of Halogen Atom Matter for the Radiosensitizing Properties of 5-Halogen<br>Substituted 4-Thio-2′-Deoxyuridines?. Molecules, 2019, 24, 2819.                                                                                                                                     | 3.8 | 10        |
| 83 | Thermal behaviour and thermochemistry of hexachlorozirconates of mononitrogen aromatic bases.<br>Thermochimica Acta, 1993, 230, 269-292.                                                                                                                                                          | 2.7 | 9         |
| 84 | Valence anions of N-acetylproline in the gas phase: Computational and anion photoelectron spectroscopic studies. Journal of Chemical Physics, 2011, 135, 114301.                                                                                                                                  | 3.0 | 9         |
| 85 | Photoelectron spectroscopic studies of 5-halouracil anions. Journal of Chemical Physics, 2011, 134, 015101.                                                                                                                                                                                       | 3.0 | 9         |
| 86 | Presolvated Low Energy Electron Attachment to Peptide Methyl Esters in Aqueous Solution: C–O<br>Bond Cleavage at 77 K. Journal of Physical Chemistry B, 2013, 117, 2872-2877.                                                                                                                     | 2.6 | 9         |
| 87 | Photoinduced electron transfer in 5-bromouracil labeled DNA. A contrathermodynamic mechanism revisited by electron transfer theories. Physical Chemistry Chemical Physics, 2019, 21, 4387-4393.                                                                                                   | 2.8 | 9         |
| 88 | Modifications at the C(5) position of pyrimidine nucleosides. Russian Chemical Reviews, 2020, 89, 281-310.                                                                                                                                                                                        | 6.5 | 9         |
| 89 | Prototropic tautomerism in N,N-dimethyl-N′-(1-nitro-9-acridyl)propane-1,3-diamine and its nitro isomers.<br>Application of MNDO and PPP methods for the examination of structure and electronic absorption<br>spectra. Journal of the Chemical Society Perkin Transactions II, 1990, , 1501-1508. | 0.9 | 8         |
| 90 | Theoretical Studies on the Geometry, Thermochemistry, Vibrational Spectroscopy, and Charge<br>Distribution in TiX62- (X = F, Cl, Br, I). Coulombic Energy in hexahalogenotitanate Lattices. The Journal<br>of Physical Chemistry, 1994, 98, 6280-6286.                                            | 2.9 | 8         |

| #   | Article                                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Can an excess electron localize on a purine moiety in the adenine-thymine Watson-Crick base pair? A computational study. International Journal of Quantum Chemistry, 2007, 107, 2224-2232.                                                                                    | 2.0 | 8         |
| 92  | The Anionic (9-Methyladenine)â^'(1-Methylthymine) Base Pair Solvated by Formic Acid. A Computational and Photoelectron Spectroscopy Study. Journal of Physical Chemistry B, 2010, 114, 11353-11362.                                                                           | 2.6 | 8         |
| 93  | Local Excitation of the 5-Bromouracil Chromophore in DNA. Computational and UV Spectroscopic Studies. Journal of Physical Chemistry B, 2011, 115, 4532-4537.                                                                                                                  | 2.6 | 8         |
| 94  | Electron-Induced Decomposition of Uracil-5-yl O-(N,N-dimethylsulfamate): Role of Methylation in<br>Molecular Stability. International Journal of Molecular Sciences, 2021, 22, 2344.                                                                                          | 4.1 | 8         |
| 95  | Development of Sulfamoylated 4-(1-Phenyl-1 <i>H</i> -1,2,3-triazol-4-yl)phenol Derivatives as Potent<br>Steroid Sulfatase Inhibitors for Efficient Treatment of Breast Cancer. Journal of Medicinal Chemistry,<br>2022, 65, 5044-5056.                                        | 6.4 | 8         |
| 96  | Crystal Structure of 9(10-Methyl)- Acridinimine Hydriodide. Lattice Energetics of this Compound and<br>Halide Salts of Nitrogen Organic Bases. Molecular Crystals and Liquid Crystals, 1996, 276, 91-104.                                                                     | 0.3 | 7         |
| 97  | Infrared and Raman spectroscopy of 9-acridinones. Vibrational Spectroscopy, 2001, 27, 139-152.                                                                                                                                                                                | 2.2 | 7         |
| 98  | Dipole-bound and dispersion-bound anions supported by the asymmetric tautomers of aminophosphine:<br>H3NPH and HNPH3. Chemical Physics, 2002, 279, 101-110.                                                                                                                   | 1.9 | 7         |
| 99  | Barrier-free proton transfer induced by electron attachment to the complexes between<br>1â€methylcytosine and formic acid. Molecular Physics, 2010, 108, 2621-2631.                                                                                                           | 1.7 | 7         |
| 100 | The Product of Matrix Metalloproteinase Cleavage of Doxorubicin Conjugate for Anticancer Drug<br>Delivery: Calorimetric, Spectroscopic, and Molecular Dynamics Studies on Peptide–Doxorubicin<br>Binding to DNA. International Journal of Molecular Sciences, 2020, 21, 6923. | 4.1 | 7         |
| 101 | Radicals Formed inN-Acetylproline by Electron Attachment: Electron Spin Resonance Spectroscopy and Computational Studies. Journal of Physical Chemistry B, 2011, 115, 14846-14851.                                                                                            | 2.6 | 6         |
| 102 | Dominant Pathways of Adenosyl Radical-Induced DNA Damage Revealed by QM/MM Metadynamics.<br>Journal of Chemical Theory and Computation, 2017, 13, 6415-6423.                                                                                                                  | 5.3 | 6         |
| 103 | Theoretical and Experimental Studies on the Visible Light Activity of TiO2 Modified with Halide-Based<br>Ionic Liquids. Catalysts, 2020, 10, 371.                                                                                                                             | 3.5 | 6         |
| 104 | Influence of Hypoxia on Radiosensitization of Cancer Cells by 5-Bromo-2′-deoxyuridine. International<br>Journal of Molecular Sciences, 2022, 23, 1429.                                                                                                                        | 4.1 | 6         |
| 105 | Thermochemistry, lattice energetics and stability of hexahalogenohafnates. Journal of Alloys and<br>Compounds, 1994, 210, 63-70.                                                                                                                                              | 5.5 | 5         |
| 106 | X-Ray, Quantum Mechanics and Density Functional Methods in the Examination of Structure and<br>Tautomerism of N-Methyl-Substituted Acridin-9-amine Derivatives. Australian Journal of Chemistry,<br>1998, 51, 643.                                                            | 0.9 | 5         |
| 107 | Theoretical studies on interactions between low energy electrons and protein–DNA fragments:<br>valence anions of AT-amino acids side chain complexes. Physical Chemistry Chemical Physics, 2011, 13,<br>19499.                                                                | 2.8 | 5         |
| 108 | Photoelectron spectroscopic and density functional theoretical studies of the $2\hat{a}\in^2$ -deoxycytidine homodimer radical anion. Journal of Chemical Physics, 2013, 139, 075101.                                                                                         | 3.0 | 5         |

| #   | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | 5-(N-Trifluoromethylcarboxy)aminouracil as a Potential DNA Radiosensitizer and Its Radiochemical<br>Conversion into N-Uracil-5-yloxamic Acid. International Journal of Molecular Sciences, 2020, 21, 6352.                           | 4.1 | 5         |
| 110 | Photoelectron Spectroscopy and Theoretical Investigations of Gaseous Doubly Deprotonated<br>2′-Deoxynucleoside 5′-Monophosphate Dianions. Journal of Physical Chemistry Letters, 2021, 12,<br>9463-9469.                             | 4.6 | 5         |
| 111 | Low-Energy Electron Induced Reactions in Metronidazole at Different Solvation Conditions.<br>Pharmaceuticals, 2022, 15, 701.                                                                                                         | 3.8 | 5         |
| 112 | Thermal features and thermochemistry of hexachlorozirconates of aliphatic and aromatic<br>mono-amines—stability of hexahalogenozirconates. Journal of Alloys and Compounds, 1995, 224, 1-13.                                         | 5.5 | 4         |
| 113 | IR–Raman, NMR and density functional methods in the examination of tautomerism and features of<br>N-methyl substituted 9-acridinamine derivatives. Journal of Molecular Structure, 1999, 476, 45-55.                                 | 3.6 | 4         |
| 114 | A cyclic intermediate of the splitting reaction of cyclobutane-type pyrimidine dimer cation radicals. A computational finding as challenge for experimental techniques. Computational and Theoretical Chemistry, 1999, 488, 163-168. | 1.5 | 4         |
| 115 | Energetics of the splitting of pyrimidine photodimers induced by electron transfer to rhodium(III)<br>complexes. A quantum chemical study. International Journal of Quantum Chemistry, 2000, 77, 128-138.                            | 2.0 | 4         |
| 116 | Photoelectron spectroscopy and density functional theory studies on the uridine homodimer radical anions. Journal of Chemical Physics, 2012, 137, 205101.                                                                            | 3.0 | 4         |
| 117 | Artificial Plasmid Labeled with 5â€Bromoâ€2â€2â€deoxyuridine: A Universal Molecular System for Strand Break<br>Detection. ChemBioChem, 2014, 15, 1409-1412.                                                                          | 2.6 | 4         |
| 118 | DHPLC and MS studies of a photoinduced intrastrand cross-link in DNA labeled with<br>5-bromo-2′-deoxyuridine. Journal of Photochemistry and Photobiology B: Biology, 2014, 130, 86-92.                                               | 3.8 | 4         |
| 119 | Excess Electron Attachment to the Nucleoside Pair 2′-Deoxyadenosine (dA)–2′-Deoxythymidine (dT).<br>Journal of Physical Chemistry B, 2016, 120, 4955-4962.                                                                           | 2.6 | 4         |
| 120 | Quantitative assay of photoinduced DNA strand breaks by real-time PCR. Journal of Pharmaceutical and Biomedical Analysis, 2016, 128, 480-484.                                                                                        | 2.8 | 4         |
| 121 | Chemically–enzymatic synthesis of photosensitive DNA. Journal of Photochemistry and Photobiology<br>B: Biology, 2017, 167, 228-235.                                                                                                  | 3.8 | 4         |
| 122 | Guanosine Dianions Hydrated by One to Four Water Molecules. Journal of Physical Chemistry Letters, 2022, , 3230-3236.                                                                                                                | 4.6 | 4         |
| 123 | Inactive-to-Active Transition of Human Thymidine Kinase 1 Revealed by Molecular Dynamics Simulations. Journal of Chemical Information and Modeling, 2022, 62, 142-149.                                                               | 5.4 | 4         |
| 124 | Radiosensitization of PC3 Prostate Cancer Cells by 5-Thiocyanato-2′-deoxyuridine. Cancers, 2022, 14, 2035.                                                                                                                           | 3.7 | 4         |
| 125 | Thermal properties, crystal lattice energy, mechanism and energetics of the thermal decomposition of hydrochlorides of 2-amino acid esters. Thermochimica Acta, 1990, 171, 253-277.                                                  | 2.7 | 3         |
| 126 | CGC, MS and theoretical studies on the transformation mechanism of<br>3,4-di-O-acetyl-1,5-anhydro-2-deoxy-D-threo-pent-1-enitol in aqueous solutions. Journal of the Chemical<br>Society Perkin Transactions II, 1995, , 569-575.    | 0.9 | 3         |

| #   | Article                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Enzymatic synthesis of long double-stranded DNA labeled with haloderivatives of nucleobases in a precisely pre-determined sequence. BMC Biochemistry, 2011, 12, 47.                                                                                          | 4.4 | 3         |
| 128 | Photoelectron Spectroscopy and Computational Modeling of Thymidine Homodimer Anions. Journal of Physical Chemistry B, 2012, 116, 13975-13981.                                                                                                                | 2.6 | 3         |
| 129 | UV-induced electron transfer between triethylamine and 5-bromo-2′-deoxyuridine. A puzzle concerning the photochemical debromination of labeled DNA. Journal of Pharmaceutical and Biomedical Analysis, 2017, 142, 262-269.                                   | 2.8 | 3         |
| 130 | DNA Damage Radiosensitizers Geared Towards Hydrated Electrons. , 2022, , 125-169.                                                                                                                                                                            |     | 3         |
| 131 | Absorption and luminescence spectroscopic analysis of tautomeric forms of<br>protonatedN,N-dimethyl-N?-(1-nitro-9-acridinyl)-1,3-propanediamine (nitracrine) and its nitro isomers in<br>poly(vinyl alcohol) films. Journal of Fluorescence, 1991, 1, 57-68. | 2.5 | 2         |
| 132 | Unexpected Photoproduct Generated via the Acetone-Sensitized Photolysis of 5-Bromo-2′-deoxyuridine<br>in a Water/Isopropanol Solution: Experimental and Computational Studies. Journal of Physical<br>Chemistry B, 2010, 114, 16902-16907.                   | 2.6 | 2         |
| 133 | Valence Anions of DNA-Related Systems in the Gas Phase: Computational and Anion Photoelectron Spectroscopy Studies. , 2014, , 323-392.                                                                                                                       |     | 2         |
| 134 | Reactivity Pattern of Bromonucleosides Induced by 2-Hydroxypropyl Radicals: Photochemical,<br>Radiation Chemical, and Computational Studies. Journal of Physical Chemistry B, 2015, 119, 6545-6554.                                                          | 2.6 | 2         |
| 135 | The Sequence Dependence of Photoinduced Single Strand Break in 5-Bromo-2′-deoxyuridine Labeled DNA<br>Supports That Electron Transfer Is Responsible for the Damage. Journal of Physical Chemistry B, 2017,<br>121, 9169-9174.                               | 2.6 | 2         |
| 136 | Studies on nitracrine and its nitro isomers devoted to tautomeric phenomena, structural and physicochemical features, as well as surrounding electrostatic potential. Canadian Journal of Chemistry, 1993, 71, 1106-1122.                                    | 1.1 | 1         |
| 137 | Consequences of Electron Attachment to Modified Nucleosides Incorporated into DNA. , 2015, , 1-22.                                                                                                                                                           |     | 1         |
| 138 | Theoretical Approach in Explanation of Energy Donor Properties of 1,4-Dioxane and 1,4-Dioxane-Water<br>Complexes. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 1988, 43, 621-626.                                                | 1.5 | 0         |
| 139 | Consequences of Proton Transfer in Guanidine. ChemInform, 2003, 34, no.                                                                                                                                                                                      | 0.0 | Ο         |
| 140 | Benign and Degrading Excited-State Processes of DNA Nucleobases and their Derivatives. AIP Conference Proceedings, 2007, , .                                                                                                                                 | 0.4 | 0         |
| 141 | Consequences of Electron Attachment to Modified Nucleosides Incorporated into DNA. , 2017, ,<br>1895-1916.                                                                                                                                                   |     | Ο         |
| 142 | Why Does the Type of Halogen Atom Matter for Radiosensitizing Properties of 5-Substituted<br>4-Thio-2′-Deoxyuridines?. Proceedings (mdpi), 2019, 22, .                                                                                                       | 0.2 | 0         |
| 143 | Electrophilic Properties of 2′-Deoxyadenosine···Thymine Dimer: Photoelectron Spectroscopy and DFT<br>Studies. Journal of Physical Chemistry A, 2021, 125, 6591-6599.                                                                                         | 2.5 | 0         |
| 144 | Preliminary Observations on the Dependence of Potential Energy Surfaces on Intramolecular Degrees of Freedom. , 2000, , 73-82.                                                                                                                               |     | 0         |