John G Leopold

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8632910/publications.pdf Version: 2024-02-01

IOHN C. LEODOLD

#	Article	IF	CITATIONS
1	An advanced relativistic magnetron operating with a split cathode and separated anode segments. Journal of Applied Physics, 2022, 131, .	2.5	10
2	A Study of Electron Dynamics in a Split-Cathode Coaxially Within an Anode. , 2022, , .		0
3	Nonlinear absorption of high-power microwave pulses in a plasma filled waveguide. Physics of Plasmas, 2021, 28, .	1.9	2
4	Squeezed state of an electron cloud as a "quasi-neutral―one-component plasma. Physics of Plasmas, 2021, 28, .	1.9	3
5	Experimental and numerical study of a split cathode fed relativistic magnetron. Journal of Applied Physics, 2021, 130, .	2.5	12
6	An Axial Output Relativistic Magnetron Fed by a Split Cathode and Magnetically Insulated by a Low-Power Solenoid. IEEE Transactions on Electron Devices, 2021, 68, 5227-5231.	3.0	4
7	The Non-Linear High-Power Microwave Complete Absorption Phenomenon in a Plasma Filled Waveguide. , 2021, , .		0
8	The Interaction of a High-Power Sub-Nanosecond Microwave Pulse With Plasma. IEEE Transactions on Plasma Science, 2020, 48, 792-801.	1.3	3
9	Producing a magnetized low energy, high electron charge density state using a split cathode. Physics of Plasmas, 2020, 27, .	1.9	14
10	Periodic bunches produced by electron beam squeezed states in a resonant cavity. Physics of Plasmas, 2020, 27, .	1.9	7
11	Wake excitation by a powerful microwave pulse and its evolution in a plasma-filled waveguide. Physics of Plasmas, 2020, 27, .	1.9	6
12	A self-oscillating electron beam experiment. Physics of Plasmas, 2020, 27, .	1.9	3
13	Generation of Space Charge Self-Oscillations in a Vacuum Diode. , 2020, , .		Ο
14	A Relativistic Magnetron Operated With Permanent Magnets. IEEE Transactions on Plasma Science, 2019, 47, 3997-4005.	1.3	11
15	Self-oscillations in an over-injected electron diode – Experiment and analysis. Physics of Plasmas, 2019, 26, .	1.9	10
16	Wakefield excitation by a powerful sub-nanosecond 28.6 GHz microwave pulse propagating in a plasma filled waveguide. Physics of Plasmas, 2019, 26, .	1.9	9
17	Generation of high-current pulses by a magnetized squeezed electron beam. Physics of Plasmas, 2019, 26, .	1.9	14
18	The interaction of intense, ultra-short microwave beams with the plasma generated by gas ionization. Physics of Plasmas, 2018, 25, 032308.	1.9	7

John G Leopold

#	Article	IF	CITATIONS
19	Ionization-Induced Self-Channeling of an Ultrahigh-Power Subnanosecond Microwave Beam in a Neutral Gas. Physical Review Letters, 2018, 120, 135003.	7.8	12
20	Self-channeling of a powerful microwave beam in a preliminarily formed plasma. Physics of Plasmas, 2018, 25, .	1.9	5
21	High power microwave source for a plasma wakefield experiment. Journal of Applied Physics, 2017, 121, .	2.5	19
22	Over-injection and self-oscillations in an electron vacuum diode. Physics of Plasmas, 2017, 24, .	1.9	9
23	Wakefield in a waveguide. Physics of Plasmas, 2017, 24, .	1.9	8
24	Pulse-Shortening in a Relativistic Magnetron: The Role of Anode Block Axial Endcaps. IEEE Transactions on Plasma Science, 2016, 44, 1375-1385.	1.3	7
25	Revisiting the relativistic A6 magnetron. , 2016, , .		0
26	Investigating the power flow in a relativistic magnetron with radial output. , 2015, , .		0
27	A six vane, single radial output slot relativistic magnetron revisited. , 2015, , .		2
28	Revisiting Power Flow and Pulse Shortening in a Relativistic Magnetron. IEEE Transactions on Plasma Science, 2015, 43, 3168-3175.	1.3	10
29	Initiation of vacuum insulator surface high-voltage flashover with electrons produced by laser illumination. Physics of Plasmas, 2015, 22, .	1.9	7