David C Geary

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8631295/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mathematical disabilities: Cognitive, neuropsychological, and genetic components Psychological Bulletin, 1993, 114, 345-362.	6.1	866
2	Mathematics and Learning Disabilities. Journal of Learning Disabilities, 2004, 37, 4-15.	2.2	823
3	The Science of Sex Differences in Science and Mathematics. Psychological Science in the Public Interest: A Journal of the American Psychological Society, 2007, 8, 1-51.	10.7	799
4	Evolution and proximate expression of human paternal investment Psychological Bulletin, 2000, 126, 55-77.	6.1	649
5	Cognitive Mechanisms Underlying Achievement Deficits in Children With Mathematical Learning Disability. Child Development, 2007, 78, 1343-1359.	3.0	646
6	Cognitive predictors of achievement growth in mathematics: A 5-year longitudinal study Developmental Psychology, 2011, 47, 1539-1552.	1.6	592
7	The Gender-Equality Paradox in Science, Technology, Engineering, and Mathematics Education. Psychological Science, 2018, 29, 581-593.	3.3	590
8	Numerical and Arithmetical Cognition: A Longitudinal Study of Process and Concept Deficits in Children with Learning Disability. Journal of Experimental Child Psychology, 2000, 77, 236-263.	1.4	508
9	Ecological dominance, social competition, and coalitionary arms races. Evolution and Human Behavior, 2005, 26, 10-46.	2.2	332
10	Mathematical cognition deficits in children with learning disabilities and persistent low achievement: A five-year prospective study Journal of Educational Psychology, 2012, 104, 206-223.	2.9	321
11	Sex Differences in Mathematics and Reading Achievement Are Inversely Related: Within- and Across-Nation Assessment of 10 Years of PISA Data. PLoS ONE, 2013, 8, e57988.	2.5	290
12	Sexual selection and sex differences in mathematical abilities. Behavioral and Brain Sciences, 1996, 19, 229-247.	0.7	285
13	Evolutionary Developmental Psychology. Child Development, 2000, 71, 57-65.	3.0	259
14	Hippocampal-neocortical functional reorganization underlies children's cognitive development. Nature Neuroscience, 2014, 17, 1263-1269.	14.8	214
15	Evolution of human mate choice. Journal of Sex Research, 2004, 41, 27-42.	2.5	207
16	Sex Differences in Spatial Cognition, Computational Fluency, and Arithmetical Reasoning. Journal of Experimental Child Psychology, 2000, 77, 337-353.	1.4	205
17	Do different types of school mathematics development depend on different constellations of numerical versus general cognitive abilities?. Developmental Psychology, 2010, 46, 1731-1746.	1.6	204
18	Adolescents' Functional Numeracy Is Predicted by Their School Entry Number System Knowledge. PLoS ONE, 2013, 8, e54651.	2.5	196

#	Article	IF	CITATIONS
19	Sex differences in academic achievement are not related to political, economic, or social equality. Intelligence, 2015, 48, 137-151.	3.0	190
20	Competence with fractions predicts gains in mathematics achievement. Journal of Experimental Child Psychology, 2012, 113, 447-455.	1.4	181
21	Early Foundations for Mathematics Learning and Their Relations to Learning Disabilities. Current Directions in Psychological Science, 2013, 22, 23-27.	5.3	181
22	Fact Retrieval Deficits in Low Achieving Children and Children With Mathematical Learning Disability. Journal of Learning Disabilities, 2012, 45, 291-307.	2.2	161
23	Predicting Mathematical Achievement and Mathematical Learning Disability with a Simple Screening Tool. Journal of Psychoeducational Assessment, 2009, 27, 265-279.	1.5	154
24	External validation of the strategy choice model for addition. Journal of Experimental Child Psychology, 1989, 47, 175-192.	1.4	141
25	The Contributions of Numerosity and Domainâ€General Abilities to School Readiness. Child Development, 2010, 81, 1520-1533.	3.0	135
26	Early predictors of middle school fraction knowledge. Developmental Science, 2014, 17, 775-785.	2.4	133
27	Acuity of the approximate number system and preschoolers' quantitative development. Developmental Science, 2014, 17, 492-505.	2.4	125
28	From infancy to adulthood: the development of numerical abilities. European Child and Adolescent Psychiatry, 2000, 9, S11-S16.	4.7	117
29	Developmental change in the influence of domain-general abilities and domain-specific knowledge on mathematics achievement: An eight-year longitudinal study Journal of Educational Psychology, 2017, 109, 680-693.	2.9	111
30	Developmental Gains in Visuospatial Memory Predict Gains in Mathematics Achievement. PLoS ONE, 2013, 8, e70160.	2.5	111
31	Early numerical foundations of young children's mathematical development. Journal of Experimental Child Psychology, 2015, 132, 205-212.	1.4	97
32	Early Conceptual Understanding of Cardinality Predicts Superior School-Entry Number-System Knowledge. Psychological Science, 2018, 29, 191-205.	3.3	97
33	Hominid Brain Evolution. Human Nature, 2009, 20, 67-79.	1.6	85
34	Sources of Individual Differences in Children's Understanding of Fractions. Child Development, 2014, 85, 1461-1476.	3.0	85
35	State and Trait Effects on Individual Differences in Children's Mathematical Development. Psychological Science, 2014, 25, 2017-2026.	3.3	80
36	Individual differences in cognitive arithmetic Journal of Experimental Psychology: General, 1987, 116, 154-171.	2.1	78

#	Article	IF	CITATIONS
37	Children's cognitive representation of the mathematical number line. Developmental Science, 2014, 17, 525-536.	2.4	78
38	Predicting Children's Reading and Mathematics Achievement from Early Quantitative Knowledge and Domain-General Cognitive Abilities. Frontiers in Psychology, 2016, 7, 775.	2.1	67
39	Young children's core symbolic and nonsymbolic quantitative knowledge in the prediction of later mathematics achievement Developmental Psychology, 2016, 52, 2130-2144.	1.6	67
40	Pathways to Thirdâ€Grade Calculation Versus Wordâ€Reading Competence: Are They More Alike or Different?. Child Development, 2016, 87, 558-567.	3.0	61
41	Efficiency of mitochondrial functioning as the fundamental biological mechanism of general intelligence (g) Psychological Review, 2018, 125, 1028-1050.	3.8	58
42	The codevelopment of skill at and preference for use of retrieval-based processes for solving addition problems: Individual and sex differences from first to sixth grades. Journal of Experimental Child Psychology, 2012, 113, 78-92.	1.4	55
43	Children's visuospatial memory predicts mathematics achievement through early adolescence. PLoS ONE, 2017, 12, e0172046.	2.5	47
44	Attaching meaning to the number words: contributions of the object tracking and approximate number systems. Developmental Science, 2018, 21, e12495.	2.4	46
45	Gender differences in the pathways to higher education. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14073-14076.	7.1	46
46	Computational and reasoning abilities in arithmetic: Cross-generational change in China and the United States. Psychonomic Bulletin and Review, 1997, 4, 425-430.	2.8	44
47	Quantitative Deficits of Preschool Children at Risk for Mathematical Learning Disability. Frontiers in Psychology, 2013, 4, 195.	2.1	44
48	Closing the word-problem achievement gap in first grade: Schema-based word-problem intervention with embedded language comprehension instruction Journal of Educational Psychology, 2021, 113, 86-103.	2.9	42
49	Sources of individual differences in emerging competence with numeration understanding versus multidigit calculation skill Journal of Educational Psychology, 2014, 106, 482-498.	2.9	39
50	Growth of symbolic number knowledge accelerates after children understand cardinality. Cognition, 2018, 177, 69-78.	2.2	37
51	Sex differences in mathematics anxiety and attitudes: Concurrent and longitudinal relations to mathematical competence Journal of Educational Psychology, 2019, 111, 1447-1461.	2.9	36
52	A simplified approach to measuring national gender inequality. PLoS ONE, 2019, 14, e0205349.	2.5	34
53	Children's early understanding of number predicts their later problem-solving sophistication in addition. Journal of Experimental Child Psychology, 2018, 169, 73-92.	1.4	28
54	Individual differences in algebraic cognition: Relation to the approximate number and semantic memory systems. Journal of Experimental Child Psychology, 2015, 140, 211-227.	1.4	27

#	Article	IF	CITATIONS
55	Male, female: The evolution of human sex differences (3rd ed.) , 2021, , .		27
56	Kindergartners' fluent processing of symbolic numerical magnitude is predicted by their cardinal knowledge and implicit understanding of arithmetic 2 years earlier. Journal of Experimental Child Psychology, 2016, 150, 31-47.	1.4	23
57	Sex differences in adolescents' occupational aspirations: Variations across time and place. PLoS ONE, 2022, 17, e0261438.	2.5	23
58	In-class attention, spatial ability, and mathematics anxiety predict across-grade gains in adolescents' mathematics achievement Journal of Educational Psychology, 2021, 113, 754-769.	2.9	22
59	Women's Preference for Masculine Traits Is Disrupted by Images of Male-on-Female Aggression. PLoS ONE, 2014, 9, e110497.	2.5	21
60	Developmental foundations of children's fraction magnitude knowledge. Cognitive Development, 2016, 39, 141-153.	1.3	16
61	The Gender-Equality Paradox Is Part of a Bigger Phenomenon: Reply to Richardson and Colleagues (2020). Psychological Science, 2020, 31, 342-344.	3.3	16
62	Preschool deficits in cardinal knowledge and executive function contribute to longer-term mathematical learning disability. Journal of Experimental Child Psychology, 2019, 188, 104668.	1.4	15
63	Mitochondrial Functioning and the Relations among Health, Cognition, and Aging: Where Cell Biology Meets Cognitive Science. International Journal of Molecular Sciences, 2021, 22, 3562.	4.1	15
64	Boys' advantage on the fractions number line is mediated by visuospatial attention: Evidence for a parietalâ€spatial contribution to number line learning. Developmental Science, 2021, 24, e13063.	2.4	13
65	Sexual selection, the division of labor, and the evolution of sex differences. Behavioral and Brain Sciences, 1998, 21, 444-447.	0.7	12
66	Dissociable effects of dorsal and ventral hippocampal DHA content on spatial learning and anxiety-like behavior. Neurobiology of Learning and Memory, 2014, 116, 59-68.	1.9	12
67	Mitochondria as the Linchpin of General Intelligence and the Link between g, Health, and Aging. Journal of Intelligence, 2019, 7, 25.	2.5	12
68	Spatial ability as a distinct domain of human cognition: An evolutionary perspective. Intelligence, 2022, 90, 101616.	3.0	12
69	The Spark of Life and the Unification of Intelligence, Health, and Aging. Current Directions in Psychological Science, 2019, 28, 223-228.	5.3	11
70	Metamemory and Academic Achievement: Testing the Validity of a Group-Administered Metamemory Battery. Journal of Genetic Psychology, 1990, 151, 439-450.	1.2	10
71	Evolution of Human Sex-Specific Cognitive Vulnerabilities. Quarterly Review of Biology, 2017, 92, 361-410.	0.1	10
72	Now you see them, and now you don't: An evolutionarily informed model of environmental influences on human sex differences. Neuroscience and Biobehavioral Reviews, 2021, 125, 26-32.	6.1	10

#	Article	IF	CITATIONS
73	Boys' visuospatial abilities compensate for their relatively poor in-class attentive behavior in learning mathematics. Journal of Experimental Child Psychology, 2021, 211, 105222.	1.4	10
74	One's Better Half: Romantic Partners Function as Social Signals. Evolutionary Psychological Science, 2017, 3, 294-305.	1.3	9
75	Evolutionary perspective on sex differences in the expression of neurological diseases. Progress in Neurobiology, 2019, 176, 33-53.	5.7	8
76	Comorbid Learning Difficulties in Reading and Mathematics: The Role of Intelligence and In-Class Attentive Behavior. Frontiers in Psychology, 2020, 11, 572099.	2.1	8
77	Sex differences in developmental pathways to mathematical competence Journal of Educational Psychology, 2023, 115, 212-228.	2.9	8
78	Evolutionary framework for identifying sex―and speciesâ€specific vulnerabilities in brain development and functions. Journal of Neuroscience Research, 2017, 95, 355-361.	2.9	7
79	Connections between mathematics and reading development: Numerical cognition mediates relations between foundational competencies and later academic outcomes Journal of Educational Psychology, 2022, 114, 273-288.	2.9	7
80	Can Neglected Tropical Diseases Compromise Human Wellbeing in Sex-, Age-, and Trait-Specific Ways?. PLoS Neglected Tropical Diseases, 2016, 10, e0004489.	3.0	5
81	Mathematics Clusters Reveal Strengths and Weaknesses in Adolescents' Mathematical Competencies, Spatial Abilities, and Mathematics Attitudes. Journal of Cognition and Development, 2021, 22, 695-720.	1.3	5
82	Sex, mathematics, and the brain: An evolutionary perspective. Developmental Review, 2022, 63, 101010.	4.7	5
83	What Is the Function of Mind and Brain?. Educational Psychology Review, 1998, 10, 377-387.	8.4	4
84	Maternal DHA supplementation influences sex-specific disruption of placental gene expression following early prenatal stress. Biology of Sex Differences, 2021, 12, 10.	4.1	4
85	Evolution of Self-Awareness and the Cultural Emergence of Academic and Non-academic Self-Concepts. Educational Psychology Review, 2022, 34, 2323-2349.	8.4	4
86	Mitochondrial Functions, Cognition, and the Evolution of Intelligence: Reply to Commentaries and Moving Forward. Journal of Intelligence, 2020, 8, 42.	2.5	3
87	Meta-analysis on the relation between visuomotor integration and academic achievement: Role of educational stage and disability. Educational Research Review, 2022, 35, 100412.	7.8	3
88	The role of domain-general attention and domain-specific processing in working memory in algebraic performance: An experimental approach Journal of Experimental Psychology: Learning Memory and Cognition, 2022, 48, 348-374.	0.9	3
89	g and Darwinian algorithms. Behavioral and Brain Sciences, 2000, 23, 685-686.	0.7	1
90	On the biology and politics of cognitive sex differences. Behavioral and Brain Sciences, 1996, 19, 267-284.	0.7	0

-			\sim	\sim	
	A \ J	D		(/	$\nabla \nabla$
	AVI	υ	<u> </u>	ULA	1 X I

#	Article	IF	CITATIONS
91	Evolution and Sex Differences in Political Engagement. Psychological Inquiry, 2021, 32, 96-104.	0.9	0
92	Quantity Estimation. , 2021, , 6429-6432.		0
93	Quantity Estimation. , 2016, , 1-4.		0