William M Oldham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8631230/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Systemic vascular distensibility relates to exercise capacity in connective tissue disease. Rheumatology, 2021, 60, 1429-1434.	1.9	6
2	Targeting immunosuppressive macrophages overcomes PARP inhibitor resistance in BRCA1-associated triple-negative breast cancer. Nature Cancer, 2021, 2, 66-82.	13.2	126
3	Individualized interactomes for network-based precision medicine in hypertrophic cardiomyopathy with implications for other clinical pathophenotypes. Nature Communications, 2021, 12, 873.	12.8	53
4	NHLBI-CMREF Workshop Report on Pulmonary Vascular DiseaseÂClassification. Journal of the American College of Cardiology, 2021, 77, 2040-2052.	2.8	13
5	Integrating haemodynamics identifies an extreme pulmonary hypertension phenotype. European Respiratory Journal, 2021, 58, 2004625.	6.7	12
6	Immunometabolic Endothelial Phenotypes: Integrating Inflammation and Glucose Metabolism. Circulation Research, 2021, 129, 9-29.	4.5	38
7	Mechano-induced cell metabolism promotes microtubule glutamylation to force metastasis. Cell Metabolism, 2021, 33, 1342-1357.e10.	16.2	66
8	Interferon-Î ³ Impairs Human Coronary Artery Endothelial Glucose Metabolism by Tryptophan Catabolism and Activates Fatty Acid Oxidation. Circulation, 2021, 144, 1612-1628.	1.6	36
9	Understanding critically ill sepsis patients with normal serum lactate levels: results from U.S. and European ICU cohorts. Scientific Reports, 2021, 11, 20076.	3.3	18
10	Abstract 11024: Interferon-Gamma Impairs Human Coronary Artery Endothelial Glucose Metabolism via Tryptophan Catabolism and Activates Fatty Acid Oxidization. Circulation, 2021, 144, .	1.6	0
11	Abstract 10241: Single-Cell RNA-Sequencing Reveals Hyperacute NK Cell and Monocyte Cell States Correlating with Poor Neurological Outcomes After Cardiac Arrest. Circulation, 2021, 144, .	1.6	0
12	860â€Targeting immunosuppressive macrophages overcomes PARP-inhibitor resistance in BRCA1-associated triple-negative breast cancer. , 2020, , .		1
13	Abstract P5-04-01: PARP inhibition modulates the infiltration, phenotype and function of tumor-associated macrophages (TAMs) in BRCA-associated breast cancer and can be augmented by harnessing the anti-tumor potential of TAMs. , 2020, , .		0
14	Pulmonary Vascular Distensibility and Early Pulmonary Vascular Remodeling in Pulmonary Hypertension. Chest, 2019, 156, 724-732.	0.8	38
15	Paradoxical Embolization via Large Pulmonary Arteriovenous Malformation. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 29-30.	5.6	0
16	Reaction rate of pyruvate and hydrogen peroxide: assessing antioxidant capacity of pyruvate under biological conditions. Scientific Reports, 2019, 9, 19568.	3.3	47
17	Innate T cells in the intensive care unit. Molecular Immunology, 2019, 105, 213-223.	2.2	14
18	Tumor-Stroma Mechanics Coordinate Amino Acid Availability to Sustain Tumor Growth and Malignancy. Cell Metabolism. 2019, 29, 124-140.e10.	16.2	232

William M Oldham

#	Article	IF	CITATIONS
19	Network Analysis to Risk Stratify Patients With Exercise Intolerance. Circulation Research, 2018, 122, 864-876.	4.5	42
20	The Long Noncoding RNA LnRPT Puts the Brakes on Pulmonary Artery Smooth Muscle Cell Proliferation. American Journal of Respiratory Cell and Molecular Biology, 2018, 58, 138-139.	2.9	6
21	Pyridine Dinucleotides from Molecules to Man. Antioxidants and Redox Signaling, 2018, 28, 180-212.	5.4	24
22	Nicotine Adenine Dinucleotides: The Redox Currency of the Cell. Antioxidants and Redox Signaling, 2018, 28, 165-166.	5.4	6
23	Systems Biology Approaches to Redox Metabolism in Stress and Disease States. Antioxidants and Redox Signaling, 2018, 29, 953-972.	5.4	44
24	GAPDH inhibits intracellular pathways during starvation for cellular energy homeostasis. Nature, 2018, 561, 263-267.	27.8	28
25	MicroRNA Dysregulation in Pulmonary Arteries from Chronic Obstructive Pulmonary Disease. Relationships with Vascular Remodeling. American Journal of Respiratory Cell and Molecular Biology, 2018, 59, 490-499.	2.9	34
26	[18F]Fluorocholine and [18F]Fluoroacetate PET as Imaging Biomarkers to Assess Phosphatidylcholine and Mitochondrial Metabolism in Preclinical Models of TSC and LAM. Clinical Cancer Research, 2018, 24, 5925-5938.	7.0	8
27	NEDD9 targets <i>COL3A1</i> to promote endothelial fibrosis and pulmonary arterial hypertension. Science Translational Medicine, 2018, 10, .	12.4	89
28	p62/SQSTM1 Cooperates with Hyperactive mTORC1 to Regulate Glutathione Production, Maintain Mitochondrial Integrity, and Promote Tumorigenesis. Cancer Research, 2017, 77, 3255-3267.	0.9	49
29	Rapamycin-induced miR-21 promotes mitochondrial homeostasis and adaptation in mTORC1 activated cells. Oncotarget, 2017, 8, 64714-64727.	1.8	18
30	Elevated pulmonary arterial and systemic plasma aldosterone levels associate with impaired cardiac reserve capacity during exercise in left ventricular systolic heart failure patients: A pilot study. Journal of Heart and Lung Transplantation, 2016, 35, 342-351.	0.6	13
31	Unexplained Exertional Dyspnea Caused by Low Ventricular Filling Pressures: Results from Clinical Invasive Cardiopulmonary Exercise Testing. Pulmonary Circulation, 2016, 6, 55-62.	1.7	67
32	Pulmonary Hypertension as a Metabolic Disease. , 2016, , 135-145.		1
33	Vascular stiffness mechanoactivates YAP/TAZ-dependent glutaminolysis to drive pulmonary hypertension. Journal of Clinical Investigation, 2016, 126, 3313-3335.	8.2	303
34	Quantification of 2-Hydroxyglutarate Enantiomers by Liquid Chromatography-mass Spectrometry. Bio-protocol, 2016, 6, .	0.4	17
35	Protocol for Exercise Hemodynamic Assessment: Performing an Invasive Cardiopulmonary Exercise Test in Clinical Practice. Pulmonary Circulation, 2015, 5, 610-618.	1.7	68
36	Hypoxia-Mediated Increases in l -2-hydroxyglutarate Coordinate the Metabolic Response to Reductive Stress. Cell Metabolism, 2015, 22, 291-303.	16.2	270

WILLIAM M OLDHAM

#	Article	IF	CITATIONS
37	Network-based association of hypoxia-responsive genes with cardiovascular diseases. New Journal of Physics, 2014, 16, 105014.	2.9	14
38	Upregulation of Steroidogenic Acute Regulatory Protein by Hypoxia Stimulates Aldosterone Synthesis in Pulmonary Artery Endothelial Cells to Promote Pulmonary Vascular Fibrosis. Circulation, 2014, 130, 168-179.	1.6	53
39	A workshop on leadership for MD/PhD students. Medical Education Online, 2011, 16, 7075.	2.6	14
40	Gβγ Activates GSK3 to Promote LRP6-Mediated β-Catenin Transcriptional Activity. Science Signaling, 2010, 3, ra37.	3.6	51
41	Helix Dipole Movement and Conformational Variability Contribute to Allosteric GDP Release in Gαi Subunits,. Biochemistry, 2009, 48, 2630-2642.	2.5	21
42	Heterotrimeric G protein activation by G-protein-coupled receptors. Nature Reviews Molecular Cell Biology, 2008, 9, 60-71.	37.0	981
43	How do Receptors Activate G Proteins?. Advances in Protein Chemistry, 2007, 74, 67-93.	4.4	51
44	Mapping allosteric connections from the receptor to the nucleotide-binding pocket of heterotrimeric G proteins. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7927-7932.	7.1	59
45	The crystal structure of the fast exchange mutant I56C/Q333C in Gα _{i1} suggests a mechanism for receptorâ€mediated allosteric nucleotide exchange. FASEB Journal, 2007, 21, A613.	0.5	0
46	Structural basis of function in heterotrimeric G proteins. Quarterly Reviews of Biophysics, 2006, 39, 117-166.	5.7	193
47	Mechanism of the receptor-catalyzed activation of heterotrimeric G proteins. Nature Structural and Molecular Biology, 2006, 13, 772-777.	8.2	171
48	Structural and dynamical changes in an Â-subunit of a heterotrimeric G protein along the activation pathway. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16194-16199.	7.1	68