
Hongwei Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8631172/publications.pdf Version: 2024-02-01

HONGWEI YU

#	Article	IF	CITATIONS
1	The use of the Dhcr7 knockout mouse to accurately determine the origin of fetal sterols. Journal of Lipid Research, 2006, 47, 1535-1541.	4.2	90
2	Direct injection into the dorsal root ganglion: Technical, behavioral, and histological observations. Journal of Neuroscience Methods, 2011, 199, 43-55.	2.5	82
3	Quantifying raft proteins in neonatal mouse brain by 'tube-gel' protein digestion label-free shotgun proteomics. Proteome Science, 2007, 5, 17.	1.7	54
4	Lentiviral Gene Transfer into the Dorsal Root Ganglion of Adult Rats. Molecular Pain, 2011, 7, 1744-8069-7-63.	2.1	43
5	Intraganglionic AAV6 Results in Efficient and Long-Term Gene Transfer to Peripheral Sensory Nervous System in Adult Rats. PLoS ONE, 2013, 8, e61266.	2.5	41
6	Dorsal Root Ganglionic Field Stimulation Relieves Spontaneous and Induced Neuropathic Pain in Rats. Journal of Pain, 2016, 17, 1349-1358.	1.4	38
7	Late gestational lung hypoplasia in a mouse model of the Smith-Lemli-Opitz syndrome. BMC Developmental Biology, 2004, 4, 1.	2.1	37
8	Piezo2 mechanosensitive ion channel is located to sensory neurons and nonneuronal cells in rat peripheral sensory pathway: implications in pain. Pain, 2021, 162, 2750-2768.	4.2	35
9	Painful nerve injury upregulates thrombospondinâ€4 expression in dorsal root ganglia. Journal of Neuroscience Research, 2015, 93, 443-453.	2.9	31
10	Satellite glial cells in sensory ganglia express functional transient receptor potential ankyrin 1 that is sensitized in neuropathic and inflammatory pain. Molecular Pain, 2020, 16, 174480692092542.	2.1	31
11	CaMKII Controls Whether Touch Is Painful. Journal of Neuroscience, 2015, 35, 14086-14102.	3.6	29
12	HMC-CoA synthase isoenzymes 1 and 2 localize to satellite glial cells in dorsal root ganglia and are differentially regulated by peripheral nerve injury. Brain Research, 2016, 1652, 62-70.	2.2	29
13	Ca2+-Dependent Regulation of Ca2+ Currents in Rat Primary Afferent Neurons: Role of CaMKII and the Effect of Injury. Journal of Neuroscience, 2012, 32, 11737-11749.	3.6	26
14	Analgesia for Neuropathic Pain by Dorsal Root Ganglion Transplantation of Genetically Engineered Mesenchymal Stem Cells: Initial Results. Molecular Pain, 2015, 11, s12990-015-0002.	2.1	26
15	AAV-Mediated Gene Transfer to Dorsal Root Ganglion. Methods in Molecular Biology, 2016, 1382, 251-261.	0.9	23
16	Enhanced T-type calcium channel 3.2 activity in sensory neurons contributes to neuropathic-like pain of monosodium iodoacetate-induced knee osteoarthritis. Molecular Pain, 2020, 16, 174480692096380.	2.1	22
17	AAV-encoded CaV2.2 peptide aptamer CBD3A6K for primary sensory neuron-targeted treatment of established neuropathic pain. Gene Therapy, 2019, 26, 308-323.	4.5	21
18	Sigma-1 receptor activity in primary sensory neurons is a critical driver of neuropathic pain. Gene Therapy, 2022, 29, 1-15.	4.5	20

Hongwei Yu

#	Article	IF	CITATIONS
19	Primary sensory neuron-specific interference of TRPV1 signaling by adeno-associated virus-encoded TRPV1 peptide aptamer attenuates neuropathic pain. Molecular Pain, 2017, 13, 174480691771704.	2.1	19
20	Partial rescue of neonatal lethality of Dhcr7 null mice by a nestin promoter-driven DHCR7 transgene expression. Developmental Brain Research, 2005, 156, 46-60.	1.7	17
21	Peripheral nerve injury induces loss of nociceptive neuron-specific Gαi-interacting protein in neuropathic pain rat. Molecular Pain, 2016, 12, 174480691664638.	2.1	17
22	Transmembrane protein 100 is expressed in neurons and glia of dorsal root ganglia and is reduced after painful nerve injury. Pain Reports, 2019, 4, e703.	2.7	13
23	Inhibition of neuropathic hyperalgesia by intrathecal bone marrow stromal cells is associated with alteration of multiple soluble factors in cerebrospinal fluid. Experimental Brain Research, 2017, 235, 2627-2638.	1.5	12
24	Selective reconstitution of liver cholesterol biosynthesis promotes lung maturation but does not prevent neonatal lethality in Dhcr7 null mice. BMC Developmental Biology, 2007, 7, 27.	2.1	11
25	Clial fibrillary acidic protein promoter determines transgene expression in satellite glial cells following intraganglionic adenoâ€associated virus delivery in adult rats. Journal of Neuroscience Research, 2018, 96, 436-448.	2.9	10
26	Regulation of voltage-gated Ca2+ currents by Ca2+/calmodulin-dependent protein kinase II in resting sensory neurons. Molecular and Cellular Neurosciences, 2014, 62, 10-18.	2.2	9
27	Targeting intrinsically disordered regions facilitates discovery of CaV3.2 inhibitory peptides for AAV-mediated peripheral analgesia. Pain, 2022, Publish Ahead of Print, .	4.2	2
28	Selective block of sensory neuronal T-type/Cav3.2 activity mitigates neuropathic pain behavior in a rat model of osteoarthritis pain. Arthritis Research and Therapy, 2022, 24, .	3.5	2