José Roberto Trigo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8630800/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chemical convergence between a guild of facultative myrmecophilous caterpillars and host plants. Ecological Entomology, 2021, 46, 66-75.	2.2	7
2	Danaus butterflies of the Americas do not perform leaf-scratching. Arthropod-Plant Interactions, 2020, 14, 521-529.	1.1	3
3	The geographical and seasonal mosaic in a plant-herbivore interaction: patterns of defences and herbivory by a specialist and a non-specialist. Scientific Reports, 2019, 9, 15206.	3.3	6
4	The specialization continuum: Decision-making in butterflies with different diet requirements. Behavioural Processes, 2019, 165, 14-22.	1.1	5
5	Volatiles released by damaged leaves of Piper mollicomum (Piperaceae) act as cues for predaceous wasps: evidence using plasticine dummies as herbivore model. Arthropod-Plant Interactions, 2019, 13, 593-601.	1.1	6
6	Pterodon pubescens and Cordia verbenacea association promotes a synergistic response in antinociceptive model and improves the anti-inflammatory results in animal models. Biomedicine and Pharmacotherapy, 2019, 112, 108693.	5.6	18
7	Coenzyme Q ₁₀ protects against βâ€cell toxicity induced by pravastatin treatment of hypercholesterolemia. Journal of Cellular Physiology, 2019, 234, 11047-11059.	4.1	10
8	Native or nonnative host plants: What is better for a specialist moth?. Biological Invasions, 2018, 20, 849-860.	2.4	3
9	Ants visiting extrafloral nectaries and pyrrolizidine alkaloids may shape how a specialist herbivore feeds on its host plants. Arthropod-Plant Interactions, 2017, 11, 629-639.	1.1	4
10	The relationship between queen execution and cuticular hydrocarbons in stingless bee Melipona scutellaris (Hymenoptera: Meliponini). Chemoecology, 2017, 27, 25-32.	1.1	4
11	The gut microbiota of insecticide-resistant insects houses insecticide-degrading bacteria: A potential source for biotechnological exploitation. PLoS ONE, 2017, 12, e0174754.	2.5	125
12	Pyrrolizidine Alkaloids in the Pericopine MothScearctia figulina(Erebidae: Arctiinae): Metabolism and Chemical Defense. Journal of the Brazilian Chemical Society, 2016, , .	0.6	1
13	Pyrrolizidine Alkaloids Negatively Affect a Generalist Herbivore Feeding on the Chemically Protected Legume Crotalaria pallida. Neotropical Entomology, 2016, 45, 252-257.	1.2	12
14	The selective florivory of <i><scp>E</scp>rioscelis emarginata</i> matches its role as a pollinator of <i><scp>P</scp>hilodendron</i> . Entomologia Experimentalis Et Applicata, 2015, 156, 290-300.	1.4	11
15	Feeding on Host Plants with Different Concentrations and Structures of Pyrrolizidine Alkaloids Impacts the Chemical-Defense Effectiveness of a Specialist Herbivore. PLoS ONE, 2015, 10, e0141480.	2.5	30
16	Southern Monarchs do not Develop Learned Preferences for Flowers With Pyrrolizidine Alkaloids. Journal of Chemical Ecology, 2015, 41, 662-669.	1.8	10
17	Hiding in Plain Sight: Cuticular Compound Profile Matching Conceals a Larval Tortoise Beetle in its Host Chemical Cloud. Journal of Chemical Ecology, 2014, 40, 341-354.	1.8	6
18	Ants have a negative rather than a positive effect on extrafloral nectaried Crotalaria pallida performance. Acta Oecologica, 2013, 51, 49-53.	1.1	23

#	Article	IF	CITATIONS
19	Anti-inflammatory intestinal activity of Arctium lappa L. (Asteraceae) in TNBS colitis model. Journal of Ethnopharmacology, 2013, 146, 300-310.	4.1	73
20	Are Aristolochic Acids Responsible for the Chemical Defence of Aposematic Larvae of Battus polydamas (L.) (Lepidoptera: Papilionidae)?. Neotropical Entomology, 2013, 42, 558-564.	1.2	10
21	Preference for high concentrations of plant pyrrolizidine alkaloids in the specialist arctiid moth Utetheisa ornatrix depends on previous experience. Arthropod-Plant Interactions, 2013, 7, 169-175.	1.1	10
22	A free lunch? No cost for acquiring defensive plant pyrrolizidine alkaloids in a specialist arctiid moth (<i><scp>U</scp>tetheisa ornatrix</i>). Molecular Ecology, 2012, 21, 6152-6162.	3.9	39
23	Anti-Ulcerogenic Mechanisms of the Sesquiterpene Lactone Onopordopicrin-Enriched Fraction from Arctium lappa L. (Asteraceae): Role of Somatostatin, Gastrin, and Endogenous Sulfhydryls and Nitric Oxide. Journal of Medicinal Food, 2012, 15, 378-383.	1.5	27
24	Methyl Jasmonate Increases the Tropane Alkaloid Scopolamine and Reduces Natural Herbivory in Brugmansia suaveolens: Is Scopolamine Responsible for Plant Resistance?. Neotropical Entomology, 2012, 41, 2-8.	1.2	9
25	Varying Herbivore Population Structure Correlates with Lack of Local Adaptation in a Geographic Variable Plant-Herbivore Interaction. PLoS ONE, 2011, 6, e29220.	2.5	18
26	Host Plant Invests in Growth Rather than Chemical Defense When Attacked by a Specialist Herbivore. Journal of Chemical Ecology, 2011, 37, 492-495.	1.8	6
27	Effects of pyrrolizidine alkaloids through different trophic levels. Phytochemistry Reviews, 2011, 10, 83-98.	6.5	81
28	Bottomâ€up effects on a plantâ€endophageâ€parasitoid system: The role of flowerâ€head size and chemistry. Austral Ecology, 2010, 35, 104-115.	1.5	10
29	Attracting Predators without Falling Prey: Chemical Camouflage Protects Honeydewâ€Producing Treehoppers from Ant Predation. American Naturalist, 2010, 175, 261-268.	2.1	33
30	Sabotaging behaviour and minimal latex of <i>Asclepias curassavica</i> incur no cost for larvae of the southern monarch butterfly <i>Danaus erippus</i> . Ecological Entomology, 2010, 35, 504-513.	2.2	7
31	Chemical tools to distinguish the fire ant species Solenopsis invicta and S. saevissima (Formicidae:) Tj ETQq1 1 0	.784314 rg 1.3	gBT_/Overloc
32	Pyrrolizidine alkaloid profiles in Crotalaria species from Brazil: Chemotaxonomic significance. Biochemical Systematics and Ecology, 2009, 37, 459-469.	1.3	43
33	Faecal shield chemical defence is not important in larvae of the tortoise beetle Chelymorpha reimoseri (Chrysomelidae: Cassidinae: Stolaini). Chemoecology, 2009, 19, 63-66.	1.1	7
34	Chemical Variation in the Volatiles of <i>Copaifera reticulata</i> Ducke (Leguminosae) Growing Wild in the States of Pará and Amapá, Brazil. Journal of Essential Oil Research, 2009, 21, 501-503.	2.7	15
35	Volatiles of Oleoresins ofCopaifera paupera(Herzog) DwyerC. piresiiDwyer andC. pubifloraBenth. (Leguminosae). Journal of Essential Oil Research, 2009, 21, 403-404.	2.7	13

 $_{36}$ Chemical defence of the warningly coloured caterpillars of Methona themisto (Lepidoptera:) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 62 Td $_{1.2}^{10}$

José Roberto Trigo

#	Article	IF	CITATIONS
37	Sex Pheromone of the American Warble Fly, Dermatobia hominis: The Role of Cuticular Hydrocarbons. Journal of Chemical Ecology, 2008, 34, 636-646.	1.8	13
38	Encapsulation and release of a fluorescent probe, khusimyl dansylate, obtained from vetiver oil by complex coacervation. Flavour and Fragrance Journal, 2008, 23, 7-15.	2.6	24
39	Chemical composition and antimicrobial activity of the essential oils of the Amazon Guatteriopsis species. Phytochemistry, 2008, 69, 1895-1899.	2.9	77
40	Essential Oil Composition of <i>Bacopa imbricate</i> (Benth.) Pennel Collected at Wet and Dry Amazonian Seasons. Journal of Essential Oil Research, 2008, 20, 3-4.	2.7	0
41	Variation in Volatiles ofOcimum campechianumMill. andOcimum gratissimumL. Cultivated in the North of Brazil. Journal of Essential Oil-bearing Plants: JEOP, 2007, 10, 229-240.	1.9	13
42	Volatiles of Inflorescences, Leaves, Stems and Roots ofAgeratum conyzoidesL. growing Wild in the North of Brazil. Journal of Essential Oil-bearing Plants: JEOP, 2007, 10, 297-303.	1.9	2
43	Scopolamine in Brugmansia Suaveolens (Solanaceae): Defense, Allocation, Costs, and Induced Response. Journal of Chemical Ecology, 2007, 33, 297-309.	1.8	66
44	Differential Attractiveness of Potato Tuber Volatiles to Phthorimaea operculella (Gelechiidae) and the Predator Orius insidiosus (Anthocoridae). Journal of Chemical Ecology, 2007, 33, 1845-1855.	1.8	31
45	Extrafloral nectaries as a deterrent mechanism against seed predators in the chemically protected weed Crotalaria pallida (Leguminosae). Austral Ecology, 2006, 31, 776-782.	1.5	32
46	Why do larvae of Utetheisa ornatrix penetrate and feed in pods of Crotalaria species? Larval performance vs. chemical and physical constraints. Entomologia Experimentalis Et Applicata, 2006, 121, 23-29.	1.4	35
47	Chemical and phylogenetic relationships among Aristolochia L. (Aristolochiaceae) from southeastern Brazil. Biochemical Systematics and Ecology, 2006, 34, 291-302.	1.3	10
48	Identification of sex pheromones of Lutzomyia longipalpis (Lutz & Neiva, 1912) populations from the state of São Paulo, Brazil. Memorias Do Instituto Oswaldo Cruz, 2006, 101, 113-115.	1.6	20
49	Faecal shield of the tortoise beetle Plagiometriona aff. flavescens (Chrysomelidae: Cassidinae) as chemically mediated defence against predators. Journal of Tropical Ecology, 2005, 21, 189-194.	1.1	26
50	Sesquiterpene and polyacetylene profile of the Bidens pilosa complex (Asteraceae: Heliantheae) from Southeast of Brazil. Biochemical Systematics and Ecology, 2005, 33, 479-486.	1.3	32
51	Similarity of Cuticular Lipids Between a Caterpillar and Its Host Plant: A Way to Make Prey Undetectable for Predatory Ants?. Journal of Chemical Ecology, 2005, 31, 2551-2561.	1.8	42
52	Host-plant flowering status and the concentration of sugar in phloem sap: Effects on an an ant-treehopper interaction. European Journal of Entomology, 2005, 102, 201-208.	1.2	9
53	Semiochemicals derived from pyrrolizidine alkaloids in male ithomiine butterflies (Lepidoptera:) Tj ETQq1 1 0.7	84314 rgBT 1.3	/Overlock 10
54	Pyrrolizidine alkaloids in three Senecio species from southern Brazil. Biochemical Systematics and	1.3	10

Ecology, 2004, 32, 1219-1222.

1.310

#	Article	IF	CITATIONS
55	Modulation of gastrin and epidermal growth factor by pyrrolizidine alkaloids obtained from Senecio brasiliensis in acute and chronic induced gastric ulcers. Canadian Journal of Physiology and Pharmacology, 2004, 82, 319-325.	1.4	15
56	Preventive activity of pyrrolizidine alkaloids from Senecio brasiliensis (Asteraceae) on gastric and duodenal induced ulcer on mice and rats. Journal of Ethnopharmacology, 2004, 95, 345-351.	4.1	44
57	Quinolizidine alkaloids in Ormosia arborea seeds inhibit predation but not hoarding by agoutis (Dasyprocta leporina). Journal of Chemical Ecology, 2003, 29, 1065-1072.	1.8	34
58	Chemotaxonomic value of pyrrolizidine alkaloids in southern Brazil Senecio (Senecioneae:) Tj ETQq0 0 0 rgBT /C	verlock 10 1.3) Tf 50 622 Td
59	Do fecal shields provide physical protection to larvae of the tortoise beetles Plagiometriona flavescens and Stolas chalybea against natural enemies?. Entomologia Experimentalis Et Applicata, 2002, 104, 203-206.	1.4	18
60	Structure-activity relationships of pyrrolizidine alkaloids in insect chemical defense against the orb-weaving spider Nephila clavipes. Journal of Chemical Ecology, 2002, 28, 657-668.	1.8	24
61	The essential amino acid lysine acts as precursor of glutamate in the mammalian central nervous system. FEBS Letters, 2001, 488, 34-38.	2.8	75
62	Determination of drug levels and the effect of diazepam on the growth of necrophagous flies of forensic importance in southeastern Brazil. Forensic Science International, 2001, 120, 140-144.	2.2	83
63	The role of nectar production, flower pigments and odour in the pollination of four species of Passiflora (Passifloraceae) in south-eastern Brazil. Botanical Journal of the Linnean Society, 2001, 136, 139-152.	1.6	61
64	Variation of diastereoisomeric pyrrolizidine alkaloids in Pleurothallis (Orchidaceae). Biochemical Systematics and Ecology, 2001, 29, 45-52.	1.3	12
65	The role of nectar production, flower pigments and odour in the pollination of four species of Passiflora (Passifloraceae) in south-eastern Brazil. Botanical Journal of the Linnean Society, 2001, 136, 139-152.	1.6	18
66	New records of pyrrolizidine alkaloid-feeding insects. Hemiptera and Coleoptera on Senecio brasiliensis. Biochemical Systematics and Ecology, 2000, 28, 313-318.	1.3	26
67	Storage and metabolism of radioactively labeled pyrrolizidine alkaloids by butterflies and larvae of Mechanitis polymnia (Lepidoptera: Nymphalidae, Ithomiinae). Chemoecology, 2000, 10, 25-32.	1.1	19
68	The chemistry of antipredator defense by secondary compounds in neotropical lepidoptera: facts, perspectives and caveats. Journal of the Brazilian Chemical Society, 2000, 11, 551-561.	0.6	92
69	Insect mortality in Spathodea campanulata Beauv. (Bignoniaceae) flowers. Revista Brasileira De Biologia, 2000, 60, 537-538.	0.3	21
70	Qualitative patterns of pyrrolizidine alkaloids in ithomiinae butterflies. Biochemical Systematics and Ecology, 1996, 24, 181-188.	1.3	43
71	Pyrrolizidine alkaloids necine bases:Ab initio, semiempirical, and molecular mechanics approaches to molecular properties. Journal of Computational Chemistry, 1996, 17, 156-166.	3.3	10
72	Tropane and pyrrolizidine alkaloids in the ithomiinesPlacidula euryanassa andMiraleria cymothoe (Lepidoptera: Nymphalidae). Chemoecology, 1996, 7, 61-67.	1.1	34

#	Article	IF	CITATIONS
73	Sequestration of pyrrolizidine alkaloids by larvae ofTellervo zoilus (Lepidoptera: Ithomiinae) and their role in the chemical protection of adults against the spiderNephila maculata (Araneidae). Chemoecology, 1996, 7, 68-73.	1.1	35
74	Pyrrolizidine alkaloids: different acquisition and use patterns in Apocynaceae and Solanaceae feeding ithomiine butterflies (Lepidoptera: Nymphalidae). Biological Journal of the Linnean Society, 1996, 58, 99-123.	1.6	77
75	Pyrrolizidine alkaloids: different acquisition and use patterns in Apocynaceae and Solanaceae feeding ithomiine butterflies (Lepidoptera: Nymphalidae). Biological Journal of the Linnean Society, 1996, 58, 99-123.	1.6	4
76	Chapter 4 The Ecological Activity of Alkaloids. Alkaloids: Chemistry and Pharmacology, 1995, 47, 227-354.	0.2	11
77	Multi-level complexity in the use of plant allelochemicals by aposematic insects. Chemoecology, 1994, 5-6, 119-126.	1.1	7
78	Stereochemical inversion of pyrrolizidine alkaloids byMechanitis polymnia (Lepidoptera: Nymphalidae:) Tj ETQq0 (0 0 rgBT /C	Verlock 10 7

79	Pyrrolizidine alkaloids in the arctiid mothHyalurga syma. Journal of Chemical Ecology, 1993, 19, 669-679.	1.8	57
80	Evolutionary implications of pyrrolizidine alkaloid assimilation by danaine and ithomiine larvae (Lepidoptera: Nymphalidae). Experientia, 1990, 46, 332-334.	1.2	26
81	Variation of pyrrolizidine alkaloids in Ithomiinae: A comparative study between species feeding on Apocynaceae and Solanaceae. Chemoecology, 1990, 1, 22-29.	1.1	46