José Roberto Trigo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8630800/publications.pdf

Version: 2024-02-01

81 papers 2,163 citations

186265
28
h-index

265206 42 g-index

82 all docs 82 docs citations

82 times ranked

2277 citing authors

#	Article	IF	CITATIONS
1	The gut microbiota of insecticide-resistant insects houses insecticide-degrading bacteria: A potential source for biotechnological exploitation. PLoS ONE, 2017, 12, e0174754.	2.5	125
2	The chemistry of antipredator defense by secondary compounds in neotropical lepidoptera: facts, perspectives and caveats. Journal of the Brazilian Chemical Society, 2000, 11, 551-561.	0.6	92
3	Determination of drug levels and the effect of diazepam on the growth of necrophagous flies of forensic importance in southeastern Brazil. Forensic Science International, 2001, 120, 140-144.	2.2	83
4	Effects of pyrrolizidine alkaloids through different trophic levels. Phytochemistry Reviews, 2011, 10, 83-98.	6.5	81
5	Pyrrolizidine alkaloids: different acquisition and use patterns in Apocynaceae and Solanaceae feeding ithomiine butterflies (Lepidoptera: Nymphalidae). Biological Journal of the Linnean Society, 1996, 58, 99-123.	1.6	77
6	Chemical composition and antimicrobial activity of the essential oils of the Amazon Guatteriopsis species. Phytochemistry, 2008, 69, 1895-1899.	2.9	77
7	The essential amino acid lysine acts as precursor of glutamate in the mammalian central nervous system. FEBS Letters, 2001, 488, 34-38.	2.8	75
8	Anti-inflammatory intestinal activity of Arctium lappa L. (Asteraceae) in TNBS colitis model. Journal of Ethnopharmacology, 2013, 146, 300-310.	4.1	73
9	Scopolamine in Brugmansia Suaveolens (Solanaceae): Defense, Allocation, Costs, and Induced Response. Journal of Chemical Ecology, 2007, 33, 297-309.	1.8	66
10	The role of nectar production, flower pigments and odour in the pollination of four species of Passiflora (Passifloraceae) in south-eastern Brazil. Botanical Journal of the Linnean Society, 2001, 136, 139-152.	1.6	61
11	Pyrrolizidine alkaloids in the arctiid mothHyalurga syma. Journal of Chemical Ecology, 1993, 19, 669-679.	1.8	57
12	Semiochemicals derived from pyrrolizidine alkaloids in male ithomiine butterflies (Lepidoptera:) Tj ETQq0 0 0 rgBT	/Pgerlock	10 Tf 50 30
13	Variation of pyrrolizidine alkaloids in Ithomiinae: A comparative study between species feeding on Apocynaceae and Solanaceae. Chemoecology, 1990, 1, 22-29.	1.1	46
14	Preventive activity of pyrrolizidine alkaloids from Senecio brasiliensis (Asteraceae) on gastric and duodenal induced ulcer on mice and rats. Journal of Ethnopharmacology, 2004, 95, 345-351.	4.1	44
15	Qualitative patterns of pyrrolizidine alkaloids in ithomiinae butterflies. Biochemical Systematics and Ecology, 1996, 24, 181-188.	1.3	43
16	Pyrrolizidine alkaloid profiles in Crotalaria species from Brazil: Chemotaxonomic significance. Biochemical Systematics and Ecology, 2009, 37, 459-469.	1.3	43
17	Similarity of Cuticular Lipids Between a Caterpillar and Its Host Plant: A Way to Make Prey Undetectable for Predatory Ants?. Journal of Chemical Ecology, 2005, 31, 2551-2561.	1.8	42
18	Stereochemical inversion of pyrrolizidine alkaloids byMechanitis polymnia (Lepidoptera: Nymphalidae:) Tj ETQq0 0	0.ggBT /O	verlock 10 T

#	Article	IF	CITATIONS
19	A free lunch? No cost for acquiring defensive plant pyrrolizidine alkaloids in a specialist arctiid moth (<i><scp>U</scp>tetheisa ornatrix</i>). Molecular Ecology, 2012, 21, 6152-6162.	3.9	39
20	Sequestration of pyrrolizidine alkaloids by larvae of Tellervo zoilus (Lepidoptera: Ithomiinae) and their role in the chemical protection of adults against the spider Nephila maculata (Araneidae). Chemoecology, 1996, 7, 68-73.	1.1	35
21	Why do larvae of Utetheisa ornatrix penetrate and feed in pods of Crotalaria species? Larval performance vs. chemical and physical constraints. Entomologia Experimentalis Et Applicata, 2006, 121, 23-29.	1.4	35
22	Tropane and pyrrolizidine alkaloids in the ithomiinesPlacidula euryanassa andMiraleria cymothoe (Lepidoptera: Nymphalidae). Chemoecology, 1996, 7, 61-67.	1.1	34
23	Quinolizidine alkaloids in Ormosia arborea seeds inhibit predation but not hoarding by agoutis (Dasyprocta leporina). Journal of Chemical Ecology, 2003, 29, 1065-1072.	1.8	34
24	Chemotaxonomic value of pyrrolizidine alkaloids in southern Brazil Senecio (Senecioneae:) Tj ETQq0 0 0 rgBT /0	Overlock 1	0 Tf ₃ 50 542 To
25	Attracting Predators without Falling Prey: Chemical Camouflage Protects Honeydewâ€Producing Treehoppers from Ant Predation. American Naturalist, 2010, 175, 261-268.	2.1	33
26	Sesquiterpene and polyacetylene profile of the Bidens pilosa complex (Asteraceae: Heliantheae) from Southeast of Brazil. Biochemical Systematics and Ecology, 2005, 33, 479-486.	1.3	32
27	Extrafloral nectaries as a deterrent mechanism against seed predators in the chemically protected weed Crotalaria pallida (Leguminosae). Austral Ecology, 2006, 31, 776-782.	1.5	32
28	Differential Attractiveness of Potato Tuber Volatiles to Phthorimaea operculella (Gelechiidae) and the Predator Orius insidiosus (Anthocoridae). Journal of Chemical Ecology, 2007, 33, 1845-1855.	1.8	31
29	Feeding on Host Plants with Different Concentrations and Structures of Pyrrolizidine Alkaloids Impacts the Chemical-Defense Effectiveness of a Specialist Herbivore. PLoS ONE, 2015, 10, e0141480.	2.5	30
30	Anti-Ulcerogenic Mechanisms of the Sesquiterpene Lactone Onopordopicrin-Enriched Fraction from Arctium lappa L. (Asteraceae): Role of Somatostatin, Gastrin, and Endogenous Sulfhydryls and Nitric Oxide. Journal of Medicinal Food, 2012, 15, 378-383.	1.5	27
31	Evolutionary implications of pyrrolizidine alkaloid assimilation by danaine and ithomiine larvae (Lepidoptera: Nymphalidae). Experientia, 1990, 46, 332-334.	1.2	26
32	New records of pyrrolizidine alkaloid-feeding insects. Hemiptera and Coleoptera on Senecio brasiliensis. Biochemical Systematics and Ecology, 2000, 28, 313-318.	1.3	26
33	Faecal shield of the tortoise beetle Plagiometriona aff. flavescens (Chrysomelidae: Cassidinae) as chemically mediated defence against predators. Journal of Tropical Ecology, 2005, 21, 189-194.	1.1	26
34	Structure-activity relationships of pyrrolizidine alkaloids in insect chemical defense against the orb-weaving spider Nephila clavipes. Journal of Chemical Ecology, 2002, 28, 657-668.	1.8	24
35	Encapsulation and release of a fluorescent probe, khusimyl dansylate, obtained from vetiver oil by complex coacervation. Flavour and Fragrance Journal, 2008, 23, 7-15.	2.6	24
36	Ants have a negative rather than a positive effect on extrafloral nectaried Crotalaria pallida performance. Acta Oecologica, 2013, 51, 49-53.	1.1	23

#	Article	IF	CITATIONS
37	Insect mortality in Spathodea campanulata Beauv. (Bignoniaceae) flowers. Revista Brasileira De Biologia, 2000, 60, 537-538.	0.3	21
38	Identification of sex pheromones of Lutzomyia longipalpis (Lutz & 2006, 1912) populations from the state of São Paulo, Brazil. Memorias Do Instituto Oswaldo Cruz, 2006, 101, 113-115.	1.6	20
39	Storage and metabolism of radioactively labeled pyrrolizidine alkaloids by butterflies and larvae of Mechanitis polymnia (Lepidoptera: Nymphalidae, Ithomiinae). Chemoecology, 2000, 10, 25-32.	1.1	19
40	Do fecal shields provide physical protection to larvae of the tortoise beetles Plagiometriona flavescens and Stolas chalybea against natural enemies?. Entomologia Experimentalis Et Applicata, 2002, 104, 203-206.	1.4	18
41	Varying Herbivore Population Structure Correlates with Lack of Local Adaptation in a Geographic Variable Plant-Herbivore Interaction. PLoS ONE, 2011, 6, e29220.	2.5	18
42	Pterodon pubescens and Cordia verbenacea association promotes a synergistic response in antinociceptive model and improves the anti-inflammatory results in animal models. Biomedicine and Pharmacotherapy, 2019, 112, 108693.	5 . 6	18
43	The role of nectar production, flower pigments and odour in the pollination of four species of Passiflora (Passifloraceae) in south-eastern Brazil. Botanical Journal of the Linnean Society, 2001, 136, 139-152.	1.6	18
44	Modulation of gastrin and epidermal growth factor by pyrrolizidine alkaloids obtained from Senecio brasiliensis in acute and chronic induced gastric ulcers. Canadian Journal of Physiology and Pharmacology, 2004, 82, 319-325.	1.4	15
45	Chemical Variation in the Volatiles of <i>Copaifera reticulata </i> Ducke (Leguminosae) Growing Wild in the States of ParÃ; and AmapÃ; Brazil. Journal of Essential Oil Research, 2009, 21, 501-503.	2.7	15
46	Variation in Volatiles of Ocimum campechianum Mill. and Ocimum gratissimum L. Cultivated in the North of Brazil. Journal of Essential Oil-bearing Plants: JEOP, 2007, 10, 229-240.	1.9	13
47	Sex Pheromone of the American Warble Fly, Dermatobia hominis: The Role of Cuticular Hydrocarbons. Journal of Chemical Ecology, 2008, 34, 636-646.	1.8	13
48	Chemical tools to distinguish the fire ant species Solenopsis invicta and S. saevissima (Formicidae:) Tj ETQq0 0 C	rgBT/Ove	erlock 10 Tf 5
49	Volatiles of Oleoresins ofCopaifera paupera(Herzog) DwyerC. piresiiDwyer andC. pubifloraBenth. (Leguminosae). Journal of Essential Oil Research, 2009, 21, 403-404.	2.7	13
50	Variation of diastereoisomeric pyrrolizidine alkaloids in Pleurothallis (Orchidaceae). Biochemical Systematics and Ecology, 2001, 29, 45-52.	1.3	12
51	Pyrrolizidine Alkaloids Negatively Affect a Generalist Herbivore Feeding on the Chemically Protected Legume Crotalaria pallida. Neotropical Entomology, 2016, 45, 252-257.	1.2	12
52	Chapter 4 The Ecological Activity of Alkaloids. Alkaloids: Chemistry and Pharmacology, 1995, 47, 227-354.	0.2	11
53	The selective florivory of <i><scp>E</scp>rioscelis emarginata</i> matches its role as a pollinator of <i><scp>P</scp>hilodendron</i> Entomologia Experimentalis Et Applicata, 2015, 156, 290-300.	1.4	11
54	Pyrrolizidine alkaloids necine bases: Ab initio, semiempirical, and molecular mechanics approaches to molecular properties. Journal of Computational Chemistry, 1996, 17, 156-166.	3.3	10

#	Article	IF	CITATIONS
55	Pyrrolizidine alkaloids in three Senecio species from southern Brazil. Biochemical Systematics and Ecology, 2004, 32, 1219-1222.	1.3	10
56	Chemical and phylogenetic relationships among Aristolochia L. (Aristolochiaceae) from southeastern Brazil. Biochemical Systematics and Ecology, 2006, 34, 291-302.	1.3	10
57	Bottomâ€up effects on a plantâ€endophageâ€parasitoid system: The role of flowerâ€head size and chemistry. Austral Ecology, 2010, 35, 104-115.	1.5	10
58	Are Aristolochic Acids Responsible for the Chemical Defence of Aposematic Larvae of Battus polydamas (L.) (Lepidoptera: Papilionidae)?. Neotropical Entomology, 2013, 42, 558-564.	1.2	10
59	Preference for high concentrations of plant pyrrolizidine alkaloids in the specialist arctiid moth Utetheisa ornatrix depends on previous experience. Arthropod-Plant Interactions, 2013, 7, 169-175.	1.1	10
60	Southern Monarchs do not Develop Learned Preferences for Flowers With Pyrrolizidine Alkaloids. Journal of Chemical Ecology, 2015, 41, 662-669.	1.8	10
61	Coenzyme Q ₁₀ protects against $\hat{l}^2\hat{a}\in ell$ toxicity induced by pravastatin treatment of hypercholesterolemia. Journal of Cellular Physiology, 2019, 234, 11047-11059.	4.1	10
62	Methyl Jasmonate Increases the Tropane Alkaloid Scopolamine and Reduces Natural Herbivory in Brugmansia suaveolens: Is Scopolamine Responsible for Plant Resistance?. Neotropical Entomology, 2012, 41, 2-8.	1.2	9
63	Host-plant flowering status and the concentration of sugar in phloem sap: Effects on an ant-treehopper interaction. European Journal of Entomology, 2005, 102, 201-208.	1.2	9
64	Multi-level complexity in the use of plant allelochemicals by aposematic insects. Chemoecology, 1994, 5-6, 119-126.	1.1	7
65	Faecal shield chemical defence is not important in larvae of the tortoise beetle Chelymorpha reimoseri (Chrysomelidae: Cassidinae: Stolaini). Chemoecology, 2009, 19, 63-66.	1.1	7
66	Sabotaging behaviour and minimal latex of <i>Asclepias curassavica</i> incur no cost for larvae of the southern monarch butterfly <i>Danaus erippus</i> . Ecological Entomology, 2010, 35, 504-513.	2.2	7
67	Chemical convergence between a guild of facultative myrmecophilous caterpillars and host plants. Ecological Entomology, 2021, 46, 66-75.	2.2	7
68	Host Plant Invests in Growth Rather than Chemical Defense When Attacked by a Specialist Herbivore. Journal of Chemical Ecology, 2011, 37, 492-495.	1.8	6
69	Hiding in Plain Sight: Cuticular Compound Profile Matching Conceals a Larval Tortoise Beetle in its Host Chemical Cloud. Journal of Chemical Ecology, 2014, 40, 341-354.	1.8	6
70	The geographical and seasonal mosaic in a plant-herbivore interaction: patterns of defences and herbivory by a specialist and a non-specialist. Scientific Reports, 2019, 9, 15206.	3.3	6
71	Volatiles released by damaged leaves of Piper mollicomum (Piperaceae) act as cues for predaceous wasps: evidence using plasticine dummies as herbivore model. Arthropod-Plant Interactions, 2019, 13, 593-601.	1.1	6

Chemical defence of the warningly coloured caterpillars of Methona themisto (Lepidoptera:) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 62 Td 1.2

#	Article	IF	CITATIONS
73	The specialization continuum: Decision-making in butterflies with different diet requirements. Behavioural Processes, 2019, 165, 14-22.	1.1	5
74	Ants visiting extrafloral nectaries and pyrrolizidine alkaloids may shape how a specialist herbivore feeds on its host plants. Arthropod-Plant Interactions, 2017, 11, 629-639.	1.1	4
75	The relationship between queen execution and cuticular hydrocarbons in stingless bee Melipona scutellaris (Hymenoptera: Meliponini). Chemoecology, 2017, 27, 25-32.	1.1	4
76	Pyrrolizidine alkaloids: different acquisition and use patterns in Apocynaceae and Solanaceae feeding ithomiine butterflies (Lepidoptera: Nymphalidae). Biological Journal of the Linnean Society, 1996, 58, 99-123.	1.6	4
77	Native or nonnative host plants: What is better for a specialist moth?. Biological Invasions, 2018, 20, 849-860.	2.4	3
78	Danaus butterflies of the Americas do not perform leaf-scratching. Arthropod-Plant Interactions, 2020, 14, 521-529.	1.1	3
79	Volatiles of Inflorescences, Leaves, Stems and Roots of Ageratum conyzoides L. growing Wild in the North of Brazil. Journal of Essential Oil-bearing Plants: JEOP, 2007, 10, 297-303.	1.9	2
80	Pyrrolizidine Alkaloids in the Pericopine MothScearctia figulina(Erebidae: Arctiinae): Metabolism and Chemical Defense. Journal of the Brazilian Chemical Society, 2016, , .	0.6	1
81	Essential Oil Composition of <i> Bacopa imbricate < /i > (Benth.) Pennel Collected at Wet and Dry Amazonian Seasons. Journal of Essential Oil Research, 2008, 20, 3-4.</i>	2.7	0