Ana ArdÃ;

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8630413/publications.pdf

Version: 2024-02-01

	279798	289244
1,717	23	40
citations	h-index	g-index
50	50	2206
docs citations	times ranked	citing authors
	citations 50	1,717 23 citations h-index 50 50

#	Article	IF	Citations
1	Oligosaccharide Presentation Modulates the Molecular Recognition of Glycolipids by Galectins on Membrane Surfaces. Pharmaceuticals, 2022, 15, 145.	3.8	4
2	The SARSâ€CoVâ€2 Spike Glycoprotein Directly Binds Exogeneous Sialic Acids: A NMR View. Angewandte Chemie - International Edition, 2022, 61, .	13.8	25
3	Insight into the Ferrier Rearrangement by Combining Flash Chemistry and Superacids. Angewandte Chemie - International Edition, 2021, 60, 2036-2041.	13.8	24
4	NMR of glycoproteins: profiling, structure, conformation and interactions. Current Opinion in Structural Biology, 2021, 68, 9-17.	5.7	13
5	The two domains of human galectin-8 bind sialyl- and fucose-containing oligosaccharides in an independent manner. A 3D view by using NMR. RSC Chemical Biology, 2021, 2, 932-941.	4.1	8
6	Synthesis and chelation study of a fluoroionophore and a glycopeptide based on an aza crown iminosugar structure. Carbohydrate Research, 2021, 501, 108258.	2.3	1
7	Galectin-4 N-Terminal Domain: Binding Preferences Toward A and B Antigens With Different Peripheral Core Presentations. Frontiers in Chemistry, 2021, 9, 664097.	3.6	6
8	Glycosyl Oxocarbenium Ions: Structure, Conformation, Reactivity, and Interactions. Accounts of Chemical Research, 2021, 54, 2552-2564.	15.6	46
9	Exploration of Galectin Ligands Displayed on Gram-Negative Respiratory Bacterial Pathogens with Different Cell Surface Architectures. Biomolecules, 2021, 11, 595.	4.0	4
10	Cross-Linking Effects Dictate the Preference of Galectins to Bind LacNAc-Decorated HPMA Copolymers. International Journal of Molecular Sciences, 2021, 22, 6000.	4.1	7
11	Chemoenzymatic Synthesis of Complex N â€Glycans of the Parasite S. mansoni to Examine the Importance of Epitope Presentation on DCâ€SIGN recognition. Angewandte Chemie, 2021, 133, 19436-19445.	2.0	1
12	Selective 13 Câ€Labels on Repeating Glycan Oligomers to Reveal Protein Binding Epitopes through NMR: Polylactosamine Binding to Galectins. Angewandte Chemie, 2021, 133, 18925-18930.	2.0	3
13	Selective ¹³ Câ€Labels on Repeating Glycan Oligomers to Reveal Protein Binding Epitopes through NMR: Polylactosamine Binding to Galectins. Angewandte Chemie - International Edition, 2021, 60, 18777-18782.	13.8	14
14	Chemoenzymatic Synthesis of Complex <i>N</i> â \in Clycans of the Parasite <i>S. mansoni</i> to Examine the Importance of Epitope Presentation on DCâ \in SIGN recognition. Angewandte Chemie - International Edition, 2021, 60, 19287-19296.	13.8	12
15	Kinetic Studies of Acetyl Group Migration between the Saccharide Units in an Oligomannoside Trisaccharide Model Compound and a Native Galactoglucomannan Polysaccharide. ChemBioChem, 2021, 22, 2986-2995.	2.6	4
16	Glycan structures and their interactions with proteins. A NMR view. Current Opinion in Structural Biology, 2020, 62, 22-30.	5.7	65
17	Structural Characterization of Nâ€Linked Glycans in the Receptor Binding Domain of the SARSâ€CoVâ€2 Spike Protein and their Interactions with Human Lectins. Angewandte Chemie, 2020, 132, 23971-23979.	2.0	9
18	Targeting Galectins With Glycomimetics. Frontiers in Chemistry, 2020, 8, 593.	3.6	43

#	Article	IF	Citations
19	Unravelling the Time Scale of Conformational Plasticity and Allostery in Glycan Recognition by Human Galectinâ€1. Chemistry - A European Journal, 2020, 26, 15643-15653.	3.3	22
20	Bacterial polysaccharides: conformation, dynamics and molecular recognition by antibodies. Drug Discovery Today: Technologies, 2020, 35-36, 1-11.	4.0	5
21	The Interaction of Fluorinated Glycomimetics with DC-SIGN: Multiple Binding Modes Disentangled by the Combination of NMR Methods and MD Simulations. Pharmaceuticals, 2020, 13, 179.	3.8	12
22	Structural Characterization of Nâ€Linked Glycans in the Receptor Binding Domain of the SARSâ€CoVâ€2 Spike Protein and their Interactions with Human Lectins. Angewandte Chemie - International Edition, 2020, 59, 23763-23771.	13.8	81
23	Structure of a protective epitope reveals the importance of acetylation of <i>Neisseria meningitidis</i> serogroup A capsular polysaccharide. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29795-29802.	7.1	19
24	Molecular Recognition in Câ€Type Lectins: The Cases of DCâ€SIGN, Langerin, MGL, and Lâ€Sectin. ChemBioChem, 2020, 21, 2999-3025.	2.6	49
25	Synthesis and Structural Analysis of Aspergillus fumigatus Galactosaminogalactans Featuring αâ€Galactose, αâ€Galactosamine and α―N â€Acetyl Galactosamine Linkages. Angewandte Chemie, 2020, 132, 12846-12850.	2.0	4
26	Fluorinated carbohydrates as chemical probes for molecular recognition studies. Current status and perspectives. Chemical Society Reviews, 2020, 49, 3863-3888.	38.1	77
27	Synthesis, Conformational Analysis, and Complexation Study of an Iminosugar-Aza-Crown, a Sweet Chiral Cyclam Analog. Organic Letters, 2020, 22, 2344-2349.	4.6	10
28	Mono―and Diâ€Fucosylated Glycans of the Parasitic Worm <i>S. mansoni</i> are Recognized Differently by the Innate Immune Receptor DCâ€SIGN. Chemistry - A European Journal, 2020, 26, 15605-15612.	3.3	8
29	Synthesis and Structural Analysis of <i>Aspergillus fumigatus</i> Galactosaminogalactans Featuring αâ€Galactose, αâ€Galactosamine and αâ€∢i>Nâ€Acetyl Galactosamine Linkages. Angewandte Chemie - International Edition, 2020, 59, 12746-12750.	13.8	28
30	Glycoprofile Analysis of an Intact Glycoprotein As Inferred by NMR Spectroscopy. ACS Central Science, 2019, 5, 1554-1561.	11.3	31
31	Structural and Computational Analysis of 2â∈Halogenoâ€Glycosyl Cations in the Presence of a Superacid: An Expansive Platform. Angewandte Chemie - International Edition, 2019, 58, 13758-13762.	13.8	41
32	Glycans in drug discovery. MedChemComm, 2019, 10, 1678-1691.	3.4	62
33	Unraveling Sugar Binding Modes to DC-SIGN by Employing Fluorinated Carbohydrates. Molecules, 2019, 24, 2337.	3.8	34
34	Molecular Insights into DC-SIGN Binding to Self-Antigens: The Interaction with the Blood Group A/B Antigens. ACS Chemical Biology, 2019, 14, 1660-1671.	3.4	37
35	Regioselective Glycosylation Strategies for the Synthesis of Group Ia and Ib Streptococcus Related Glycans Enable Elucidating Unique Conformations of the Capsular Polysaccharides. Chemistry - A European Journal, 2019, 25, 16277-16287.	3.3	15
36	Novel NMR Avenues to Explore the Conformation and Interactions of Glycans. ACS Omega, 2019, 4, 13618-13630.	3.5	52

#	Article	IF	CITATIONS
37	Minimizing the Entropy Penalty for Ligand Binding: Lessons from the Molecular Recognition of the Histo Bloodâ€Group Antigens by Human Galectinâ€3. Angewandte Chemie, 2019, 131, 7346-7350.	2.0	12
38	Minimizing the Entropy Penalty for Ligand Binding: Lessons from the Molecular Recognition of the Histo Bloodâ€Group Antigens by Human Galectinâ€3. Angewandte Chemie - International Edition, 2019, 58, 7268-7272.	13.8	56
39	Novel Dextranâ€Supported Biological Probes Decorated with Disaccharide Entities for Investigating the Carbohydrateâ€"Protein Interactions of Galâ€3. ChemBioChem, 2019, 20, 203-209.	2.6	11
40	The recognition of glycans by protein receptors. Insights from NMR spectroscopy. Chemical Communications, 2018, 54, 4761-4769.	4.1	86
41	Environmental Effects Determine the Structure of Potential βâ€Amino Acid Based Foldamers. Chemistry - A European Journal, 2018, 24, 10625-10629.	3.3	6
42	Fluoroacetamide Moieties as NMR Spectroscopy Probes for the Molecular Recognition of GlcNAcâ€Containing Sugars: Modulation of the CH–π Stacking Interactions by Different Fluorination Patterns. Chemistry - A European Journal, 2017, 23, 3957-3965.	3.3	33
43	NMR and Molecular Recognition of N-Glycans: Remote Modifications of the Saccharide Chain Modulate Binding Features. ACS Chemical Biology, 2017, 12, 1104-1112.	3.4	35
44	"Rules of Engagement―of Protein-Glycoconjugate Interactions: A Molecular View Achievable by using NMR Spectroscopy and Molecular Modeling. ChemistryOpen, 2016, 5, 274-296.	1.9	62
45	Monitoring Glycan–Protein Interactions by NMR Spectroscopic Analysis: A Simple Chemical Tag That Mimics Natural CH–π Interactions. Chemistry - A European Journal, 2015, 21, 11408-11416.	3.3	17
46	Selectfluor and NFSI <i>exo</i> â€Glycal Fluorination Strategies Applied to the Enhancement of the Binding Affinity of Galactofuranosyltransferase Gl <i>f</i> T2 Inhibitors. Chemistry - A European Journal, 2014, 20, 15208-15215.	3.3	27
47	Tetrafluorination of Sugars as Strategy for Enhancing Protein–Carbohydrate Affinity: Application to UDPâ€Gal <i>p</i> Mutase Inhibition. Chemistry - A European Journal, 2014, 20, 106-112.	3.3	64
48	Carbohydrate–Aromatic Interactions. Accounts of Chemical Research, 2013, 46, 946-954.	15.6	394
49	Molecular Recognition of Complex-Type Biantennary $\langle i \rangle N \langle i \rangle$ -Glycans by Protein Receptors: a Three-Dimensional View on Epitope Selection by NMR. Journal of the American Chemical Society, 2013, 135, 2667-2675.	13.7	37
50	The SARSâ€CoVâ€⊋ Spike Glycoprotein Directly Binds Exogeneous Sialic Acids: A NMR View. Angewandte Chemie, 0, , .	2.0	1