
Philippe Jeandet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8628382/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neuroinflammatory Signaling in the Pathogenesis of Alzheimer's Disease. Current Neuropharmacology, 2022, 20, 126-146.	2.9	28
2	Exploring the role of senescence inducers and senotherapeutics as targets for anticancer natural products. European Journal of Pharmacology, 2022, 928, 174991.	3.5	7
3	Camalexin accumulation as a component of plant immunity during interactions with pathogens and beneficial microbes. Planta, 2022, 255, 116.	3.2	8
4	The Role of Sugars in Plant Responses to Stress and Their Regulatory Function during Development. International Journal of Molecular Sciences, 2022, 23, 5161.	4.1	54
5	Plants with Therapeutic Potential for Ischemic Acute Kidney Injury: A Systematic Review. Evidence-based Complementary and Alternative Medicine, 2022, 2022, 1-22.	1.2	5
6	How Curcumin Targets Inflammatory Mediators in Diabetes: Therapeutic Insights and Possible Solutions. Molecules, 2022, 27, 4058.	3.8	7
7	Phytostilbenes as agrochemicals: biosynthesis, bioactivity, metabolic engineering and biotechnology. Natural Product Reports, 2021, 38, 1282-1329.	10.3	56
8	Deciphering the Interacting Mechanisms of Circadian Disruption and Alzheimer's Disease. Neurochemical Research, 2021, 46, 1603-1617.	3.3	10
9	Anti-Alzheimer's Molecules Derived from Marine Life: Understanding Molecular Mechanisms and Therapeutic Potential. Marine Drugs, 2021, 19, 251.	4.6	31
10	Luteolin and cancer metastasis suppression: focus on the role of epithelial to mesenchymal transition. Medical Oncology, 2021, 38, 66.	2.5	19
11	Natural Products for Neurodegeneration: Regulating Neurotrophic Signals. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-17.	4.0	23
12	The Antioxidative Role of Natural Compounds from a Green Coconut Mesocarp Undeniably Contributes to Control Diabetic Complications as Evidenced by the Associated Genes and Biochemical Indexes. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-22.	4.0	11
13	Profile of Semiquinone Radicals, Phytohormones and Sugars in Pistacia vera L. cv. Kirmizi Development. Agronomy, 2021, 11, 2115.	3.0	2
14	Resveratrol and cyclodextrins, an easy alliance: Applications in nanomedicine, green chemistry and biotechnology. Biotechnology Advances, 2021, 53, 107844.	11.7	20
15	Berberine as a Potential Anticancer Agent: A Comprehensive Review. Molecules, 2021, 26, 7368.	3.8	92
16	Flavonoid biosynthetic pathways in plants: Versatile targets for metabolic engineering. Biotechnology Advances, 2020, 38, 107316.	11.7	307
17	Whole-cell biocatalytic, enzymatic and green chemistry methods for the production of resveratrol and its derivatives. Biotechnology Advances, 2020, 39, 107461.	11.7	55
18	Targeting cell cycle by β-carboline alkaloids in vitro: Novel therapeutic prospects for the treatment of cancer. Chemico-Biological Interactions, 2020, 330, 109229.	4.0	37

Philippe Jeandet

#	Article	lF	CITATIONS
19	The Role of Saccharides in the Mechanisms of Pathogenicity of Fusarium oxysporum f. sp. lupini in Yellow Lupine (Lupinus luteus L.). International Journal of Molecular Sciences, 2020, 21, 7258.	4.1	10
20	Anthocyanins, multi-functional natural products of industrial relevance: Recent biotechnological advances. Biotechnology Advances, 2020, 43, 107600.	11.7	62
21	Vaccine Design from the Ensemble of Surface Glycoprotein Epitopes of SARS-CoV-2: An Immunoinformatics Approach. Vaccines, 2020, 8, 423.	4.4	55
22	Biological Properties, Bioactive Constituents, and Pharmacokinetics of Some Capsicum spp. and Capsaicinoids. International Journal of Molecular Sciences, 2020, 21, 5179.	4.1	110
23	Neuroprotective role of polyphenols against oxidative stress-mediated neurodegeneration. European Journal of Pharmacology, 2020, 886, 173412.	3.5	74
24	Revisiting the Amyloid Cascade Hypothesis: From Anti-Aβ Therapeutics to Auspicious New Ways for Alzheimer's Disease. International Journal of Molecular Sciences, 2020, 21, 5858.	4.1	79
25	Combination Drug Therapy for the Management of Alzheimer's Disease. International Journal of Molecular Sciences, 2020, 21, 3272.	4.1	110
26	The Role of Sugars in the Regulation of the Level of Endogenous Signaling Molecules during Defense Response of Yellow Lupine to Fusarium oxysporum. International Journal of Molecular Sciences, 2020, 21, 4133.	4.1	28
27	Molecular Insight into the Therapeutic Promise of Flavonoids against Alzheimer's Disease. Molecules, 2020, 25, 1267.	3.8	86
28	Novel Anti-Alzheimer's Therapeutic Molecules Targeting Amyloid Precursor Protein Processing. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-19.	4.0	40
29	A Comparison of Selected Biochemical and Physical Characteristics and Yielding of Fruits in Apple Cultivars (Malus domestica Borkh.). Agronomy, 2020, 10, 458.	3.0	12
30	Exploring the New Horizon of AdipoQ in Obesity-Related Alzheimer's Dementia. Frontiers in Physiology, 2020, 11, 567678.	2.8	12
31	Regulation of resveratrol biosynthesis in grapevine: new approaches for disease resistance?. Journal of Experimental Botany, 2019, 70, 375-378.	4.8	37
32	Engineering stilbene metabolic pathways in microbial cells. Biotechnology Advances, 2018, 36, 2264-2283.	11.7	47
33	Structure, Chemical Analysis, Biosynthesis, Metabolism, Molecular Engineering, and Biological Functions of Phytoalexins. Molecules, 2018, 23, 61.	3.8	10
34	The Role of Heavy Metals in Plant Response to Biotic Stress. Molecules, 2018, 23, 2320.	3.8	171
35	Molecular Engineering of Phytoalexins in Plants: Benefits and Limitations for Food and Agriculture. Journal of Agricultural and Food Chemistry, 2017, 65, 2643-2644.	5.2	20
36	Anti-Cancer Activity of Resveratrol and Derivatives Produced by Grapevine Cell Suspensions in a 14 L Stirred Bioreactor. Molecules, 2017, 22, 474.	3.8	50

Philippe Jeandet

#	Article	IF	CITATIONS
37	Cytotoxicity of Labruscol, a New Resveratrol Dimer Produced by Grapevine Cell Suspensions, on Human Skin Melanoma Cancer Cell Line HT-144. Molecules, 2017, 22, 1940.	3.8	12
38	Enhanced Stilbene Production and Excretion in Vitis vinifera cv Pinot Noir Hairy Root Cultures. Molecules, 2016, 21, 1703.	3.8	24
39	Use of grapevine cell cultures for the production of phytostilbenes of cosmetic interest. Comptes Rendus Chimie, 2016, 19, 1062-1070.	0.5	31
40	¹³ C NMR and LC-MS Profiling of Stilbenes from Elicited Grapevine Hairy Root Cultures. Journal of Natural Products, 2016, 79, 2846-2855.	3.0	28
41	Effectiveness of beneficial bacteria to promote systemic resistance of grapevine to gray mold as related to phytoalexin production in vineyards. Plant and Soil, 2016, 405, 141-153.	3.7	63
42	Phytoalexins: Current Progress and Future Prospects. Molecules, 2015, 20, 2770-2774.	3.8	66
43	Deciphering the Role of Phytoalexins in Plant-Microorganism Interactions and Human Health. Molecules, 2014, 19, 18033-18056.	3.8	170
44	Uncovering plant-pathogen crosstalk through apoplastic proteomic studies. Frontiers in Plant Science, 2014, 5, 249.	3.6	135
45	Elicitors as alternative strategy to pesticides in grapevine? Current knowledge on their mode of action from controlled conditions to vineyard. Environmental Science and Pollution Research, 2014, 21, 4837-4846.	5.3	121
46	Resveratrol production at large scale using plant cell suspensions. Engineering in Life Sciences, 2014, 14, 622-632.	3.6	61
47	Modulation of Phytoalexin Biosynthesis in Engineered Plants for Disease Resistance. International Journal of Molecular Sciences, 2013, 14, 14136-14170.	4.1	139
48	Engineering Microbial Cells for the Biosynthesis of Natural Compounds of Pharmaceutical Significance. BioMed Research International, 2013, 2013, 1-13.	1.9	29
49	Metabolic Engineering of Yeast and Plants for the Production of the Biologically Active Hydroxystilbene, Resveratrol. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-14.	3.0	83
50	Effects of resveratrol on the ultrastructure of Botrytis cinerea conidia and biological significance in plant/pathogen interactions. Fìtoterapìâ, 2012, 83, 1345-1350.	2.2	110
51	Improved Resistance Against <i>Botrytis cinerea</i> by Grapevine-Associated Bacteria that Induce a Prime Oxidative Burst and Phytoalexin Production. Phytopathology, 2011, 101, 768-777.	2.2	73
52	Bioproduction of resveratrol and viniferins by an elicited grapevine cell culture in a 2L stirred bioreactor. Process Biochemistry, 2011, 46, 1056-1062.	3.7	86
53	Biosynthesis, metabolism, molecular engineering, and biological functions of stilbene phytoalexins in plants. BioFactors, 2010, 36, 331-341.	5.4	214
54	Bioproduction of resveratrol and stilbene derivatives by plant cells and microorganisms. Trends in Biotechnology, 2009, 27, 706-713.	9.3	189

PHILIPPE JEANDET

#	Article	IF	CITATIONS
55	Molecular engineering of resveratrol in plants. Plant Biotechnology Journal, 2009, 7, 2-12.	8.3	134
56	Low responsiveness of grapevine flowers and berries at fruit set to UV-C irradiation. Journal of Experimental Botany, 2009, 60, 1155-1162.	4.8	46
57	Chitosan Oligomers and Copper Sulfate Induce Grapevine Defense Reactions and Resistance to Gray Mold and Downy Mildew. Phytopathology, 2006, 96, 1188-1194.	2.2	212
58	Phytoalexin production in grapevine protoplasts during isolation and culture. Plant Physiology and Biochemistry, 2003, 41, 317-323.	5.8	24
59	Phytoalexins from the Vitaceae: Biosynthesis, Phytoalexin Gene Expression in Transgenic Plants, Antifungal Activity, and Metabolism. Journal of Agricultural and Food Chemistry, 2002, 50, 2731-2741.	5.2	539
60	Characterization of a Pterostilbene Dehydrodimer Produced by Laccase of Botrytis cinerea. Phytopathology, 1999, 89, 298-302.	2.2	54
61	Changes in the Phytoalexin Content of Various Vitis Spp. in Response to Ultraviolet C Elicitation. Journal of Agricultural and Food Chemistry, 1999, 47, 4456-4461.	5.2	147
62	Metabolism of stilbene phytoalexins by Botrytis cinerea: 1. Characterization of a resveratrol dehydrodimer. Tetrahedron Letters, 1998, 39, 537-540.	1.4	99
63	Resveratrol Oxidation in Botrytis cinerea Conidia. Phytopathology, 1998, 88, 472-476.	2.2	63
64	Biological Activity of Resveratrol, a Stilbenic Compound from Grapevines, Against Botrytis cinerea, the Causal Agent for Gray Mold. Journal of Chemical Ecology, 1997, 23, 1689-1702.	1.8	229
65	HPLC Analysis of Grapevine Phytoalexins Coupling Photodiode Array Detection and Fluorometry. Analytical Chemistry, 1997, 69, 5172-5177.	6.5	127
66	Effect of Enological Practices on the Resveratrol Isomer Content of Wine. Journal of Agricultural and Food Chemistry, 1995, 43, 316-319.	5.2	173