
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8627908/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular dynamics simulations of heterogeneous hydrogen bond environment in hydrophobic deep eutectic solvents. AICHE Journal, 2022, 68, e17382.	3.6	17
2	Characterization of the Composition, Structure, and Mechanical Properties of Endocarp Biomass. , 2022, 65, 67-74.		0
3	Controlling bacterial contamination during fuel ethanol fermentation using thermochemically depolymerized lignin bio-oils. Green Chemistry, 2021, 23, 6477-6489.	9.0	5
4	Biodegradable Cellulose Film Prepared From Banana Pseudo-Stem Using an Ionic Liquid for Mango Preservation. Frontiers in Plant Science, 2021, 12, 625878.	3.6	39
5	Structure and hydrogen bonds of hydrophobic deep eutectic <scp>solventâ€aqueous liquid–liquid</scp> interfaces. AICHE Journal, 2021, 67, e17427.	3.6	12
6	Fractionation, Characterization, and Valorization of Lignin Derived from Engineered Plants. , 2021, , 245-288.		0
7	Effects of water on the solvation and structure of lipase in deep eutectic solvents containing a protein destabilizer and stabilizer. Physical Chemistry Chemical Physics, 2021, 23, 23372-23379.	2.8	8
8	The multiscale solvation effect on the reactivity of β-O-4 of lignin dimers in deep eutectic solvents. Physical Chemistry Chemical Physics, 2021, 23, 25699-25705.	2.8	5
9	Antimicrobial Properties of Corn Stover Lignin Fractions Derived from Catalytic Transfer Hydrogenolysis in Supercritical Ethanol with a Ru/C Catalyst. ACS Sustainable Chemistry and Engineering, 2020, 8, 18455-18467.	6.7	20
10	Characterization and Enzyme Engineering of a Hyperthermophilic Laccase Toward Improving Its Activity in Ionic Liquid. Frontiers in Energy Research, 2020, 8, .	2.3	12
11	Effect of Substrate Characteristics on the Growth and Sporulation of Two Biocontrol Microorganisms during Solid State Cultivation. Fermentation, 2020, 6, 69.	3.0	3
12	Heterogeneous and Homogeneous Components in Gas-Phase Pyrolysis of Hydrolytic Lignin. ACS Sustainable Chemistry and Engineering, 2020, 8, 12891-12901.	6.7	3
13	Comparative Evaluation of Industrial Hemp Cultivars: Agronomical Practices, Feedstock Characterization, and Potential for Biofuels and Bioproducts. ACS Sustainable Chemistry and Engineering, 2020, 8, 6200-6210.	6.7	22
14	Natural deep eutectic solvent mediated extrusion for continuous high-solid pretreatment of lignocellulosic biomass. Green Chemistry, 2020, 22, 6372-6383.	9.0	58
15	Mechanistic Insight into Lignin Slow Pyrolysis by Linking Pyrolysis Chemistry and Carbon Material Properties. ACS Sustainable Chemistry and Engineering, 2020, 8, 15843-15854.	6.7	22
16	Modulating Mechanical Properties of Collagen–Lignin Composites. ACS Applied Bio Materials, 2019, 2, 3562-3572.	4.6	15
17	Biocatalysis in ionic liquids for lignin valorization: Opportunities and recent developments. Biotechnology Advances, 2019, 37, 107418.	11.7	36
18	Rapid microwave-assisted biomass delignification and lignin depolymerization in deep eutectic solvents. Energy Conversion and Management, 2019, 196, 1080-1088.	9.2	117

#	Article	IF	CITATIONS
19	Understanding Laccase–Ionic Liquid Interactions toward Biocatalytic Lignin Conversion in Aqueous Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2019, 7, 15928-15938.	6.7	45
20	Sequential Extraction and Characterization of Lignin-Derived Compounds from Thermochemically Processed Biorefinery Lignins. Energy & Fuels, 2019, 33, 4322-4330.	5.1	14
21	Hydrogels derived from lignocellulosic compounds: Evaluation of the compositional, structural, mechanical and antimicrobial properties. Industrial Crops and Products, 2019, 128, 323-330.	5.2	60
22	Understanding Lignin Fractionation and Characterization from Engineered Switchgrass Treated by an Aqueous Ionic Liquid. ACS Sustainable Chemistry and Engineering, 2018, 6, 6612-6623.	6.7	56
23	Linking lignin source with structural and electrochemical properties of lignin-derived carbon materials. RSC Advances, 2018, 8, 38721-38732.	3.6	42
24	Fractionation and characterization of lignin streams from unique high-lignin content endocarp feedstocks. Biotechnology for Biofuels, 2018, 11, 304.	6.2	63
25	A Novel Platform for Bioupgrading of Lignin to Valuable Nutraceuticals and Pharmaceuticals. , 2018, , .		3
26	<i>Effect of Substrate Characteristics on Bacterial Growth and Sporulation of Two Biocontrol Microorganisms during Solid State Cultivation</i> . , 2018, , .		0
27	Characterization and Catalytic Transfer Hydrogenolysis of Deep Eutectic Solvent Extracted Sorghum Lignin to Phenolic Compounds. ACS Sustainable Chemistry and Engineering, 2018, 6, 10408-10420.	6.7	62
28	Impact of Dilute Sulfuric Acid, Ammonium Hydroxide, and Ionic Liquid Pretreatments on the Fractionation and Characterization of Engineered Switchgrass. Bioenergy Research, 2017, 10, 1079-1093.	3.9	21
29	Industrial hemp as a potential bioenergy crop in comparison with kenaf, switchgrass and biomass sorghum. Bioresource Technology, 2017, 244, 641-649.	9.6	83
30	Efficient dehydration and recovery of ionic liquid after lignocellulosic processing using pervaporation. Biotechnology for Biofuels, 2017, 10, 154.	6.2	72
31	Dynamic changes of substrate reactivity and enzyme adsorption on partially hydrolyzed cellulose. Biotechnology and Bioengineering, 2017, 114, 503-515.	3.3	24
32	Catalytic Oxidation and Depolymerization of Lignin in Aqueous Ionic Liquid. Frontiers in Energy Research, 2017, 5, .	2.3	40
33	Principles and Development of Lignocellulosic Biomass Pretreatment for Biofuels. Advances in Bioenergy, 2017, , 1-68.	1.3	44
34	CO2 enabled process integration for the production of cellulosic ethanol using bionic liquids. Energy and Environmental Science, 2016, 9, 2822-2834.	30.8	63
35	Impact of engineered lignin composition on biomass recalcitrance and ionic liquid pretreatment efficiency. Green Chemistry, 2016, 18, 4884-4895.	9.0	64
36	Transforming biomass conversion with ionic liquids: process intensification and the development of a high-gravity, one-pot process for the production of cellulosic ethanol. Energy and Environmental Science, 2016, 9, 1042-1049.	30.8	201

#	Article	IF	CITATIONS
37	Impact of different ratios of feedstock to liquid anaerobic digestion effluent on the performance and microbiome of solid-state anaerobic digesters digesting corn stover. Bioresource Technology, 2016, 200, 744-752.	9.6	47
38	Densification and Pyrolysis of Lignocellulosic Biomass for Renewable Energy. Current Organic Chemistry, 2016, 20, 2480-2488.	1.6	5
39	Impact of Pretreatment Technologies on Saccharification and Isopentenol Fermentation of Mixed Lignocellulosic Feedstocks. Bioenergy Research, 2015, 8, 1004-1013.	3.9	40
40	Theoretical Insights into the Role of Water in the Dissolution of Cellulose Using IL/Water Mixed Solvent Systems. Journal of Physical Chemistry B, 2015, 119, 14339-14349.	2.6	46
41	How Alkyl Chain Length of Alcohols Affects Lignin Fractionation and Ionic Liquid Recycle During Lignocellulose Pretreatment. Bioenergy Research, 2015, 8, 973-981.	3.9	17
42	Design of low-cost ionic liquids for lignocellulosic biomass pretreatment. Green Chemistry, 2015, 17, 1728-1734.	9.0	384
43	CHAPTER 3. Ionic Liquid Pretreatment of Lignocellulosic Biomass for Biofuels and Chemicals. RSC Green Chemistry, 2015, , 65-94.	0.1	14
44	Effects of microbial and non-microbial factors of liquid anaerobic digestion effluent as inoculum on solid-state anaerobic digestion of corn stover. Bioresource Technology, 2014, 157, 188-196.	9.6	72
45	Rapid Kinetic Characterization of Glycosyl Hydrolases Based on Oxime Derivatization and Nanostructure-Initiator Mass Spectrometry (NIMS). ACS Chemical Biology, 2014, 9, 1470-1479.	3.4	36
46	Efficient biomass pretreatment using ionic liquids derived from lignin and hemicellulose. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3587-95.	7.1	285
47	Understanding the role of water during ionic liquid pretreatment of lignocellulose: co-solvent or anti-solvent?. Green Chemistry, 2014, 16, 3830-3840.	9.0	129
48	Understanding pretreatment efficacy of four cholinium and imidazolium ionic liquids by chemistry and computation. Green Chemistry, 2014, 16, 2546-2557.	9.0	138
49	Interactions between fungal growth, substrate utilization, and enzyme production during solid substrate cultivation of Phanerochaete chrysosporium on cotton stalks. Bioprocess and Biosystems Engineering, 2014, 37, 2463-2473.	3.4	12
50	Understanding cost drivers and economic potential of two variants of ionic liquid pretreatment for cellulosic biofuel production. Biotechnology for Biofuels, 2014, 7, 86.	6.2	120
51	One-pot ionic liquid pretreatment and saccharification of switchgrass. Green Chemistry, 2013, 15, 2579.	9.0	175
52	Sophocarpine alleviates hepatocyte steatosis through activating AMPK signaling pathway. Toxicology in Vitro, 2013, 27, 1065-1071.	2.4	30
53	Comparison of different liquid anaerobic digestion effluents as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover. Waste Management, 2013, 33, 26-32.	7.4	109
54	Reactor performance and microbial community dynamics during solid-state anaerobic digestion of corn stover at mesophilic and thermophilic conditions. Bioresource Technology, 2013, 136, 574-581.	9.6	116

#	Article	IF	CITATIONS
55	Impact of mixed feedstocks and feedstock densification on ionic liquid pretreatment efficiency. Biofuels, 2013, 4, 63-72.	2.4	80
56	Methane production from solid-state anaerobic digestion ofÂlignocellulosic biomass. Biomass and Bioenergy, 2012, 46, 125-132.	5.7	211
57	Comparison of solid-state to liquid anaerobic digestion of lignocellulosic feedstocks for biogas production. Bioresource Technology, 2012, 124, 379-386.	9.6	280
58	Enzymatic Digestibility of Corn Stover Fractions in Response to Fungal Pretreatment. Industrial & Engineering Chemistry Research, 2012, 51, 7153-7159.	3.7	16
59	Interactions between fungal growth, substrate utilization and enzyme production during shallow stationary cultivation of Phanerochaete chrysosporium on cotton stalks. Enzyme and Microbial Technology, 2012, 51, 1-8.	3.2	16
60	Comparison of alkaline- and fungi-assisted wet-storage of corn stover. Bioresource Technology, 2012, 109, 98-104.	9.6	40
61	Production of Renewable Aromatic Compounds by Catalytic Fast Pyrolysis of Lignocellulosic Biomass with Bifunctional Ga/ZSMâ€5 Catalysts. Angewandte Chemie - International Edition, 2012, 51, 1387-1390.	13.8	338
62	Renewable gasoline from aqueous phase hydrodeoxygenation of aqueous sugar solutions prepared by hydrolysis of maple wood. Green Chemistry, 2011, 13, 91-101.	9.0	113
63	Investigation of enzyme formulation on pretreated switchgrass. Bioresource Technology, 2011, 102, 11072-11079.	9.6	21
64	Effects of enzyme loading and \hat{l}^2 -glucosidase supplementation on enzymatic hydrolysis of switchgrass processed by leading pretreatment technologies. Bioresource Technology, 2011, 102, 11115-11120.	9.6	52
65	Surface and ultrastructural characterization of raw and pretreated switchgrass. Bioresource Technology, 2011, 102, 11097-11104.	9.6	62
66	Comparative material balances around pretreatment technologies for the conversion of switchgrass to soluble sugars. Bioresource Technology, 2011, 102, 11063-11071.	9.6	117
67	Application of cellulase and hemicellulase to pure xylan, pure cellulose, and switchgrass solids from leading pretreatments. Bioresource Technology, 2011, 102, 11080-11088.	9.6	54
68	Comparative study on enzymatic digestibility of switchgrass varieties and harvests processed by leading pretreatment technologies. Bioresource Technology, 2011, 102, 11089-11096.	9.6	93
69	Comparative data on effects of leading pretreatments and enzyme loadings and formulations on sugar yields from different switchgrass sources. Bioresource Technology, 2011, 102, 11052-11062.	9.6	121
70	Enhancing the solid-state anaerobic digestion of fallen leaves through simultaneous alkaline treatment. Bioresource Technology, 2011, 102, 8828-8834.	9.6	163
71	Sugar yields from dilute sulfuric acid and sulfur dioxide pretreatments and subsequent enzymatic hydrolysis of switchgrass. Bioresource Technology, 2011, 102, 8930-8938.	9.6	65
72	Process and technoeconomic analysis of leading pretreatment technologies for lignocellulosic ethanol production using switchgrass. Bioresource Technology, 2011, 102, 11105-11114.	9.6	274

#	Article	IF	CITATIONS
73	Solid-state anaerobic digestion of spent wheat straw from horse stall. Bioresource Technology, 2011, 102, 9432-9437.	9.6	92
74	Comparison of microwaves to fluidized sand baths for heating tubular reactors for hydrothermal and dilute acid batch pretreatment of corn stover. Bioresource Technology, 2011, 102, 5952-5961.	9.6	54
75	Effect of microbial pretreatment on enzymatic hydrolysis and fermentation of cotton stalks for ethanol production. Biomass and Bioenergy, 2009, 33, 88-96.	5.7	227
76	Microbial pretreatment of cotton stalks by submerged cultivation of Phanerochaete chrysosporium. Bioresource Technology, 2009, 100, 4388-4395.	9.6	42
77	Autohydrolysis pretreatment of Coastal Bermuda grass for increased enzyme hydrolysis. Bioresource Technology, 2009, 100, 6434-6441.	9.6	98
78	Microbial pretreatment of cotton stalks by solid state cultivation of Phanerochaete chrysosporium. Bioresource Technology, 2008, 99, 6556-6564.	9.6	194
79	Challenges in Quantification of Ligninolytic Enzymes from Phanerochaete chrysosporium Cultivation for Pretreatment of Cotton Stalks. Transactions of the ASABE, 2007, 50, 2347-2354.	1.1	1
80	Biofuels from cellulosic biomass via aqueous processing. , 0, , 336-348.		2
81	Engineering Lignin-Derived Carbon–Silicon Nanocomposite Electrodes: Insight into the Copyrolysis Mechanism and Process–Structure–Property–Performance Relationships. ACS Sustainable Chemistry and Engineering, 0, , .	6.7	5
82	Modifying Surface Charges of a Thermophilic Laccase Toward Improving Activity and Stability in Ionic Liquid. Frontiers in Bioengineering and Biotechnology, 0, 10, .	4.1	5