
Jeremy Berg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8627745/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cancer Yield and Patterns of Follow-up for BI-RADS Category 3 after Screening Mammography Recall in the National Mammography Database. Radiology, 2020, 296, 32-41.	7.3	38
2	A child of Apollo. Science, 2019, 365, 203-203.	12.6	1
3	Donald A. B. Lindberg (1933–2019). Science, 2019, 366, 37-37.	12.6	1
4	On privilege. Science, 2019, 366, 401-401.	12.6	0
5	Editor's note. Science, 2019, 366, 432-432.	12.6	2
6	Replication challenges. Science, 2019, 365, 957-957.	12.6	6
7	Editorial expression of concern. Science, 2019, 365, 991-991.	12.6	10
8	DNA patents revisited. Science, 2019, 364, 1113-1113.	12.6	0
9	Editorial Expression of Concern. Science, 2019, 363, 1406-1406.	12.6	1
10	Editor's note. Science, 2019, 363, 355-355.	12.6	0
11	Examining author gender data. Science, 2019, 363, 7-7.	12.6	9
12	Consuming personal genomics. Science, 2019, 364, 213-213.	12.6	2
13	Transparent author credit. Science, 2018, 359, 961-961.	12.6	33
14	Obfuscating with transparency. Science, 2018, 360, 133-133.	12.6	5
15	Progress on reproducibility. Science, 2018, 359, 9-9.	12.6	30
16	Joint statement on EPA proposed rule and public availability of data. Science, 2018, 360, .	12.6	17
17	Lumping and splitting. Science, 2018, 359, 1309-1309.	12.6	5
18	Imagine a world without facts. Science, 2018, 362, 379-379.	12.6	2

#	Article	IF	CITATIONS
19	Exploring organisms cell by cell. Science, 2018, 362, 1333-1333.	12.6	1
20	Joint statement on EPA proposed rule and public availability of data. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6098-6098.	7.1	1
21	Editorial expression of concern. Science, 2018, 361, 1322-1322.	12.6	8
22	Editor's note: Harassment policy. Science, 2018, 362, 165-165.	12.6	12
23	Revolutionary technologies. Science, 2018, 361, 827-827.	12.6	24
24	<i>Science Advances</i> advancing. Science, 2018, 361, 7-7.	12.6	2
25	Tomorrow's Earth. Science, 2018, 360, 1379-1379.	12.6	7
26	Everyone should try. Science, 2017, 355, 227-227.	12.6	0
27	A family analysis. Science, 2017, 355, 9-9.	12.6	1
28	Looking inward at gender issues. Science, 2017, 355, 329-329.	12.6	23
29	Data in public health. Science, 2017, 355, 669-669.	12.6	1
30	Editorial retraction. Science, 2017, 356, 812-812.	12.6	6
31	Shortsighted priorities. Science, 2017, 356, 887-887.	12.6	0
32	March for science. Science, 2017, 356, 7-7.	12.6	3
33	Editorial retraction. Science, 2017, 358, 458-458.	12.6	7
34	Preprint ecosystems. Science, 2017, 357, 1331-1331.	12.6	28
35	Measuring and managing bias. Science, 2017, 357, 849-849.	12.6	8
36	Science of preparedness. Science, 2017, 357, 1073-1073.	12.6	0

#	Article	IF	CITATIONS
37	Editorial expression of concern. Science, 2017, 357, 1248-1248.	12.6	1
38	Pushing the boundaries: <i>Science Advances</i> . Science Advances, 2017, 3, e1701534.	10.3	0
39	Editor's note. Science, 2017, 357, 654-654.	12.6	1
40	Tax plans and science. Science, 2017, 358, 1361-1361.	12.6	0
41	Science, big and small. Science, 2017, 358, 1504-1504.	12.6	25
42	Addendum to "Editorial Retraction of the Report â€~Environmentally relevantconcentrations of microplastic particles influence larval fish ecology,' by O. M.Lönnstedt and P. Eklöv― Science, 2017, 358, 1549-1549.	12.6	4
43	TCGA Expedition: A Data Acquisition and Management System for TCGA Data. PLoS ONE, 2016, 11, e0165395.	2.5	62
44	The communities of <i>Science</i> . Science, 2016, 353, 103-103.	12.6	0
45	Editorial expression of concern. Science, 2016, 354, 1242-1242.	12.6	7
46	Awesome universal chirp. Science, 2016, 354, 1507-1507.	12.6	0
47	Science's rightful place. Science, 2016, 354, 1355-1355.	12.6	1
48	Science for robotics and robotics for science. Science Robotics, 2016, 1, .	17.6	27
49	Preprints for the life sciences. Science, 2016, 352, 899-901.	12.6	119
50	Gene-environment interplay. Science, 2016, 354, 15-15.	12.6	15
51	JIFfy Pop. Science, 2016, 353, 523-523.	12.6	6
52	Benefits of steady growth. Science, 2016, 353, 849-849.	12.6	0
53	Training the Workforce for 21st-Century Science. JAMA - Journal of the American Medical Association, 2016, 316, 1675.	7.4	5
54	Reunifying America. Science, 2016, 354, 807-807.	12.6	0

#	Article	IF	CITATIONS
55	A short presidential reading list. Science, 2016, 354, 265-265.	12.6	0
56	Research in academic medical centers: Two threats to sustainable support. Science Translational Medicine, 2015, 7, 289fs22.	12.4	12
57	The center for causal discovery of biomedical knowledge from big data. Journal of the American Medical Informatics Association: JAMIA, 2015, 22, 1132-1136.	4.4	30
58	Toward a sustainable biomedical research enterprise: Finding consensus and implementing recommendations. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10832-10836.	7.1	51
59	Needs Assessment for Research Use of High-Throughput Sequencing at a Large Academic Medical Center. PLoS ONE, 2015, 10, e0131166.	2.5	10
60	Well-funded investigators should receive extra scrutiny. Nature, 2012, 489, 203-203.	27.8	24
61	National centers for biomedical computing: from the BISTI report to the future. Journal of the American Medical Informatics Association: JAMIA, 2012, 19, 151-152.	4.4	6
62	Secondary interactions involving zinc-bound ligands: Roles in structural stabilization and macromolecular interactions. Journal of Inorganic Biochemistry, 2012, 111, 146-149.	3.5	19
63	What to Expect From the Pharmacogenomics Research Network. Clinical Pharmacology and Therapeutics, 2011, 89, 339-341.	4.7	12
64	Systems Biology and Pharmacology. Clinical Pharmacology and Therapeutics, 2010, 88, 17-19.	4.7	25
65	Probing the DNA-Binding Affinity and Specificity of Designed Zinc Finger Proteins. Biophysical Journal, 2010, 98, 852-860.	0.5	34
66	Design of Single-Stranded Nucleic Acid Binding Peptides Based on Nucleocapsid CCHC-Box Zinc-Binding Domains. Journal of the American Chemical Society, 2010, 132, 9638-9643.	13.7	5
67	A Proteome-Wide Perspective on Peroxisome Targeting Signal 1(PTS1)-Pex5p Affinities. Journal of the American Chemical Society, 2010, 132, 3973-3979.	13.7	46
68	Homodimerization and Heterodimerization of Minimal Zinc(II)-Binding-Domain Peptides of T-Cell Proteins CD4, CD8α, and Lck. Journal of the American Chemical Society, 2009, 131, 11492-11497.	13.7	13
69	Quantitative Analysis of Peroxisomal Targeting Signal Type-1 Binding to Wild-type and Pathogenic Mutants of Pex5p Supports an Affinity Threshold for Peroxisomal Protein Targeting. Journal of Molecular Biology, 2007, 368, 1259-1266.	4.2	15
70	Update on the Protein Structure Initiative. Structure, 2007, 15, 1519-1522.	3.3	30
71	Opportunities for Chemical Biologists: A View from the National Institutes of Health. ACS Chemical Biology, 2006, 1, 547-548.	3.4	0
72	Binding of two zinc finger nuclease monomers to two specific sites is required for effective double-strand DNA cleavage. Biochemical and Biophysical Research Communications, 2005, 334, 1191-1197.	2.1	89

#	Article	IF	CITATIONS
73	Reduction in DNA-binding affinity of Cys2His2 zinc finger proteins by linker phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7589-7593.	7.1	54
74	Pex5p binding affinities for canonical and noncanonical PTS1 peptides. Proteins: Structure, Function and Bioinformatics, 2004, 55, 856-861.	2.6	48
75	Site Selection in Tandem Arrays of Metal-Binding Domains. Inorganic Chemistry, 2004, 43, 7897-7901.	4.0	6
76	The Design of Functional DNA-Binding Proteins Based on Zinc Finger Domains. Chemical Reviews, 2004, 104, 789-800.	47.7	120
77	Fingering nucleic acids: the RNA did it. Nature Structural and Molecular Biology, 2003, 10, 986-987.	8.2	5
78	Kinetics and Thermodynamics of Copper(II) Binding to Apoazurin. Journal of the American Chemical Society, 2003, 125, 6866-6867.	13.7	25
79	Nonrandom Tripeptide Sequence Distributions at Protein Carboxyl Termini. Genome Research, 2003, 13, 617-623.	5.5	10
80	PEX5 Binds the PTS1 Independently of Hsp70 and the Peroxin PEX12. Journal of Biological Chemistry, 2003, 278, 7897-7901.	3.4	29
81	Binding assays get into the groove. Nature Biotechnology, 2002, 20, 126-127.	17.5	3
82	Building a Metal Binding Domain, One Half at a Time. Chemistry and Biology, 2002, 9, 667-668.	6.0	9
83	Kinetics of metal binding by a zinc finger peptide. Inorganica Chimica Acta, 2000, 297, 217-219.	2.4	29
84	Bio-inorganic chemistry: Newly charted waters Editorial overview. Current Opinion in Chemical Biology, 2000, 4, 137-139.	6.1	12
85	Peroxisomal targeting signal-1 recognition by the TPR domains of human PEX5. Nature Structural Biology, 2000, 7, 1091-1095.	9.7	329
86	Toward Ligand Identification within a CCHHC Zinc-Binding Domain from the NZF/MyT1 Family. Inorganic Chemistry, 2000, 39, 348-351.	4.0	21
87	A detailed study of the substrate specificity of a chimeric restriction enzyme. Nucleic Acids Research, 1999, 27, 674-681.	14.5	108
88	The Limitations of X-ray Absorption Spectroscopy for Determining the Structure of Zinc Sites in Proteins. When Is a Tetrathiolate Not a Tetrathiolate?. Journal of the American Chemical Society, 1998, 120, 8401-8409.	13.7	133
89	Selectivity of Methylation of Metal-Bound Cysteinates and Its Consequences. Journal of the American Chemical Society, 1998, 120, 13083-13087.	13.7	24
90	Zinc Fingers in Caenorhabditis elegans: Finding Families and Probing Pathways. , 1998, 282, 2018-2022.		187

#	Article	IF	CITATIONS
91	NMR Study of Rapidly Exchanging Backbone Amide Protons in Staphylococcal Nuclease and the Correlation with Structural and Dynamic Properties. Journal of the American Chemical Society, 1997, 119, 6844-6852.	13.7	50
92	LESSONS FROM ZINC-BINDING PEPTIDES. Annual Review of Biophysics and Biomolecular Structure, 1997, 26, 357-371.	18.3	227
93	Site-specific cleavage of DNA–RNA hybrids by zinc finger/Fokl cleavage domain fusions. Gene, 1997, 203, 43-49.	2.2	65
94	A Fluorescent Zinc Probe Based on Metal-Induced Peptide Folding. Journal of the American Chemical Society, 1996, 118, 6514-6515.	13.7	162
95	Metal binding properties and secondary structure of the zinc-binding domain of Nup475. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 13754-13759.	7.1	101
96	A 2.2 Ã resolution crystal structure of a designed zinc finger protein bound to DNA. Nature Structural Biology, 1996, 3, 940-945.	9.7	168
97	A direct comparison of the properties of natural and designed zinc-finger proteins. Chemistry and Biology, 1995, 2, 83-89.	6.0	54
98	Fibrillin domain folding and calcium binding: significance to Marfan syndrome. Chemistry and Biology, 1995, 2, 91-97.	6.0	33
99	Zinc Finger Domains: From Predictions to Design. Accounts of Chemical Research, 1995, 28, 14-19.	15.6	112
100	Matrix-Assisted Laser Desorption/Ionization of Noncovalently Bound Compounds. Analytical Chemistry, 1995, 67, 4462-4465.	6.5	99
101	Serine at Position 2 in the DNA Recognition Helix of a Cys2-His2Zinc Finger Peptide is Not, in General, Responsible for Base Recognition. Journal of Molecular Biology, 1995, 252, 1-5.	4.2	16
102	Racemic macromolecules for use in x-ray crystallography. Current Opinion in Biotechnology, 1994, 5, 343-345.	6.6	7
103	Water Exchange Filter (WEX Filter) for Nuclear Magnetic Resonance Studies of Macromolecules. Journal of the American Chemical Society, 1994, 116, 11982-11984.	13.7	55
104	Length-encoded multiplex binding site determination: application to zinc finger proteins Proceedings of the United States of America, 1994, 91, 11099-11103.	7.1	79
105	Thermodynamic β -sheet propensities measured using a zinc-finger host peptide. Nature, 1993, 362, 267-270.	27.8	365
106	NMR studies of a cobalt-substituted zinc finger peptide. Journal of the American Chemical Society, 1993, 115, 2577-2580.	13.7	28
107	Metal binding properties of single amino acid deletion mutants of zinc finger peptides: studies using cobalt(II) as a spectroscopic probe. Biophysical Journal, 1993, 64, 749-753.	O.5	55
108	Ligand variation and metal ion binding specificity in zinc finger peptides. Inorganic Chemistry, 1993, 32, 937-940.	4.0	228

#	Article	IF	CITATIONS
109	Metal binding and folding properties of a minimalist Cys2His2 zinc finger peptide Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 4796-4800.	7.1	160
110	Sp1 and the subfamily of zinc finger proteins with guanine-rich binding sites Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 11109-11110.	7.1	178
111	Complexes of zinc finger peptides with nickel(2+) and iron(2+). Inorganic Chemistry, 1992, 31, 2984-2986.	4.0	53
112	A racemic protein. Journal of the American Chemical Society, 1992, 114, 4002-4003.	13.7	93
113	Redesigning the DNA-binding specificity of a zinc finger protein: A data base-guided approach. Proteins: Structure, Function and Bioinformatics, 1992, 12, 101-104.	2.6	104
114	A consensus zinc finger peptide: design, high-affinity metal binding, a pH-dependent structure, and a His to Cys sequence variant. Journal of the American Chemical Society, 1991, 113, 4518-4523.	13.7	238
115	Design and characterization of a ligand-binding metallopeptide. Journal of the American Chemical Society, 1991, 113, 5450-5451.	13.7	56
116	Identification and characterization of "zinc-finger" domains by the polymerase chain reaction Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 671-675.	7.1	45
117	[4] Metal requirements for nucleic acid binding proteins. Methods in Enzymology, 1991, 208, 46-54.	1.0	5
118	On the metal ion specificity of zinc finger proteins. Journal of the American Chemical Society, 1989, 111, 3759-3761.	13.7	133
119	DNA binding specificity of steroid receptors. Cell, 1989, 57, 1065-1068.	28.9	206
120	A retroviral Cys-Xaa2-Cys-Xaa4-His-Xaa4-Cys peptide binds metal ions: spectroscopic studies and a proposed three-dimensional structure Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 4047-4051.	7.1	188
121	Metal Ions in Proteins: Structural and Functional Roles. Cold Spring Harbor Symposia on Quantitative Biology, 1987, 52, 579-585.	1.1	25
122	Thermodynamic fitness of molybdenum(IV,VI) complexes for oxygen-atom transfer reactions, including those with enzymic substrates. Journal of the American Chemical Society, 1986, 108, 6992-7000.	13.7	96
123	A binuclear copper(II) complex with a bridging thioether ligand. Crystal and molecular structure of dicopper (thiobis(ethylenenitrilo)tetraacetate) pentahydrate. Inorganic Chemistry, 1986, 25, 1800-1803.	4.0	7
124	Nucleic acid-binding proteins: More metal-binding fingers. Nature, 1986, 319, 264-265.	27.8	83
125	Toward functional models of metalloenzyme active sites: analog reaction systems of the molybdenum oxo transferases. Accounts of Chemical Research, 1986, 19, 363-370.	15.6	107
126	Model for the active sites of oxo-transfer molybdoenzymes: reactivity, kinetics, and catalysis. Journal of the American Chemical Society, 1985, 107, 925-932.	13.7	131

#	Article	IF	CITATIONS
127	Soluble sulfides of niobium(V) and tantalum(V): synthesis, structures, and properties of the fivefold symmetric cages [M6S17]4 Inorganic Chemistry, 1985, 24, 1706-1713.	4.0	41
128	Mononuclear active sites of molybdoenzymes: chemical approaches to structure and reactivity. Pure and Applied Chemistry, 1984, 56, 1645-1657.	1.9	47
129	The crystal and molecular structures of dioxo mo(VI) complexes of tripodal, tetradentate N,S-donor ligands. Inorganica Chimica Acta, 1984, 90, 25-33.	2.4	13
130	Structural comparison of octahedral MoO22+ complexes of bidentate and linear tetradentate N,S-donor ligands. Inorganica Chimica Acta, 1984, 90, 35-39.	2.4	8
131	The stereochemistry and biosynthesis of hybridalactone, an eicosanoid from. Tetrahedron Letters, 1984, 25, 1015-1018.	1.4	36
132	Stereochemistry of the Conant-Swan fragmentation: the absence of a phenonium ion intermediate. Journal of the American Chemical Society, 1984, 106, 4202-4204.	13.7	8
133	Kinetics of oxygen atom transfer reactions involving oxomolybdenum complexes. General treatment for reactions with intermediate oxo-bridged molybdenum(V) dimer formation. Inorganic Chemistry, 1984, 23, 3057-3062.	4.0	75
134	Synthetic approach to the mononuclear active sites of molybdoenzymes: catalytic oxygen atom transfer reactions by oxomolybdenum(IV,VI) complexes with saturation kinetics and without molybdenum(V) dimer formation. Journal of the American Chemical Society, 1984, 106, 3035-3036.	13.7	79
135	Structure proofs of ligated and polymeric dioxomolybdenum(VI)-tridentate complexes: MoO2(C5H3N-2,6-(CH2S)2)(C4H8SO) and [MoO2(C5H3N-2,6-(CH2O)2)]n. Inorganic Chemistry, 1983, 22, 1768-1771.	4.0	76
136	Synthesis, structure, and magnetism of a new type of .pimolecular complex containing binuclear copper(II) complexes and benzene: bis[2,2-dimethyl-7-(phenylimino)-3,5,7-octanetrionato]dicopper(II)-benzene and bis[2,2-dimethyl-7-[(4-nitrophenyl)imino]-3,5,7-octanetrionato]dicopper(II)-bis(benzene). Inorganic	4.0	13
137	Chemistry, 1983, 22, 1667-1671. Soluble metal sulfides. Synthesis and structures of [M6S17]4- (M = niobium or tantalum): icosahedral-fragment cages containing four types of coordinated sulfide. Journal of the American Chemical Society, 1983, 105, 7784-7786.	13.7	24
138	Single-crystal polarized x-ray absorption spectroscopy. Observation and theory for thiomolybdate(2-). Journal of the American Chemical Society, 1981, 103, 6083-6088.	13.7	78
139	Synthesis, structure, and properties of the cluster complex [MoFe4S4(SC2H5)3(C6H4O2)3]3-, containing a single cubane-type molybdenum-iron-sulfur (MoFe3S4) core. Inorganic Chemistry, 1981, 20, 174-180.	4.0	51
140	Structural characterization of the iron-bridged "double-cubane" cluster complexes [Mo2Fe7S8(SC2H5)12]3- and [M2Fe7S8(SCH2C6H5)12]4- (M = molybdenum, tungsten) containing MFe3S4 cores. Inorganic Chemistry, 1980, 19, 430-437.	4.0	58
141	Gramicidin A crystals contain two cation binding sites per channel. Nature, 1979, 279, 723-725.	27.8	126