
Giulietta Smulevich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8627642/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Substrate specificity and complex stability of coproporphyrin ferrochelatase is governed by hydrogenâ€bonding interactions of the four propionate groups. FEBS Journal, 2022, 289, 1680-1699.	2.2	13
2	An active site at work – the role of key residues in C. diphteriae coproheme decarboxylase. Journal of Inorganic Biochemistry, 2022, 229, 111718.	1.5	9
3	Mycobacterial and Human Ferrous Nitrobindins: Spectroscopic and Reactivity Properties. International Journal of Molecular Sciences, 2021, 22, 1674.	1.8	10
4	Surface-Enhanced Raman Spectroscopy for Bisphenols Detection: Toward a Better Understanding of the Analyte–Nanosystem Interactions. Nanomaterials, 2021, 11, 881.	1.9	14
5	Detecting rotational disorder in heme proteins: A comparison between resonance Raman spectroscopy, nuclear magnetic resonance, and circular dichroism. Journal of Raman Spectroscopy, 2021, 52, 2536-2549.	1.2	4
6	Reaction intermediate rotation during the decarboxylation of coproheme to heme b in C.Âdiphtheriae. Biophysical Journal, 2021, 120, 3600-3614.	0.2	12
7	Conformational Flexibility Drives Cold Adaptation in Pseudoalteromonas haloplanktis TAC125 Globins. Antioxidants and Redox Signaling, 2020, 32, 396-411.	2.5	6
8	A Plant Gene Encoding One-Heme and Two-Heme Hemoglobins With Extreme Reactivities Toward Diatomic Gases and Nitrite. Frontiers in Plant Science, 2020, 11, 600336.	1.7	8
9	Lack of orientation selectivity of the heme insertion in murine neuroglobin revealed by resonance Raman spectroscopy. FEBS Journal, 2020, 287, 4082-4097.	2.2	13
10	Surface-enhanced Raman scattering of glyphosate on dispersed silver nanoparticles: A reinterpretation based on model molecules. Vibrational Spectroscopy, 2020, 108, 103061.	1.2	14
11	Mycobacterial and Human Nitrobindins: Structure and Function. Antioxidants and Redox Signaling, 2020, 33, 229-246.	2.5	17
12	Nanohybrid Assemblies of Porphyrin and Au10 Cluster Nanoparticles. Nanomaterials, 2019, 9, 1026.	1.9	16
13	Solution and crystal phase resonance Raman spectroscopy: Valuable tools to unveil the structure and function of heme proteins. Journal of Porphyrins and Phthalocyanines, 2019, 23, 691-700.	0.4	5
14	Addition of sodium ascorbate to extend the shelf-life of tuna meat fish: A risk or a benefit for consumers?. Journal of Inorganic Biochemistry, 2019, 200, 110813.	1.5	12
15	Surface Enhanced Raman Spectroscopy for In-Field Detection of Pesticides: A Test on Dimethoate Residues in Water and on Olive Leaves. Molecules, 2019, 24, 292.	1.7	26
16	Redox Cofactor Rotates during Its Stepwise Decarboxylation: Molecular Mechanism of Conversion of Coproheme to Heme <i>b</i> . ACS Catalysis, 2019, 9, 6766-6782.	5.5	28
17	The hydrogen bonding network of coproheme in coproheme decarboxylase from Listeria monocytogenes: Effect on structure and catalysis. Journal of Inorganic Biochemistry, 2019, 195, 61-70.	1.5	19
18	Proximal and distal control for ligand binding in neuroglobin: role of the CD loop and evidence for His64 gating. Scientific Reports, 2019, 9, 5326.	1.6	10

#	Article	IF	CITATIONS
19	Structural determinants of ligand binding in truncated hemoglobins: Resonance Raman spectroscopy of the native states and their carbon monoxide and hydroxide complexes. Biopolymers, 2018, 109, e23114.	1.2	5
20	Probing the nonâ€native states of Cytochrome c with resonance Raman spectroscopy: A tool for investigating the structure–function relationship. Journal of Raman Spectroscopy, 2018, 49, 1041-1055.	1.2	19
21	Coexistence of multiple globin genes conferring protection against nitrosative stress to the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Nitric Oxide - Biology and Chemistry, 2018, 73, 39-51.	1.2	11
22	Insights into the Active Site of Coproheme Decarboxylase from Listeria monocytogenes. Biochemistry, 2018, 57, 2044-2057.	1.2	28
23	Surface Engineering of Gold Nanorods for Cytochrome <i>c</i> Bioconjugation: An Effective Strategy To Preserve the Protein Structure. ACS Omega, 2018, 3, 4959-4967.	1.6	11
24	The Met80Ala and Tyr67His/Met80Ala mutants of human cytochrome c shed light on the reciprocal role of Met80 and Tyr67 in regulating ligand access into the heme pocket. Journal of Inorganic Biochemistry, 2017, 169, 86-96.	1.5	20
25	Unravelling the Non-Native Low-Spin State of the Cytochrome <i>c</i> –Cardiolipin Complex: Evidence of the Formation of a His-Ligated Species Only. Biochemistry, 2017, 56, 1887-1898.	1.2	29
26	Molecular Mechanism of Enzymatic Chlorite Detoxification: Insights from Structural and Kinetic Studies. ACS Catalysis, 2017, 7, 7962-7976.	5.5	26
27	The key role played by charge in the interaction of cytochrome c with cardiolipin. Journal of Biological Inorganic Chemistry, 2017, 22, 19-29.	1.1	40
28	The Greenland shark Somniosus microcephalus—Hemoglobins and ligand-binding properties. PLoS ONE, 2017, 12, e0186181.	1.1	27
29	Structure–function relationships in human cytochrome c: The role of tyrosine 67. Journal of Inorganic Biochemistry, 2016, 155, 56-66.	1.5	31
30	From chlorite dismutase towards HemQ–the role of the proximal H-bonding network in haeme binding. Bioscience Reports, 2016, 36, .	1.1	22
31	Hydrogen peroxideâ€mediated conversion of coproheme to heme <i>b</i> by HemQ—lessons from the first crystal structure and kinetic studies. FEBS Journal, 2016, 283, 4386-4401.	2.2	36
32	Structural flexibility of the heme cavity in the coldâ€adapted truncated hemoglobin from the Antarctic marine bacterium <i>PseudoalteromonasÂhaloplanktis </i> <scp>TAC</scp> 125. FEBS Journal, 2015, 282, 2948-2965.	2.2	24
33	Functional and Spectroscopic Characterization of Chlamydomonas reinhardtii Truncated Hemoglobins. PLoS ONE, 2015, 10, e0125005.	1.1	13
34	Bridging Theory and Experiment to Address Structural Properties of Truncated Haemoglobins. Advances in Microbial Physiology, 2015, 67, 85-126.	1.0	4
35	Nitrite Dismutase Reaction Mechanism: Kinetic and Spectroscopic Investigation of the Interaction between Nitrophorin and Nitrite. Journal of the American Chemical Society, 2015, 137, 4141-4150.	6.6	22
36	Reactivity of Inorganic Sulfide Species toward a Heme Protein Model. Inorganic Chemistry, 2015, 54, 527-533.	1.9	36

#	Article	IF	CITATIONS
37	Anatomy of an iron-sulfur cluster scaffold protein: Understanding the determinants of [2Fe–2S] cluster stability on IscU. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 1448-1456.	1.9	26
38	Structural and Functional Properties of Heme-containing Peroxidases: a Resonance Raman Perspective for the Superfamily of Plant, Fungal and Bacterial Peroxidases. 2-Oxoglutarate-Dependent Oxygenases, 2015, , 61-98.	0.8	6
39	Oxygen-Linked S-Nitrosation in Fish Myoglobins: A Cysteine-Specific Tertiary Allosteric Effect. PLoS ONE, 2014, 9, e97012.	1.1	8
40	Interplay of the H-Bond Donor–Acceptor Role of the Distal Residues in Hydroxyl Ligand Stabilization of <i>Thermobifida fusca</i> Truncated Hemoglobin. Biochemistry, 2014, 53, 8021-8030.	1.2	15
41	SERS detection of benzophenones on viologen functionalized Ag nanoparticles: application to breakfast cereals. Journal of Raman Spectroscopy, 2013, 44, 1428-1434.	1.2	8
42	A spectrophotometric method for the detection of carboxymyoglobin in beef drip. International Journal of Food Science and Technology, 2013, 48, 429-436.	1.3	3
43	H-bonding networks of the distal residues and water molecules in the active site of Thermobifida fusca hemoglobin. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 1901-1909.	1.1	21
44	Small ligand–globin interactions: Reviewing lessons derived from computer simulation. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 1722-1738.	1.1	37
45	Role of Lysines in Cytochrome <i>c</i> –Cardiolipin Interaction. Biochemistry, 2013, 52, 4578-4588.	1.2	83
46	Reciprocal Allosteric Modulation of Carbon Monoxide and Warfarin Binding to Ferrous Human Serum Heme-Albumin. PLoS ONE, 2013, 8, e58842.	1.1	15
47	ATP regulation of the ligand-binding properties in temperate and cold-adapted haemoglobins. X-ray structure and ligand-binding kinetics in the sub-Antarctic fish Eleginops maclovinus. Molecular BioSystems, 2012, 8, 3295.	2.9	12
48	Eukaryotic extracellular catalase–peroxidase from Magnaporthe grisea – Biophysical/chemical characterization of the first representative from a novel phytopathogenic KatG group. Biochimie, 2012, 94, 673-683.	1.3	26
49	Insights into the anomalous heme pocket of rainbow trout myoglobin. Journal of Inorganic Biochemistry, 2012, 109, 1-8.	1.5	12
50	Evidence for pH-dependent multiple conformers in iron(II) heme–human serum albumin: spectroscopic and kinetic investigation of carbon monoxide binding. Journal of Biological Inorganic Chemistry, 2012, 17, 133-147.	1.1	13
51	Biophysical Characterisation of Neuroglobin of the Icefish, a Natural Knockout for Hemoglobin and Myoglobin. Comparison with Human Neuroglobin. PLoS ONE, 2012, 7, e44508.	1.1	28
52	Fluoride as a Probe for H-Bonding Interactions in the Active Site of Heme Proteins: The Case of <i>Thermobifida fusca</i> Hemoglobin. Journal of the American Chemical Society, 2011, 133, 20970-20980.	6.6	29
53	Histidine E7 Dynamics Modulates Ligand Exchange between Distal Pocket and Solvent in AHb1 from <i>Arabidopsis thaliana</i> . Journal of Physical Chemistry B, 2011, 115, 4138-4146.	1.2	20
54	The Role of CyaY in Iron Sulfur Cluster Assembly on the E. coli IscU Scaffold Protein. PLoS ONE, 2011, 6, e21992.	1.1	46

#	Article	IF	CITATIONS
55	Ibuprofen impairs allosterically peroxynitrite isomerization by ferric human serum heme-albumin Journal of Biological Chemistry, 2011, 286, 29441.	1.6	Ο
56	The optical spectra of fluoride complexes can effectively probe H-bonding interactions in the distal cavity of heme proteins. Journal of Inorganic Biochemistry, 2011, 105, 1338-1343.	1.5	23
57	The effects of ATP and sodium chloride on the cytochrome c–cardiolipin interaction: The contrasting behavior of the horse heart and yeast proteins. Journal of Inorganic Biochemistry, 2011, 105, 1365-1372.	1.5	27
58	The peculiar heme pocket of the 2/2 hemoglobin of cold-adapted Pseudoalteromonas haloplanktis TAC125. Journal of Biological Inorganic Chemistry, 2011, 16, 299-311.	1.1	21
59	Degradation of sulfide by dehaloperoxidase-hemoglobin from Amphitrite ornata. Journal of Biological Inorganic Chemistry, 2011, 16, 611-619.	1.1	17
60	Occurrence and formation of endogenous histidine hexaâ€coordination in coldâ€adapted hemoglobins. IUBMB Life, 2011, 63, 295-303.	1.5	14
61	Ligand―and protonâ€inked conformational changes of the ferrous 2/2 hemoglobin of <i>Pseudoalteromonas haloplanktis</i> TAC125. IUBMB Life, 2011, 63, 566-573.	1.5	15
62	Development and validation of a quantitative spectrophotometric method to detect the amount of carbon monoxide in treated tuna fish. Food Chemistry, 2011, 128, 1143-1151.	4.2	10
63	Extended cardiolipin anchorage to cytochrome c: a model for protein–mitochondrial membrane binding. Journal of Biological Inorganic Chemistry, 2010, 15, 689-700.	1.1	105
64	High throughput headspace GCâ€MS quantitative method to measure the amount of carbon monoxide in treated tuna fish. Journal of Mass Spectrometry, 2010, 45, 1041-1045.	0.7	13
65	Crystallization, preliminary X-ray diffraction studies and Raman microscopy of the major haemoglobin from the sub-Antarctic fish <i>Eleginops maclovinus</i> in the carbomonoxy form. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1536-1540.	0.7	9
66	High Protein Structural Flexibility Of A Truncated Hemoglobin From An Antarctic Cold-Adapted Bacterium. , 2010, , .		0
67	Heme Pocket Structural Properties of a Bacterial Truncated Hemoglobin from <i>Thermobifida fusca</i> . Biochemistry, 2010, 49, 10394-10402.	1.2	25
68	Internal Binding of Halogenated Phenols in Dehaloperoxidase-Hemoglobin Inhibits Peroxidase Function. Biophysical Journal, 2010, 99, 1586-1595.	0.2	51
69	New Insights into the Role of Distal Histidine Flexibility in Ligand Stabilization of Dehaloperoxidaseâ^'Hemoglobin from <i>Amphitrite ornata</i> . Biochemistry, 2010, 49, 1903-1912.	1.2	39
70	Sulfide Binding Properties of Truncated Hemoglobins. Biochemistry, 2010, 49, 2269-2278.	1.2	63
71	Ibuprofen Impairs Allosterically Peroxynitrite Isomerization by Ferric Human Serum Heme-Albumin. Journal of Biological Chemistry, 2009, 284, 31006-31017.	1.6	40
72	Combined crystallographic and spectroscopic analysis of <i>Trematomus bernacchii</i> hemoglobin highlights analogies and differences in the peculiar oxidation pathway of Antarctic fish hemoglobins. Biopolymers, 2009, 91, 1117-1125.	1.2	21

#	Article	IF	CITATIONS
73	Structure and function of the Gondwanian hemoglobin of Pseudaphritis urvillii, a primitive notothenioid fish of temperate latitudes. Protein Science, 2009, 13, 2766-2781.	3.1	28
74	Effects of urea and acetic acid on the heme axial ligation structure of ferric myoglobin at very acidic pH. Archives of Biochemistry and Biophysics, 2009, 489, 68-75.	1.4	14
75	Structural Plasticity and Functional Implications of Internal Cavities in Distal Mutants of Type 1 Non-Symbiotic Hemoglobin AHb1 fromArabidopsis thaliana. Journal of Physical Chemistry B, 2009, 113, 16028-16038.	1.2	20
76	The role of the sulfonium linkage in the stabilization of the ferrous form of myeloperoxidase: A comparison with lactoperoxidase. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2008, 1784, 843-849.	1.1	17
77	Unusually Strong H-Bonding to the Heme Ligand and Fast Geminate Recombination Dynamics of the Carbon Monoxide Complex of Bacillus subtilis Truncated Hemoglobin. Biochemistry, 2008, 47, 902-910.	1.2	26
78	Ibuprofen Induces an Allosteric Conformational Transition in the Heme Complex of Human Serum Albumin with Significant Effects on Heme Ligation. Journal of the American Chemical Society, 2008, 130, 11677-11688.	6.6	98
79	Spectroscopic and Crystallographic Characterization of a Tetrameric Hemoglobin Oxidation Reveals Structural Features of the Functional Intermediate Relaxed/Tense State. Journal of the American Chemical Society, 2008, 130, 10527-10535.	6.6	46
80	Interactions between the Photosystem II Subunit PsbS and Xanthophylls Studied in Vivo and in Vitro. Journal of Biological Chemistry, 2008, 283, 8434-8445.	1.6	125
81	The Reactivity with CO of AHb1 and AHb2 from Arabidopsis thaliana is Controlled by the Distal HisE7 and Internal Hydrophobic Cavities. Journal of the American Chemical Society, 2007, 129, 2880-2889.	6.6	54
82	Heme to protein linkages in mammalian peroxidases: impact on spectroscopic, redox and catalytic properties. Natural Product Reports, 2007, 24, 571-584.	5.2	95
83	A Comparative Study on Axial Coordination and Ligand Binding in Ferric Mini Myoglobin and Horse Heart Myoglobin. Biophysical Journal, 2007, 93, 2135-2142.	0.2	11
84	Multiphasic Kinetics of Myoglobin/Sodium Dodecyl Sulfate Complex Formation. Biophysical Journal, 2007, 92, 4078-4087.	0.2	18
85	The influence of pH and anions on the adsorption mechanism of rifampicin on silver colloids. Journal of Raman Spectroscopy, 2007, 38, 859-864.	1.2	42
86	A rapid spectroscopic method to detect the fraudulent treatment of tuna fish with carbon monoxide. Food Chemistry, 2007, 101, 1071-1077.	4.2	43
87	The quantum mechanically mixed-spin state in a non-symbiotic plant hemoglobin: The effect of distal mutation on AHb1 from Arabidopsis thaliana. Journal of Inorganic Biochemistry, 2007, 101, 1812-1819.	1.5	6
88	Heme Coordination States of Unfolded Ferrous Cytochrome c. Biophysical Journal, 2006, 91, 3022-3031.	0.2	42
89	Probing the structure and bifunctionality of catalase-peroxidase (KatG). Journal of Inorganic Biochemistry, 2006, 100, 568-585.	1.5	92
90	Insights into the role of the histidines in the structure and stability of cytochrome c. Journal of Biological Inorganic Chemistry, 2006, 11, 52-62.	1.1	19

#	Article	IF	CITATIONS
91	Resonance Raman assignment of myeloperoxidase and the selected mutants Asp94Val and Met243Thr. Effect of the heme distortion. Journal of Raman Spectroscopy, 2006, 37, 263-276.	1.2	30
92	Surface-enhanced resonance Raman spectroscopy of rifamycins on silver nanoparticles: insight into their adsorption mechanisms. Journal of Raman Spectroscopy, 2006, 37, 900-909.	1.2	12
93	Spectroscopic and kinetic properties of the horseradish peroxidase mutant T171S. Evidence for selective effects on the reduced state of the enzyme. FEBS Journal, 2005, 272, 5514-5521.	2.2	13
94	Fifteen Years of Raman Spectroscopy of Engineered Heme Containing Peroxidases: What Have We Learned?. ChemInform, 2005, 36, no.	0.1	0
95	Effect of sol–gel encapsulation on the unfolding of ferric horse heart cytochrome c. Journal of Biological Inorganic Chemistry, 2005, 10, 696-703.	1.1	17
96	Role of the Main Access Channel of Catalase-Peroxidase in Catalysis. Journal of Biological Chemistry, 2005, 280, 42411-42422.	1.6	34
97	Fifteen Years of Raman Spectroscopy of Engineered Heme Containing Peroxidases:  What Have We Learned?. Accounts of Chemical Research, 2005, 38, 433-440.	7.6	97
98	ATP specifically drives refolding of non-native conformations of cytochrome c. Protein Science, 2005, 14, 1049-1058.	3.1	47
99	Electrochemistry of Unfolded Cytochromecin Neutral and Acidic Urea Solutions. Journal of the American Chemical Society, 2005, 127, 7638-7646.	6.6	51
100	The oxidation process of Antarctic fish hemoglobins. FEBS Journal, 2004, 271, 1651-1659.	0.2	48
101	The 40s ?-loop plays a critical role in the stability and the alkaline conformational transition of cytochrome c. Journal of Biological Inorganic Chemistry, 2004, 9, 997-1006.	1.1	16
102	Manipulating the covalent link between distal side tryptophan, tyrosine, and methionine in catalase-peroxidases: An electronic absorption and resonance Raman study. Biopolymers, 2004, 74, 46-50.	1.2	16
103	A model for the misfolded bis-His intermediate of cytochrome c: the 1–56 N-fragment. Journal of Inorganic Biochemistry, 2004, 98, 1067-1077.	1.5	27
104	The heme iron coordination of unfolded ferric and ferrous cytochrome c in neutral and acidic urea solutions. Spectroscopic and electrochemical studies. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2004, 1703, 31-41.	1.1	49
105	Comparison between Catalase-Peroxidase and Cytochrome c Peroxidase. The Role of the Hydrogen-Bond Networks for Protein Stability and Catalysis. Biochemistry, 2004, 43, 5792-5802.	1.2	31
106	Unusual Heme Iron-Lipid Acyl Chain Coordination in Escherichia coli Flavohemoglobin. Biophysical Journal, 2004, 86, 3882-3892.	0.2	40
107	Spectroscopic and Interfacial Properties of Myoglobin/Surfactant Complexes. Biophysical Journal, 2004, 87, 1186-1195.	0.2	117
108	Anion concentration modulates the conformation and stability of the molten globule of cytochrome c. Journal of Biological Inorganic Chemistry, 2003, 8, 663-670.	1.1	31

#	Article	IF	CITATIONS
109	Relationship between heme vinyl conformation and the protein matrix in peroxidases. Journal of Raman Spectroscopy, 2003, 34, 725-736.	1.2	72
110	Purification and characterization of a new cationic peroxidase from fresh flowers of Cynara scolymus L. Journal of Inorganic Biochemistry, 2003, 94, 243-254.	1.5	29
111	Rupture of the Hydrogen Bond Linking Two Ω-Loops Induces the Molten Globule State at Neutral pH in Cytochrome c. Biochemistry, 2003, 42, 7604-7610.	1.2	46
112	New Insight into the Peroxidaseâ `Hydroxamic Acid Interaction Revealed by the Combination of Spectroscopic and Crystallographic Studies. Biochemistry, 2003, 42, 14066-14074.	1.2	22
113	Spectroscopic characterization of mutations at the Phe41 position in the distal haem pocket of horseradish peroxidase C: structural and functional consequences. Biochemical Journal, 2002, 363, 571.	1.7	8
114	Spectroscopic characterization of mutations at the Phe41 position in the distal haem pocket of horseradish peroxidase C: structural and functional consequences. Biochemical Journal, 2002, 363, 571-579.	1.7	14
115	New Insights into the Heme Cavity Structure of Catalase-Peroxidase: A Spectroscopic Approach to the RecombinantSynechocystisEnzyme and Selected Distal Cavity Mutantsâ€. Biochemistry, 2002, 41, 9237-9247.	1.2	36
116	Fine-Tuning of the Binding and Dissociation of CO by the Amino Acids of the Heme Pocket of Coprinus cinereus Peroxidase. Biochemistry, 2002, 41, 13264-13273.	1.2	8
117	Structure of soybean seed coat peroxidase: A plant peroxidase with unusual stability and haem-apoprotein interactions. Protein Science, 2001, 10, 108-115.	3.1	122
118	Differential Activity and Structure of Highly Similar Peroxidases. Spectroscopic, Crystallographic, and Enzymatic Analyses of Lignifying Arabidopsis thaliana Peroxidase A2 and Horseradish Peroxidase A2,. Biochemistry, 2001, 40, 11013-11021.	1.2	90
119	Cationic Ascorbate Peroxidase Isoenzyme II from Tea:Â Structural Insights into the Heme Pocket of a Unique Hybrid Peroxidaseâ€. Biochemistry, 2001, 40, 10360-10370.	1.2	23
120	Haem-linked interactions in horseradish peroxidase revealed by spectroscopic analysis of the Phe-221→Met mutant. Biochemical Journal, 2001, 353, 181-191.	1.7	16
121	Haem-linked interactions in horseradish peroxidase revealed by spectroscopic analysis of the Phe-221→Met mutant. Biochemical Journal, 2001, 353, 181.	1.7	6
122	Resonance Raman spectra and transform analysis of anthracyclines and their complexes with DNA. Journal of Raman Spectroscopy, 2001, 32, 565-578.	1.2	9
123	Mutation of residues critical for benzohydroxamic acid binding to horseradish peroxidase isoenzyme C. Biopolymers, 2001, 62, 261-267.	1.2	10
124	The Critical Role of the Proximal Calcium Ion in the Structural Properties of Horseradish Peroxidase. Journal of Biological Chemistry, 2001, 276, 40704-40711.	1.6	63
125	A Novel Heme Protein, the Cu,Zn-Superoxide Dismutase from Haemophilus ducreyi. Journal of Biological Chemistry, 2001, 276, 30326-30334.	1.6	28
126	Effect of low temperature on soybean peroxidase: spectroscopic characterization of the quantum-mechanically admixed spin state. Journal of Inorganic Biochemistry, 2000, 79, 269-274.	1.5	22

#	Article	IF	CITATIONS
127	Anion- and pH-linked conformational transition in horseradish peroxidase. Journal of Inorganic Biochemistry, 2000, 79, 25-30.	1.5	7
128	Effect of pH on Axial Ligand Coordination of Cytochromecâ€~Ââ€~ fromMethylophilus methylotrophusand Horse Heart Cytochromecâ€. Biochemistry, 2000, 39, 8234-8242.	1.2	46
129	Benzohydroxamic Acidâ^'Peroxidase Complexes:Â Spectroscopic Characterization of a Novel Heme Spin Species. Journal of the American Chemical Society, 2000, 122, 7368-7376.	6.6	41
130	The Quantum Mixed-Spin Heme State of Barley Peroxidase:A Paradigm for Class III Peroxidases. Biophysical Journal, 1999, 77, 478-492.	0.2	76
131	Role of the Distal Phenylalanine 54 on the Structure, Stability, and Ligand Binding ofCoprinus cinereusPeroxidaseâ€. Biochemistry, 1999, 38, 7819-7827.	1.2	18
132	Role of the distal phenylalanine 41 on the properties of horseradish peroxidase C. , 1999, , 149-150.		0
133	Calcium depletion of horseradish peroxidase generates a quantum mechanical mixed-spin heme state. , 1999, , 145-146.		1
134	Mutation of the distal arginine in Coprinus cinereus peroxidase . Structural implications. FEBS Journal, 1998, 251, 830-838.	0.2	23
135	Resonance Raman and electronic absorption spectra of horseradish peroxidase isozyme A2: evidence for a quantum-mixed spin species. Journal of Raman Spectroscopy, 1998, 29, 933-938.	1.2	44
136	Heme-protein interactions in cytochrome c peroxidase revealed by site-directed mutagenesis and resonance Raman spectra of isotopically labeled hemes. , 1998, 2, 365-376.		61
137	Understanding heme cavity structure of peroxidases: Comparison of electronic absorption and resonance Raman spectra with crystallographic results. , 1998, 4, S3-S17.		67
138	Characterization of soybean seed coat peroxidase: Resonance Raman evidence for a structure-based classification of plant peroxidases. , 1998, 4, 355-364.		35
139	The Distal Cavity Structure of Carbonyl Horseradish Peroxidase As Probed by the Resonance Raman Spectra of His 42 Leu and Arg 38 Leu Mutants. Biochemistry, 1998, 37, 13575-13581.	1.2	45
140	Cooperative Mechanism in the Homodimeric Myoglobin fromNassamutabilisâ€. Biochemistry, 1998, 37, 2873-2878.	1.2	9
141	Spectroscopic Characterization of Recombinant Pea Cytosolic Ascorbate Peroxidase: Similarities and Differences with CytochromecPeroxidaseâ€. Biochemistry, 1998, 37, 8080-8087.	1.2	45
142	Fluoride Binding in Hemoproteins:Â The Importance of the Distal Cavity Structure. Biochemistry, 1998, 37, 8268-8268.	1.2	1
143	Intramolecular hydrogen bonding and excited state proton transfer in hydroxyanthraquinones as studied by electronic spectra, resonance Raman scattering, and transform analysis. Journal of Chemical Physics, 1998, 108, 534-549.	1.2	54
144	Understanding heme cavity structure of peroxidases: Comparison of electronic absorption and resonance Raman spectra with crystallographic results. Biospectroscopy, 1998, 4, S3-S17.	0.4	10

#	Article	IF	CITATIONS
145	pH Dependence of Structural and Functional Properties of Oxidized Cytochrome c" from Methylophilus methylotrophus. Journal of Biological Chemistry, 1997, 272, 24800-24804.	1.6	20
146	Mutation of Distal Residues of Horseradish Peroxidase:  Influence on Substrate Binding and Cavity Properties. Biochemistry, 1997, 36, 1532-1543.	1.2	125
147	Spectroscopic Evidence for a Conformational Transition in Horseradish Peroxidase at Very Low pH. Biochemistry, 1997, 36, 640-649.	1.2	70
148	Fluoride Binding in Hemoproteins: The Importance of the Distal Cavity Structureâ€. Biochemistry, 1997, 36, 8947-8953.	1.2	79
149	Electronic Absorption and Resonance Raman Spectroscopies to Investigate Heme Proteins. , 1997, , 83-84.		0
150	Effect on the Heme Cavity of Coprinus Cinereus Peroxidase (CEP) Upon Mutation of Distal Residues. , 1997, , 167-168.		1
151	Versatility of Heme Coordination Demonstrated in a Fungal Peroxidase. Absorption and Resonance Raman Studies ofCoprinus cinereusPeroxidase and the Asp245→Asn Mutant at Various pH Valuesâ€. Biochemistry, 1996, 35, 10576-10585.	1.2	72
152	Effect of the His175 .fwdarw. Glu Mutation on the Heme Pocket Architecture of Cytochrome c Peroxidase. Biochemistry, 1995, 34, 13485-13490.	1.2	40
153	Resonance Raman Studies of the Heme Active Site of the Homodimeric Myoglobin from Nassa mutabilis: A Peculiar Case. Biochemistry, 1995, 34, 7507-7516.	1.2	23
154	Characterization of Recombinant Horseradish Peroxidase C and three Site-Directed mutants, F41V, F41W, and R38K by Resonance Raman Spectroscopy. Biochemistry, 1994, 33, 7398-7407.	1.2	106
155	Spin State and Axial Ligand Bonding in the Hydroxide Complexes of Metmyoglobin, Methemoglobin, and Horseradish Peroxidase at Room and Low Temperatures. Biochemistry, 1994, 33, 4577-4583.	1.2	140
156	Resonance raman spectra and the active site structure of semisynthetic Met80Cys horse heart cytochrome c. Inorganic Chemistry, 1994, 33, 4629-4634.	1.9	33
157	Resonance Raman Study of the Active Site of Coprinus cinereus Peroxidase. Biochemistry, 1994, 33, 15425-15432.	1.2	65
158	Variable-Temperature Stage for Raman Microprobing Spectroscopy. Applied Spectroscopy, 1992, 46, 1309-1311.	1.2	1
159	Alteration of the proximal bond energy in the unliganded form of the homodimeric myoglobin fromNassa mutabilisKinetic and spectroscopic evidence. FEBS Letters, 1992, 296, 184-186.	1.3	9
160	Conformational change and histidine control of heme chemistry in cytochrome c peroxidase: resonance Raman evidence from Leu-52 and Gly-181 mutants of cytochrome c peroxidase. Biochemistry, 1991, 30, 9546-9558.	1.2	140
161	Resonance Raman investigation of ferric iron in horseradish peroxidase and its aromatic donor complexes at room and low temperatures. Biochemistry, 1991, 30, 772-779.	1.2	65
162	Probing protein structure and dynamics with resonance Raman spectroscopy: cytochrome c peroxidase and hemoglobin. Biochemistry, 1990, 29, 4497-4508.	1.2	123

#	Article	IF	CITATIONS
163	Resonance Raman spectroscopy of cytochrome c peroxidase single crystals on a variable-temperature microscope stage. Biochemistry, 1990, 29, 2586-2592.	1.2	40
164	Carbon monoxide dissociation in cytochrome c peroxidase: site-directed mutagenesis shows that distal Arg 48 influences carbon monoxide dissociation rates. Biochemistry, 1990, 29, 9978-9988.	1.2	20
165	Single-crystal resonance Raman spectroscopy of site-directed mutants of cytochrome c peroxidase. Biochemistry, 1990, 29, 7174-7180.	1.2	47
166	Effects of temperature and glycerol on the resonance Raman spectra of cytochrome c peroxidase and selected mutants. Biochemistry, 1989, 28, 5058-5064.	1.2	51
167	Raman excitation profiles and secondâ€derivative absorption spectra of β arotene. Journal of Chemical Physics, 1989, 91, 85-91.	1.2	35
168	Photodissociable endogenous ligand in alkaline-reduced cytochrome c peroxidase implicates distal protein tension. Biochemistry, 1989, 28, 9905-9908.	1.2	21
169	Inclusion Complex Formation of 1,8-Dihydroxyanthraquinone with Cyclodextrins in Aqueous Solution and in Solid State. Journal of Pharmaceutical Sciences, 1988, 77, 523-526.	1.6	15
170	Heme pocket interactions in cytochrome c peroxidase studied by site-directed mutagenesis and resonance Raman spectroscopy. Biochemistry, 1988, 27, 5477-5485.	1.2	176
171	Cytochrome c peroxidase mutant active site structures probed by resonance Raman and infrared signatures of the CO adducts. Biochemistry, 1988, 27, 5486-5492.	1.2	72
172	Infrared Absorption and Calorimetric Evidence for the Existence of Two Forms of 1.8 Dihydroxyanthraquinone. Molecular Crystals and Liquid Crystals, 1987, 142, 173-179.	0.9	5
173	Fluorescence excitation and emission spectra of 1,8â€dihydroxyanthraquinoneâ€d0 and â€d2 in nâ€octane at 10 K. Journal of Chemical Physics, 1987, 87, 5664-5669.	1.2	45
174	Surface-enhanced resonance Raman spectra of adriamycin, 11-deoxycarminomycin, their model chromophores, and their complexes with DNA. The Journal of Physical Chemistry, 1986, 90, 6388-6392.	2.9	60
175	Alternative carbon monoxide binding modes for horseradish peroxidase studied by resonance Raman spectroscopy. Biochemistry, 1986, 25, 4420-4425.	1.2	84
176	Raman and infrared spectra of cytochrome c peroxidase-carbon monoxide adducts in alternative conformational states. Biochemistry, 1986, 25, 4426-4430.	1.2	68
177	Secondâ€derivative UV spectra of polyacetylene chromophores: Fingerprints of their geometrical isomers. Chemische Berichte, 1986, 119, 2843-2847.	0.2	7
178	Raman excitation profiles of 1,8-dihydroxyanthraquinone at 8 K. Chemical Physics, 1986, 105, 159-171.	0.9	22
179	Transient resonance Raman spectroscopy shows unrelaxed heme following CO photodissociation from cytochrome-c peroxidase. BBA - Proteins and Proteomics, 1986, 873, 88-91.	2.1	9
180	Raman excitation profiles of actinomycin D. Nucleic Acids and Protein Synthesis, 1980, 610, 384-391.	1.7	7

#	Article	IF	CITATIONS
181	Spectroscopic evidence of the effect of hydrogen peroxide excess on the coproheme decarboxylase from actinobacterial <scp> <i>Corynebacterium diphtheriae</i> </scp> . Journal of Raman Spectroscopy, 0, , .	1.2	4
182	Probing the Role of Murine Neuroglobin CDloop–D-Helix Unit in CO Ligand Binding and Structural Dynamics. ACS Chemical Biology, 0, , .	1.6	2