
Wenping Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8627518/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Heterostructures for Electrochemical Hydrogen Evolution Reaction: A Review. Advanced Functional Materials, 2018, 28, 1803291.	14.9	906
2	Alloyâ€Based Anode Materials toward Advanced Sodiumâ€Ion Batteries. Advanced Materials, 2017, 29, 1700622.	21.0	613
3	Hybrid 2D Dualâ€Metal–Organic Frameworks for Enhanced Water Oxidation Catalysis. Advanced Functional Materials, 2018, 28, 1801554.	14.9	550
4	An Advanced Sodiumâ€lon Battery Composed of Carbon Coated Na ₃ V ₂ (PO ₄) ₃ in a Porous Graphene Network. Advanced Materials, 2015, 27, 6670-6676.	21.0	448
5	Transition metal oxides for high performance sodium ion battery anodes. Nano Energy, 2014, 5, 60-66.	16.0	361
6	Nanostructured Metal Chalcogenides for Energy Storage and Electrocatalysis. Advanced Functional Materials, 2017, 27, 1702317.	14.9	339
7	Prussian Blue@C Composite as an Ultrahighâ€Rate and Longâ€Life Sodiumâ€Ion Battery Cathode. Advanced Functional Materials, 2016, 26, 5315-5321.	14.9	328
8	Active-Site-Enriched Iron-Doped Nickel/Cobalt Hydroxide Nanosheets for Enhanced Oxygen Evolution Reaction. ACS Catalysis, 2018, 8, 5382-5390.	11.2	311
9	Amorphous Fe2O3 as a high-capacity, high-rate and long-life anode material for lithium ion batteries. Nano Energy, 2014, 4, 23-30.	16.0	307
10	Recent progress on silicon-based anode materials for practical lithium-ion battery applications. Energy Storage Materials, 2018, 15, 422-446.	18.0	292
11	Two-Dimensional Tin Disulfide Nanosheets for Enhanced Sodium Storage. ACS Nano, 2015, 9, 11371-11381.	14.6	257
12	Cobalt Sulfide Nanosheet/Graphene/Carbon Nanotube Nanocomposites as Flexible Electrodes for Hydrogen Evolution. Angewandte Chemie - International Edition, 2014, 53, 12594-12599.	13.8	252
13	Oneâ€Pot Synthesis of Tunable Crystalline Ni ₃ S ₄ @Amorphous MoS ₂ Core/Shell Nanospheres for Highâ€Performance Supercapacitors. Small, 2015, 11, 3694-3702.	10.0	243
14	Everâ€Increasing Pseudocapacitance in RGO–MnO–RGO Sandwich Nanostructures for Ultrahighâ€Rate Lithium Storage. Advanced Functional Materials, 2016, 26, 2198-2206.	14.9	238
15	Low oordinate Iridium Oxide Confined on Graphitic Carbon Nitride for Highly Efficient Oxygen Evolution. Angewandte Chemie - International Edition, 2019, 58, 12540-12544.	13.8	208
16	Zinc Anode for Mild Aqueous Zinc-Ion Batteries: Challenges, Strategies, and Perspectives. Nano-Micro Letters, 2022, 14, 42.	27.0	207
17	Non-carbon-supported single-atom site catalysts for electrocatalysis. Energy and Environmental Science, 2021, 14, 2809-2858.	30.8	198
18	Platinum/Nickel Bicarbonate Heterostructures towards Accelerated Hydrogen Evolution under Alkaline Conditions. Angewandte Chemie - International Edition, 2019, 58, 5432-5437.	13.8	194

#	Article	IF	CITATIONS
19	An Ir/Ni(OH) ₂ Heterostructured Electrocatalyst for the Oxygen Evolution Reaction: Breaking the Scaling Relation, Stabilizing Iridium(V), and Beyond. Advanced Materials, 2020, 32, e2000872.	21.0	187
20	Few-layered Ni(OH)2 nanosheets for high-performance supercapacitors. Journal of Power Sources, 2015, 295, 323-328.	7.8	180
21	Engineering Hierarchical Hollow Nickel Sulfide Spheres for Highâ€Performance Sodium Storage. Advanced Functional Materials, 2016, 26, 7479-7485.	14.9	174
22	Recent Progress on Nickelâ€Based Oxide/(Oxy)Hydroxide Electrocatalysts for the Oxygen Evolution Reaction. Chemistry - A European Journal, 2019, 25, 703-713.	3.3	170
23	Multifunctional Architectures Constructing of PANI Nanoneedle Arrays on MoS ₂ Thin Nanosheets for Highâ€Energy Supercapacitors. Small, 2015, 11, 4123-4129.	10.0	164
24	Direct Hybridization of Noble Metal Nanostructures on 2D Metal–Organic Framework Nanosheets To Catalyze Hydrogen Evolution. Nano Letters, 2019, 19, 8447-8453.	9.1	160
25	2020 Roadmap on Carbon Materials for Energy Storage and Conversion. Chemistry - an Asian Journal, 2020, 15, 995-1013.	3.3	154
26	Ru–Co Pair Sites Catalyst Boosts the Energetics for the Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2022, 61, .	13.8	154
27	Multifunctional Active enterâ€Transferable Platinum/Lithium Cobalt Oxide Heterostructured Electrocatalysts towards Superior Water Splitting. Angewandte Chemie - International Edition, 2020, 59, 14533-14540.	13.8	152
28	Reversible Conversion-Alloying of Sb ₂ O ₃ as a High-Capacity, High-Rate, and Durable Anode for Sodium Ion Batteries. ACS Applied Materials & Interfaces, 2014, 6, 19449-19455.	8.0	143
29	Chemically Stable Yttrium and Tin Coâ€Đoped Barium Zirconate Electrolyte for Next Generation High Performance Protonâ€Conducting Solid Oxide Fuel Cells. Advanced Energy Materials, 2013, 3, 1041-1050.	19.5	140
30	2D Black Phosphorus for Energy Storage and Thermoelectric Applications. Small, 2017, 13, 1700661.	10.0	139
31	Two-dimensional NiCo ₂ O ₄ nanosheet-coated three-dimensional graphene networks for high-rate, long-cycle-life supercapacitors. Nanoscale, 2015, 7, 7035-7039.	5.6	134
32	Interface Engineering of Air Electrocatalysts for Rechargeable Zinc–Air Batteries. Advanced Energy Materials, 2021, 11, 2002762.	19.5	129
33	Interface engineering of heterostructured electrocatalysts towards efficient alkaline hydrogen electrocatalysis. Science Bulletin, 2021, 66, 85-96.	9.0	127
34	Fabrication and performance of a proton-conducting solid oxide fuel cell based on a thin BaZr0.8Y0.2O3â^1î´electrolyte membrane. Journal of Power Sources, 2010, 195, 4727-4730.	7.8	123
35	Bismuth sulfide: A high-capacity anode for sodium-ion batteries. Journal of Power Sources, 2016, 309, 135-140.	7.8	122
36	Ultrathin nickel oxide nanosheets for enhanced sodium and lithium storage. Journal of Power Sources, 2015, 274, 755-761.	7.8	114

#	Article	IF	CITATIONS
37	Controlled synthesis of zinc cobalt sulfide nanostructures in oil phase and their potential applications in electrochemical energy storage. Journal of Materials Chemistry A, 2015, 3, 11462-11470.	10.3	113
38	2D Transition Metal Oxides/Hydroxides for Energy‧torage Applications. ChemNanoMat, 2016, 2, 562-577.	2.8	113
39	A novel single phase cathode material for a proton-conducting SOFC. Electrochemistry Communications, 2009, 11, 688-690.	4.7	105
40	Hetero-interface constructs ion reservoir to enhance conversion reaction kinetics for sodium/lithium storage. Energy Storage Materials, 2019, 18, 107-113.	18.0	105
41	Electrocatalytic Water Splitting: From Harsh and Mild Conditions to Natural Seawater. Small, 2022, 18, e2105830.	10.0	103
42	Biochemistry-Enabled 3D Foams for Ultrafast Battery Cathodes. ACS Nano, 2015, 9, 4628-4635.	14.6	102
43	Conversionâ€Alloying Anode Materials for Sodium Ion Batteries. Small, 2021, 17, e2101137.	10.0	102
44	Electrostatic Spray Deposition of Porous SnO ₂ /Graphene Anode Films and Their Enhanced Lithium-Storage Properties. ACS Applied Materials & Interfaces, 2012, 4, 6216-6220.	8.0	100
45	High performance proton-conducting solid oxide fuel cells with a stable Sm0.5Sr0.5Co3â^1´â€"Ce0.8Sm0.2O2â^1´r composite cathode. Journal of Power Sources, 2010, 195, 3155-3158.	7.8	95
46	Functionalized few-layer black phosphorus with super-wettability towards enhanced reaction kinetics for rechargeable batteries. Nano Energy, 2017, 40, 576-586.	16.0	95
47	A high strength, free-standing cathode constructed by regulating graphitization and the pore structure in nitrogen-doped carbon nanofibers for flexible lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 6832-6839.	10.3	94
48	Vanadium-based nanostructure materials for secondary lithium battery applications. Nanoscale, 2015, 7, 14595-14607.	5.6	93
49	On the Durability of Iridiumâ€Based Electrocatalysts toward the Oxygen Evolution Reaction under Acid Environment. Advanced Functional Materials, 2022, 32, 2108465.	14.9	88
50	New insights into understanding the exceptional electrochemical performance of P2-type manganese-based layered oxide cathode for sodium ion batteries. Energy Storage Materials, 2018, 15, 257-265.	18.0	86
51	Electronic Structure Engineering of LiCoO ₂ toward Enhanced Oxygen Electrocatalysis. Advanced Energy Materials, 2019, 9, 1803482.	19.5	85
52	Electrochemically Inert g ₃ N ₄ Promotes Water Oxidation Catalysis. Advanced Functional Materials, 2018, 28, 1705583.	14.9	84
53	Electrochemical potassium/lithium-ion intercalation into TiSe2: Kinetics and mechanism. Energy Storage Materials, 2019, 16, 512-518.	18.0	84
54	CoSe ₂ /MoSe ₂ Heterostructures with Enriched Water Adsorption/Dissociation Sites towards Enhanced Alkaline Hydrogen Evolution Reaction. Chemistry - A European Journal, 2018, 24, 11158-11165.	3.3	82

#	Article	IF	CITATIONS
55	Hexagonal Boron Nitride as a Multifunctional Support for Engineering Efficient Electrocatalysts toward the Oxygen Reduction Reaction. Nano Letters, 2020, 20, 6807-6814.	9.1	82
56	An Easily Sintered, Chemically Stable, Barium Zirconateâ€Based Proton Conductor for Highâ€Performance Protonâ€Conducting Solid Oxide Fuel Cells. Advanced Functional Materials, 2014, 24, 5695-5702.	14.9	81
57	Synthesis and hydrogen permeation of Ni–Ba(Zr0.1Ce0.7Y0.2)O3â^îδ metal–ceramic asymmetric membranes. International Journal of Hydrogen Energy, 2011, 36, 6337-6342.	7.1	80
58	Recent progress on hybrid electrocatalysts for efficient electrochemical CO2 reduction. Nano Energy, 2021, 80, 105504.	16.0	78
59	Lattice onfined Ir Clusters on Pd Nanosheets with Charge Redistribution for the Hydrogen Oxidation Reaction under Alkaline Conditions. Advanced Materials, 2021, 33, e2105400.	21.0	76
60	From fundamentals and theories to heterostructured electrocatalyst design: An in-depth understanding of alkaline hydrogen evolution reaction. Nano Energy, 2022, 98, 107231.	16.0	76
61	Samarium and Yttrium Codoped BaCeO ₃ Proton Conductor with Improved Sinterability and Higher Electrical Conductivity. ACS Applied Materials & Interfaces, 2014, 6, 5175-5182.	8.0	75
62	Epitaxial growth of Ni(OH) ₂ nanoclusters on MoS ₂ nanosheets for enhanced alkaline hydrogen evolution reaction. Nanoscale, 2018, 10, 19074-19081.	5.6	74
63	Manipulating the Coordination Chemistry of RuN(O)C Moieties for Fast Alkaline Hydrogen Evolution Kinetics. Advanced Functional Materials, 2021, 31, 2100698.	14.9	74
64	A novel electronic current-blocked stable mixed ionic conductor for solid oxide fuel cells. Journal of Power Sources, 2011, 196, 62-68.	7.8	73
65	2020 Roadmap on gas-involved photo- and electro- catalysis. Chinese Chemical Letters, 2019, 30, 2089-2109.	9.0	71
66	Carbon Necklace Incorporated Electroactive Reservoir Constructing Flexible Papers for Advanced Lithium–Ion Batteries. Small, 2018, 14, 1702770.	10.0	70
67	Spatially-confined lithiation–delithiation in highly dense nanocomposite anodes towards advanced lithium-ion batteries. Energy and Environmental Science, 2015, 8, 1471-1479.	30.8	69
68	Synthesis and characterization of BaZr0.3Ce0.5Y0.2â^'xYbxO3â^'δ proton conductor for solid oxide fuel cells. Journal of Power Sources, 2014, 245, 953-957.	7.8	66
69	Nickel single atom-decorated carbon nanosheets as multifunctional electrocatalyst supports toward efficient alkaline hydrogen evolution. Nano Energy, 2021, 83, 105850.	16.0	66
70	In-situ formed Ce0.8Sm0.2O2â^î^@Ba(Ce, Zr)1â^'x(Sm, Y)xO3â^î^ core/shell electron-blocking layer towards Ce0.8Sm0.2O2â^î^-based solid oxide fuel cells with high open circuit voltages. Nano Energy, 2014, 8, 305-311.	16.0	63
71	Boosting electrochemical water oxidation: the merits of heterostructured electrocatalysts. Journal of Materials Chemistry A, 2020, 8, 6393-6405.	10.3	63
72	Structural Engineering in Graphiteâ€Based Metalâ€Ion Batteries. Advanced Functional Materials, 2022, 32, 2107277.	14.9	59

#	Article	IF	CITATIONS
73	CO ₂ -Resistant Hydrogen Permeation Membranes Based on Doped Ceria and Nickel. Journal of Physical Chemistry C, 2010, 114, 10986-10991.	3.1	58
74	Electrocatalytically inactive SnS2 promotes water adsorption/dissociation on molybdenum dichalcogenides for accelerated alkaline hydrogen evolution. Nano Energy, 2019, 64, 103918.	16.0	58
75	Chemically stable and easily sintered high-temperature proton conductor BaZr0.8In0.2O3â^î^ for solid oxide fuel cells. Journal of Power Sources, 2013, 229, 95-101.	7.8	57
76	Gradient substitution: an intrinsic strategy towards high performance sodium storage in Prussian blue-based cathodes. Journal of Materials Chemistry A, 2018, 6, 8947-8954.	10.3	55
77	Effect of Sm-doping on the hydrogen permeation of Ni–La2Ce2O7 mixed protonic–electronic conductor. International Journal of Hydrogen Energy, 2010, 35, 4508-4511.	7.1	54
78	Nonâ€Platinum Group Metal Electrocatalysts toward Efficient Hydrogen Oxidation Reaction. Advanced Functional Materials, 2021, 31, 2010633.	14.9	54
79	Fabrication and characterization of easily sintered and stable anode-supported proton-conducting membranes. Journal of Membrane Science, 2009, 336, 1-6.	8.2	53
80	A high performance BaZr0.1Ce0.7Y0.2O3-δ-based solid oxide fuel cell with a cobalt-free Ba0.5Sr0.5FeO3-δ–Ce0.8Sm0.2O2-δ composite cathode. International Journal of Hydrogen Energy, 2010, 35, 7925-7929.	7.1	53
81	A Novel Cobalt-Free, CO ₂ -Stable, and Reduction-Tolerant Dual-Phase Oxygen-Permeable Membrane. ACS Applied Materials & Interfaces, 2013, 5, 11038-11043.	8.0	53
82	Investigation on Proton Conductivity of La ₂ Ce ₂ O ₇ in Wet Atmosphere: Dependence on Water Vapor Partial Pressure. Fuel Cells, 2012, 12, 457-463.	2.4	49
83	Biochemistry-derived porous carbon-encapsulated metal oxide nanocrystals for enhanced sodium storage. Nano Energy, 2016, 21, 71-79.	16.0	49
84	High-performance Ni–BaZr0.1Ce0.7Y0.1Yb0.1O3â^'δ (BZCYYb) membranes for hydrogen separation. International Journal of Hydrogen Energy, 2013, 38, 14743-14749.	7.1	48
85	Cost-Effective Vertical Carbon Nanosheets/Iron-Based Composites as Efficient Electrocatalysts for Water Splitting Reaction. Chemistry of Materials, 2018, 30, 4762-4769.	6.7	48
86	Energetic Aqueous Batteries. Advanced Energy Materials, 2022, 12, .	19.5	48
87	Proton-Blocking Composite Cathode for Proton-Conducting Solid Oxide Fuel Cell. Journal of the Electrochemical Society, 2011, 158, B1432.	2.9	46
88	A small change in the local atomic environment for a big improvement in single-atom catalysis. Journal of Materials Chemistry A, 2021, 9, 4184-4192.	10.3	44
89	Singleâ€Atom Electrocatalysts for Multiâ€Electron Reduction of CO ₂ . Small, 2021, 17, e2101443.	10.0	44
90	A Unique Nanoflake‣hape Bimetallic Ti–Nb Oxide of Superior Catalytic Effect for Hydrogen Storage of MgH ₂ . Small, 2022, 18, e2107013.	10.0	44

#	Article	IF	CITATIONS
91	Bilayered BaZr0.1Ce0.7Y0.2O3-Î′ Ce0.8Sm0.2O2-δ electrolyte membranes for solid oxide fuel cells with high open circuit voltages. Journal of Membrane Science, 2015, 476, 394-398.	8.2	43
92	Heteroatomâ€doped MoSe ₂ Nanosheets with Enhanced Hydrogen Evolution Kinetics for Alkaline Water Splitting. Chemistry - an Asian Journal, 2019, 14, 301-306.	3.3	41
93	A novel ceria-based solid oxide fuel cell free from internal short circuit. Journal of Power Sources, 2012, 217, 114-119.	7.8	40
94	Pollen-inspired synthesis of porous and hollow NiO elliptical microstructures assembled from nanosheets for high-performance electrochemical energy storage. Chemical Engineering Journal, 2017, 321, 546-553.	12.7	40
95	Readily Exfoliated TiSe ₂ Nanosheets for Highâ€Performance Sodium Storage. Chemistry - A European Journal, 2018, 24, 1193-1197.	3.3	40
96	Sulfur Doping Triggering Enhanced Pt–N Coordination in Graphitic Carbon Nitride-Supported Pt Electrocatalysts toward Efficient Oxygen Reduction Reaction. ACS Catalysis, 2022, 12, 7406-7414.	11.2	40
97	Cost-effective utilization of mineral-based raw materials for preparation of porous mullite ceramic membranes via in-situ reaction method. Applied Clay Science, 2016, 120, 135-141.	5.2	39
98	Phosphoreneâ€Based Electrocatalysts. Chemistry - A European Journal, 2020, 26, 6437-6446.	3.3	39
99	Optimization of BaZr0.1Ce0.7Y0.2O3â~`δ-based proton-conducting solid oxide fuel cells with a cobalt-free proton-blocking La0.7Sr0.3FeO3â~`δ–Ce0.8Sm0.2O2â~`δ composite cathode. International Journal of Hydrogen Energy, 2011, 36, 9956-9966.	7.1	38
100	Ironâ€Doped Nickel Molybdate with Enhanced Oxygen Evolution Kinetics. Chemistry - A European Journal, 2019, 25, 280-284.	3.3	38
101	Homogeneous Na Deposition Enabling Highâ€Energy Naâ€Metal Batteries. Advanced Functional Materials, 2022, 32, 2110280.	14.9	38
102	A mixed electronic and protonic conducting hydrogen separation membrane with asymmetric structure. International Journal of Hydrogen Energy, 2012, 37, 12708-12713.	7.1	37
103	Engineering additional edge sites on molybdenum dichalcogenides toward accelerated alkaline hydrogen evolution kinetics. Nanoscale, 2019, 11, 717-724.	5.6	37
104	Fabrication and characterization of anode-supported dense BaZr0.8Y0.2O3â^´Î´ electrolyte membranes by a dip-coating process. Materials Letters, 2012, 73, 198-201.	2.6	36
105	A mixed-conducting BaPr0.8In0.2O3â~îî cathode for proton-conducting solid oxide fuel cells. Electrochemistry Communications, 2013, 27, 19-21.	4.7	36
106	New Insights into the Effects of Zr Substitution and Carbon Additive on Li _{3–<i>x</i>} Er _{1–<i>x</i>} Zr _{<i>x</i>} Cl ₆ Halide Solid Electrolytes. ACS Applied Materials & Interfaces, 2022, 14, 8095-8105.	8.0	36
107	Inhibitory KIR and specific HLA-C gene combinations confer susceptibility to or protection against chronic hepatitis B. Clinical Immunology, 2010, 137, 139-146.	3.2	35
108	Enhanced Reaction Kinetics and Structure Integrity of Ni/SnO ₂ Nanocluster toward High-Performance Lithium Storage. ACS Applied Materials & Interfaces, 2015, 7, 26367-26373.	8.0	35

#	Article	IF	CITATIONS
109	Proton-conducting solid oxide fuel cells with yttrium-doped barium zirconate electrolyte films sintered at reduced temperatures. Journal of Alloys and Compounds, 2016, 658, 716-720.	5.5	35
110	A cathode-supported SOFC with thin Ce0.8Sm0.2O1.9 electrolyte prepared by a suspension spray. Journal of Alloys and Compounds, 2008, 465, 285-290.	5.5	33
111	Proton-conducting solid oxide fuel cells prepared by a single step co-firing process. Journal of Power Sources, 2009, 191, 428-432.	7.8	33
112	Homogeneous Sulfur–Cobalt Sulfide Nanocomposites as Lithium–Sulfur Battery Cathodes with Enhanced Reaction Kinetics. ACS Applied Energy Materials, 2018, 1, 167-172.	5.1	32
113	Evaluation of BaZr0.1Ce0.7Y0.2O3â^î-based proton-conducting solid oxide fuel cells fabricated by a one-step co-firing process. Electrochimica Acta, 2011, 56, 1447-1454.	5.2	31
114	Atomic-Level Modulation of the Interface Chemistry of Platinum–Nickel Oxide toward Enhanced Hydrogen Electrocatalysis Kinetics. Nano Letters, 2021, 21, 4845-4852.	9.1	31
115	Platinum/Nickel Bicarbonate Heterostructures towards Accelerated Hydrogen Evolution under Alkaline Conditions. Angewandte Chemie, 2019, 131, 5486-5491.	2.0	30
116	Influence of fabrication process of Ni–BaCe0.7Zr0.1Y0.2O3â^îî′ cermet on the hydrogen permeation performance. Journal of Alloys and Compounds, 2010, 508, L5-L8.	5.5	29
117	Twoâ€Dimensional Cobaltâ€∤Nickelâ€Based Oxide Nanosheets for Highâ€Performance Sodium and Lithium Storage. Chemistry - A European Journal, 2016, 22, 18060-18065.	3.3	28
118	Interlayer-Expanded Metal Sulfides on Graphene Triggered by a Molecularly Self-Promoting Process for Enhanced Lithium Ion Storage. ACS Applied Materials & Interfaces, 2017, 9, 40317-40323.	8.0	28
119	Intercalation Pseudocapacitance Boosting Ultrafast Sodium Storage in Prussian Blue Analogs. ChemSusChem, 2019, 12, 2415-2420.	6.8	28
120	A Novel Perovskite Electron–Ion Conductive Coating to Simultaneously Enhance Cycling Stability and Rate Capability of Li _{1.2} Ni _{0.13} Co _{0.13} Mn _{0.54} O ₂ Cathode Material for Lithiumâ€ion Batteries. Small, 2021, 17, e2008132.	10.0	28
121	Layer structured materials for ambient nitrogen fixation. Coordination Chemistry Reviews, 2022, 460, 214468.	18.8	28
122	Zeroâ€Strain Structure for Efficient Potassium Storage: Nitrogenâ€Enriched Carbon Dual onfinement CoP Composite. Advanced Energy Materials, 2022, 12, 2103341.	19.5	26
123	Evaluation of hydrogen permeation properties of Ni–Ba(Zr0.7Pr0.1Y0.2)O3â^'δ cermet membranes. International Journal of Hydrogen Energy, 2014, 39, 11683-11689.	7.1	25
124	Chemically stable BaZr0.7Pr0.1Y0.2O3-δ-BaCe0.8Y0.2O3-δ bilayer electrolyte for intermediate temperature solid oxide fuel cells. Electrochimica Acta, 2015, 151, 497-501.	5.2	25
125	A Novel Tin-Bonded Silicon Anode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 45578-45588.	8.0	25
126	Hybrid Design of Bulkâ€Na Metal Anode to Minimize Cycleâ€Induced Interface Deterioration of Solid Na Metal Battery. Advanced Energy Materials, 2022, 12, .	19.5	25

#	Article	IF	CITATIONS
127	Supported Subâ€Nanometer Clusters for Electrocatalysis Applications. Advanced Functional Materials, 2022, 32, .	14.9	25
128	A high stability Ni–La 0.5 Ce 0.5 O 2â~Îŕ asymmetrical metal-ceramic membrane for hydrogen separation and generation. Journal of Power Sources, 2015, 281, 417-424.	7.8	24
129	Barium- and Strontium-Containing Anode Materials toward Ceria-Based Solid Oxide Fuel Cells with High Open Circuit Voltages. ACS Applied Energy Materials, 2018, 1, 3521-3528.	5.1	24
130	2D Metalâ€Free Nanomaterials Beyond Graphene and Its Analogues toward Electrocatalysis Applications. Advanced Energy Materials, 2021, 11, 2101202.	19.5	24
131	Reversible Magnesium Metal Anode Enabled by Cooperative Solvation/Surface Engineering in Carbonate Electrolytes. Nano-Micro Letters, 2021, 13, 195.	27.0	24
132	A Redox Couple Strategy Enables Longâ€Cycling Li―and Mnâ€Rich Layered Oxide Cathodes by Suppressing Oxygen Release. Advanced Materials, 2022, 34, e2108543.	21.0	24
133	Enriched <i>d</i> â€Band Holes Enabling Fast Oxygen Evolution Kinetics on Atomic‣ayered Defectâ€Rich Lithium Cobalt Oxide Nanosheets. Advanced Functional Materials, 2022, 32, .	14.9	24
134	Stable BaCe0.5Zr0.3Y0.16Zn0.04O3â^î^ thin membrane prepared by in situ tape casting for proton-conducting solid oxide fuel cells. Journal of Power Sources, 2009, 188, 343-346.	7.8	23
135	A cobalt-free composite cathode prepared by a superior method for intermediate temperature solid oxide fuel cells. Journal of Power Sources, 2012, 217, 431-436.	7.8	23
136	Tuning the Thickness of Ba-Containing "Functional―Layer toward High-Performance Ceria-Based Solid Oxide Fuel Cells. ACS Applied Materials & Interfaces, 2016, 8, 10835-10840.	8.0	23
137	Conversion of uniform graphene oxide/polypyrrole composites into functionalized 3D carbon nanosheet frameworks with superior supercapacitive and sodium-ion storage properties. Journal of Power Sources, 2016, 307, 17-24.	7.8	23
138	Ion Hopping: Design Principles for Strategies to Improve Ionic Conductivity for Inorganic Solid Electrolytes. Small, 2022, 18, e2107064.	10.0	23
139	Cobalt Single Atoms Enabling Efficient Methanol Oxidation Reaction on Platinum Anchored on Nitrogenâ€Doped Carbon. Small, 2022, 18, e2107067.	10.0	23
140	Fabrication and performance of BaCe0.8Y0.2O3â^îr–BaZr0.8Y0.2O3â^îŕ bilayer electrolyte for anode-supported solid oxide fuel cells. Journal of Power Sources, 2014, 249, 131-136.	7.8	22
141	Fast-pulverization enabled simultaneous enhancement on cycling stability and rate capability of C@NiFe2O4 hierarchical fibrous bundle. Journal of Power Sources, 2017, 363, 209-217.	7.8	22
142	A novel cobalt-free CO2-stable perovskite-type oxygen permeable membrane. Journal of Membrane Science, 2019, 573, 504-510.	8.2	22
143	A Unique Structural Highly Compacted Binderâ€Free Siliconâ€Based Anode with High Electronic Conductivity for Highâ€Performance Lithiumâ€Ion Batteries. Small Structures, 2022, 3, 2100174.	12.0	22
144	Ce0.8Sm0.2O1.9 decorated with electron-blocking acceptor-doped BaCeO3 as electrolyte for low-temperature solid oxide fuel cells. Electrochimica Acta, 2017, 228, 226-232.	5.2	21

#	Article	IF	CITATIONS
145	Considerable Hydrogen Permeation Behavior through a Dense Ce _{0.8} Sm _{0.2} O ₂₋ _Î (SDC) Asymmetric Thick Film. Journal of the Electrochemical Society, 2013, 160, F585-F590.	2.9	20
146	A new in situ strategy to eliminate partial internal short circuit in Ce _{0.8} Sm _{0.2} 1.9-based solid oxide fuel cells. Journal of Materials Chemistry A, 2017, 5, 12873-12878.	10.3	20
147	Unusual enhancement in electrical conductivity of tin oxide thin films with zinc doping. Physical Chemistry Chemical Physics, 2011, 13, 5760.	2.8	18
148	Enhanced Hydrogen Storage Performance of MgH2 by the Catalysis of a Novel Intersected Y2O3/NiO Hybrid. Processes, 2021, 9, 892.	2.8	18
149	Threeâ€Inâ€One Alkylamineâ€Tuned MoO <i>_x</i> for Labâ€Scale to Realâ€Life Aqueous Supercapacitors. Advanced Functional Materials, 2022, 32, .	14.9	18
150	Understanding the structural and chemical evolution of layered potassium titanates for sodium ion batteries. Energy Storage Materials, 2020, 25, 502-509.	18.0	17
151	Multifunctional Activeâ€Centerâ€Transferable Platinum/Lithium Cobalt Oxide Heterostructured Electrocatalysts towards Superior Water Splitting. Angewandte Chemie, 2020, 132, 14641-14648.	2.0	17
152	Structure Engineering of Vanadium Tetrasulfides for High apacity and Highâ€Rate Sodium Storage. Small, 2022, 18, e2107058.	10.0	17
153	Fabrication of BaZr _{0.1} Ce _{0.7} Y _{0.2} O _{3 – δ} â€Ba Protonâ€Conducting Solid Oxide Fuel Cells Coâ€Fired at 1,150 °C. Fuel Cells, 2010, 10, 1108-1113.	ased 2.4	16
154	Nickelâ€Based Bicarbonates as Bifunctional Catalysts for Oxygen Evolution and Reduction Reaction in Alkaline Media. Chemistry - A European Journal, 2018, 24, 17665-17671.	3.3	15
155	Lowâ€Coordinate Iridium Oxide Confined on Graphitic Carbon Nitride for Highly Efficient Oxygen Evolution. Angewandte Chemie, 2019, 131, 12670-12674.	2.0	15
156	Highly active Sm0.2Ce0.8O1.9 powders of very low apparent density derived from mixed cerium sources. Journal of Power Sources, 2013, 229, 277-284.	7.8	14
157	Strategies of engineering 2D nanomaterial-based electrocatalysts toward hydrogen evolution reaction. Materials for Renewable and Sustainable Energy, 2020, 9, 1.	3.6	14
158	A nanoconfined-LiBH4 system using a unique multifunctional porous scaffold of carbon wrapped ultrafine Fe3O4 skeleton for reversible hydrogen storage with high capacity. Chemical Engineering Journal, 2022, 428, 131056.	12.7	14
159	Ruâ€Co Pair Sites Catalyst Boosts the Energetics for Oxygen Evolution Reaction. Angewandte Chemie, 0, , .	2.0	12
160	Engineering of Crosslinked Network and Functional Interlayer to Boost Cathode Performance of Tannin for Potassium Metal Batteries. Advanced Functional Materials, 2022, 32, .	14.9	11
161	Electrostatic Spray Assembly of Nanostructured La[sub 0.7]Ca[sub 0.3]CrO[sub 3â~î] Films. Journal of the Electrochemical Society, 2007, 154, E107.	2.9	10
162	Multifunctional Surface Construction for Longâ€Term Cycling Stability of Liâ€Rich Mnâ€Based Layered Oxide Cathode for Liâ€Ion Batteries. Small, 2022, 18, .	10.0	10

#	Article	IF	CITATIONS
163	The impact of sodium aescinate on acute lung injury induced by oleic acid in rats. Experimental Lung Research, 2011, 37, 585-599.	1.2	9
164	Crystal structure, electrical conductivity and sintering of Ba0.5Sr0.5ZnxFe1â^'xO3â^´Î´. Journal of Alloys and Compounds, 2009, 485, 872-875.	5.5	8
165	Synergy of Bi ₂ O ₃ and RuO ₂ Nanocatalysts for Lowâ€Overpotential and Wide pHâ€Window Electrochemical Ammonia Synthesis. Chemistry - A European Journal, 2021, 27, 17395-17401.	3.3	8
166	Objective assessment of health or pre-chronic disease state based on a health test index derived from routinely measured clinical laboratory parameters. Journal of Translational Medicine, 2015, 13, 127.	4.4	7
167	sp-Hybridized Nitrogen Enhances Oxygen Reduction Reaction Kinetics. CheM, 2018, 4, 2024-2026.	11.7	7
168	Synthesis of SmBaCo2O6â~δ powder by the combustion process using Co3O4 as precursor. Journal of Alloys and Compounds, 2009, 481, L40-L42.	5.5	6
169	Application of nBu2Sn(acac)2 for the deposition of nanocrystallite SnO2 films: Nucleation, growth and physical properties. Journal of Alloys and Compounds, 2011, 509, 7798-7802.	5.5	6
170	Hydrogen oxidation at the Pt–BaZr0.1Ce0.7Y0.1Yb0.1O3â^'δ (BZCYYb) interface. Physical Chemistry Chemical Physics, 2013, 15, 3820.	2.8	6
171	The synthesis of black phosphorus: from zero- to three-dimensional nanostructures. JPhys Energy, 2021, 3, 032007.	5.3	6
172	Catalyzed LiBH ₄ Hydrogen Storage System with <i>In Situ</i> Introduced Li ₃ BO ₃ and V for Enhanced Dehydrogenation and Hydrogenation Kinetics as Well as High Cycling Stability. ACS Applied Energy Materials, 2022, 5, 1226-1234.	5.1	6
173	Toward enhanced alkaline hydrogen electrocatalysis with transition metal-functionalized nitrogen-doped carbon supports. Chinese Journal of Catalysis, 2022, 43, 1351-1359.	14.0	6
174	Smart Solar–Metal–Air Batteries Based on BiOCl Photocorrosion for Monolithic Solar Energy Conversion and Storage. Small, 2022, 18, e2105668.	10.0	5
175	Pulseâ€potential electrochemistry to boost realâ€life application of pseudocapacitive dualâ€doped polypyrrole. SmartMat, 2022, 3, 644-656.	10.7	4
176	Fabrication and Electrochemical Characterization of Anodeâ€Supported Microtubular Solid Oxide Fuel Cells Based on <scp>Ce</scp> _{0.8} <scp>Sm</scp> _{0.2} <scp>O</scp> _{2â€ŕ} Electrolytes. International Journal of Applied Ceramic Technology, 2012, 9, 1064-1070.	2.1	3
177	Energy Storage: Oneâ€Pot Synthesis of Tunable Crystalline Ni ₃ S ₄ @Amorphous MoS ₂ Core/Shell Nanospheres for Highâ€Performance Supercapacitors (Small 30/2015). Small, 2015, 11, 3720-3720.	10.0	3
178	Evaluation of Aging and Health Status in Real Time Based on Routine Urinalysis Using an Automated Urine Analyzer. Clinical Laboratory, 2015, 61, 1883-7.	0.5	3
179	Coâ€Generation of Electric Power and Carbon Nanotubes from Dimethyl Ether (DME). Fuel Cells, 2014, 14, 561-565.	2.4	2
180	Microemulsionâ€Assisted Synthesis of Nanosized LïMnO Spinel Cathodes for Highâ€Rate Lithiumâ€Ion Batteries. ChemPlusChem, 2014, 79, 1794-1798.	2.8	1

#	Article	IF	CITATIONS
181	Interface Chemistry Special Collection. Chemistry - an Asian Journal, 2020, 15, 3582-3583.	3.3	0
182	Frontispiece: Phosphoreneâ€Based Electrocatalysts. Chemistry - A European Journal, 2020, 26, .	3.3	0