Antonino Pollio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8626144/publications.pdf

Version: 2024-02-01

81 papers 3,869 citations

30 h-index 60 g-index

82 all docs 82 docs citations 82 times ranked 5140 citing authors

#	Article	IF	CITATIONS
1	Phenanthrene Dimers: Promising Source of Biologically Active Molecules. Current Topics in Medicinal Chemistry, 2022, 22, 939-956.	2.1	4
2	Acid Tolerant and Acidophilic Microalgae: An Underexplored World of Biotechnological Opportunities. Frontiers in Microbiology, 2022, 13, 820907.	3.5	13
3	A Glimpse at Siderophores Production by Anabaena flos-aquae UTEX 1444. Marine Drugs, 2022, 20, 256.	4.6	5
4	Neochloris oleoabundans from nature to industry: a comprehensive review. Reviews in Environmental Science and Biotechnology, 2021, 20, 943-958.	8.1	3
5	Switchable Solvent Selective Extraction of Hydrophobic Antioxidants from <i>Synechococcus bigranulatus</i> . ACS Sustainable Chemistry and Engineering, 2021, 9, 13798-13806.	6.7	4
6	A Review of Microalgal Biofilm Technologies: Definition, Applications, Settings and Analysis. Frontiers in Chemical Engineering, 2021, 3, .	2.7	28
7	Thermo resistant antioxidants from photoautotrophic microorganisms: screening and characterization. World Journal of Microbiology and Biotechnology, 2021, 37, 215.	3.6	1
8	Microalgae Cultivation Systems. , 2020, , 11-29.		24
9	Green Compressed Fluid Technologies To Extract Antioxidants and Lipids from <i>Galdieria phlegrea</i> in a Biorefinery Approach. ACS Sustainable Chemistry and Engineering, 2020, 8, 2939-2947.	6.7	20
10	Cyanobacteria and Microalgae as Sources of Functional Foods to Improve Human General and Oral Health. Molecules, 2020, 25, 5164.	3.8	24
11	Early colonization stages of fabric carriers by two Chlorella strains. Journal of Applied Phycology, 2020, 32, 3631-3644.	2.8	6
12	Autotrophic and Heterotrophic Growth Conditions Modify Biomolecole Production in the Microalga Galdieria sulphuraria (Cyanidiophyceae, Rhodophyta). Marine Drugs, 2020, 18, 169.	4.6	18
13	Industrial Production of Poly-β-hydroxybutyrate from CO2: Can Cyanobacteria Meet this Challenge?. Processes, 2020, 8, 323.	2.8	48
14	Biomass and phycobiliprotein production of Galdieria sulphuraria, immobilized on a twin-layer porous substrate photobioreactor. Applied Microbiology and Biotechnology, 2020, 104, 3109-3119.	3.6	16
15	A thermophilic C-phycocyanin with unprecedented biophysical and biochemical properties. International Journal of Biological Macromolecules, 2020, 150, 38-51.	7.5	21
16	Comparison of Galdieria growth and photosynthetic activity in different culture systems. AMB Express, 2020, 10, 170.	3.0	8
17	The Bactericidal Activity of Protein Extracts from Loranthus europaeus Berries: A Natural Resource of Bioactive Compounds. Antibiotics, 2020, 9, 47.	3.7	10
18	A cascade extraction of active phycocyanin and fatty acids from Galdieria phlegrea. Applied Microbiology and Biotechnology, 2019, 103, 9455-9464.	3.6	18

#	Article	IF	CITATIONS
19	Cyanidium chilense (Cyanidiophyceae, Rhodophyta) from tuff rocks of the archeological site of Cuma, Italy. Phycological Research, 2019, 67, 311-319.	1.6	8
20	Optimisation of artemisinin and scopoletin extraction from Artemisia annua with a new modern pressurised cyclic solid–liquid (PCSL) extraction technique. Phytochemical Analysis, 2019, 30, 564-571.	2.4	9
21	Investigation of architecture development and phosphate distribution in <i>Chlorella</i> biofilm by complementary microscopy techniques. FEMS Microbiology Ecology, 2019, 95, .	2.7	10
22	Distribution of Toxigenic Halomicronema spp. in Adjacent Environments on the Island of Ischia: Comparison of Strains from Thermal Waters and Free Living in Posidonia Oceanica Meadows. Toxins, 2019, 11, 99.	3.4	7
23	Alien domains shaped the modular structure of plant NLR proteins. Genome Biology and Evolution, 2019, 11, 3466-3477.	2.5	21
24	Nutrient removal efficiency of green algal strains at high phosphate concentrations. Water Science and Technology, 2019, 80, 1832-1843.	2.5	10
25	Current Bottlenecks and Challenges of the Microalgal Biorefinery. Trends in Biotechnology, 2019, 37, 242-252.	9.3	174
26	LIGHT INTENSITIES MAXIMIZING PHOTOSYNTHESIS AND KINETICS OF PHOTOCHEMICAL STEPS IN Graesiella emersonii UNDER DIFFERENT CULTIVATION STRATEGIES. Environmental Engineering and Management Journal, 2019, 18, 1519-1526.	0.6	2
27	Poly-Î ² -hydroxybutyrate (PHB) production by Synechocystis PCC6803 from CO2: Model development. Algal Research, 2018, 29, 49-60.	4.6	37
28	Different characteristics of C-phycocyanin (C-PC) in two strains of the extremophilic Galdieria phlegrea. Algal Research, 2018, 31, 406-412.	4.6	36
29	Identification of an industrial microalgal strain for starch production in biorefinery context: The effect of nitrogen and carbon concentration on starch accumulation. New Biotechnology, 2018, 41, 46-54.	4.4	51
30	Nutrient removal from high strength nitrate containing industrial wastewater using Chlorella sp. strain ACUF_802. Annals of Microbiology, 2018, 68, 899-913.	2.6	11
31	First evidence of Halomicronema metazoicum (Cyanobacteria) free-living on Posidonia oceanica leaves. PLoS ONE, 2018, 13, e0204954.	2.5	8
32	Cryptic dispersal of Cyanidiophytina (Rhodophyta) in non-acidic environments from Turkey. Extremophiles, 2018, 22, 713-723.	2.3	20
33	New ultra-flat photobioreactor for intensive microalgal production: The effect of light irradiance. Algal Research, 2018, 34, 134-142.	4.6	24
34	Genetic engineering of Synechocystis sp. PCC6803 for poly-β-hydroxybutyrate overproduction. Algal Research, 2017, 25, 117-127.	4.6	68
35	Growth and biomass productivity of Scenedesmus vacuolatus on a twin layer system and a comparison with other types of cultivations. Applied Microbiology and Biotechnology, 2017, 101, 8321-8329.	3.6	16
36	Autotrophic starch production by Chlamydomonas species. Journal of Applied Phycology, 2017, 29, 105-114.	2.8	18

3

#	Article	IF	CITATIONS
37	Polyphenolic Profile and Targeted Bioactivity of Methanolic Extracts from Mediterranean Ethnomedicinal Plants on Human Cancer Cell Lines. Molecules, 2016, 21, 395.	3.8	25
38	Is Stevia rebaudiana Bertoni a Non Cariogenic Sweetener? A Review. Molecules, 2016, 21, 38.	3.8	74
39	Impact of Sulfur Starvation in Autotrophic and Heterotrophic Cultures of the Extremophilic Microalga <i>Galdieria phlegrea</i> (Cyanidiophyceae). Plant and Cell Physiology, 2016, 57, 1890-1898.	3.1	29
40	The Name of <i>Cannabis </i> : A Short Guide for Nonbotanists. Cannabis and Cannabinoid Research, 2016, 1, 234-238.	2.9	59
41	Weathering of a Roman Mosaic—A Biological and Quantitative Study on In Vitro Colonization of Calcareous Tesserae by Phototrophic Microorganisms. PLoS ONE, 2016, 11, e0164487.	2.5	11
42	Determination of the <i>In Vitro</i> and <i>In Vivo</i> Antimicrobial Activity on Salivary Streptococci and Lactobacilli and Chemical Characterisation of the Phenolic Content of a <i>Plantago lanceolata</i> Infusion. BioMed Research International, 2015, 2015, 1-8.	1.9	39
43	Dietary Supplementation with the Microalga <i>Galdieria sulphuraria</i> (Rhodophyta) Reduces Prolonged Exercise-Induced Oxidative Stress in Rat Tissues. Oxidative Medicine and Cellular Longevity, 2015, 1-11.	4.0	29
44	Kinetic characterization of the photosynthetic reaction centres in microalgae by means of fluorescence methodology. Journal of Biotechnology, 2015, 212, 1-10.	3.8	8
45	Cyanidiophyceae in Iceland: plastid <i>rbc</i> L gene elucidates origin and dispersal of extremophilic <i>Galdieria sulphuraria</i> and <i>Galdieria</i> (Galdieriaceae, Rhodophyta). Phycologia, 2014, 53, 542-551.	1.4	35
46	Microalgae as human food: chemical and nutritional characteristics of the thermo-acidophilic microalga Galdieria sulphuraria. Food and Function, 2013, 4, 144-152.	4.6	120
47	Effects of photobioreactors design and operating conditions on Stichococcus bacillaris biomass and biodiesel production. Biochemical Engineering Journal, 2013, 74, 8-14.	3.6	31
48	Screening and Scoring of Antimicrobial and Biological Activities of Italian Vulnerary Plants against Major Oral Pathogenic Bacteria. Evidence-based Complementary and Alternative Medicine, 2013, 2013, 1-10.	1.2	31
49	A survey of the algal flora of anthropogenic caves of Campi Flegrei (Naples, Italy) archeological district. Journal of Cave and Karst Studies, 2012, 74, 243-250.	0.6	43
50	Plant Polyphenols and Their Anti-Cariogenic Properties: A Review. Molecules, 2011, 16, 1486-1507.	3.8	244
51	Oxidation of 2,4-dichlorophenol and 3,4-dichlorophenol by means of Fe(III)-homogeneous photocatalysis and algal toxicity assessment of the treated solutions. Water Research, 2011, 45, 2038-2048.	11.3	46
52	Engineered tobacco and microalgae secreting the fungal laccase POXA1b reduce phenol content in olive oil mill wastewater. Enzyme and Microbial Technology, 2011, 49, 540-546.	3.2	34
53	Fatty Acids Released by Chlorella vulgaris and Their Role in Interference with Pseudokirchneriella subcapitata: Experiments and Modelling. Journal of Chemical Ecology, 2010, 36, 339-349.	1.8	69
54	Anti-cariogenic effects of polyphenols from plant stimulant beverages (cocoa, coffee, tea). FĬtoterapĬĢ, 2009, 80, 255-262.	2.2	160

#	Article	IF	Citations
55	Extending the temporal context of ethnobotanical databases: the case study of the Campania region (southern Italy). Journal of Ethnobiology and Ethnomedicine, 2009, 5, 7.	2.6	28
56	Effect of combined physico-chemical processes on the phytotoxicity of olive mill wastewaters. Water Research, 2008, 42, 1684-1692.	11.3	51
57	Plants species in the folk medicine of Montecorvino Rovella (inland Campania, Italy). Journal of Ethnopharmacology, 2007, 109, 295-303.	4.1	95
58	Species Composition of Cyanidiales Assemblages in Pisciarelli (Campi Flegrei, Italy) and Description of Galdieria Phlegrea SP. NOV. Cellular Origin and Life in Extreme Habitats, 2007, , 487-502.	0.3	27
59	Lincomycin solar photodegradation, algal toxicity and removal from wastewaters by means of ozonation. Water Research, 2006, 40, 630-638.	11.3	144
60	Application of methods for assessing the geno- and cytotoxicity of Triclosan to C. ehrenbergii. Journal of Hazardous Materials, 2005, 122, 227-232.	12.4	73
61	Chlamydomonas pitschmannii Ettl, a Little Known Species from Thermoacidic Environments. Protist, 2005, 156, 287-302.	1.5	32
62	Hidden biodiversity of the extremophilic Cyanidiales red algae. Molecular Ecology, 2004, 13, 1827-1838.	3.9	167
63	The diuretic use of Scilla from Dioscorides to the end of the 18th century. Journal of Nephrology, 2004, 17, 342-7.	2.0	7
64	Biotransformation of sinapic acid by the green algae Stichococcus bacillaris 155LTAP and Ankistrodesmus braunii C202.7a. Tetrahedron Letters, 2003, 44, 2779-2780.	1.4	21
65	Ecotoxicological impact of pharmaceuticals found in treated wastewaters: study of carbamazepine, clofibric acid, and diclofenac. Ecotoxicology and Environmental Safety, 2003, 55, 359-370.	6.0	663
66	Carbamazepine in water: persistence in the environment, ozonation treatment and preliminary assessment on algal toxicity. Water Research, 2002, 36, 2869-2877.	11.3	259
67	Phylogenetic relationships and taxonomic position of Chlorella-like isolates from low pH environments (pH < 3.0). BMC Evolutionary Biology, 2002, 2, 13.	3.2	48
68	N-methyl-p-aminophenol (metol) ozonation in aqueous solution: kinetics, mechanism and toxicological characterization of ozonized samples. Water Research, 2000, 34, 4419-4429.	11.3	28
69	Medicinal Plants for the Treatment of Urogenital Tract Pathologies According to Dioscorides' <i>De Materia Medica</i> . American Journal of Nephrology, 1997, 17, 241-247.	3.1	15
70	Minor Bioactive Dihydrophenanthrenes from Juncus effusus. Journal of Natural Products, 1997, 60, 1265-1268.	3.0	26
71	Prednisolone biotransformation by the green alga T76 Scenedesmus quadricauda. Tetrahedron, 1997, 53, 8273-8280.	1.9	10
72	Action of antialgal compounds fromJuncus effusus L. onSelenastrum capricornutum. Journal of Chemical Ecology, 1996, 22, 587-603.	1.8	37

Antonino Pollio

#	Article	IF	CITATION
73	Bioconversion of $17\hat{1}^2$ -hydroxy- $17\hat{1}$ ±-methyl-androsta- 1 ,4-dien- 3 -one and androsta- 1 ,4-diene- 3 , 17 -dione in cultures of the green alga T76 Scenedesmus quadricauda. Tetrahedron, 1996, 52, 13981-13990.	1.9	17
74	Biotransformation of progesterone by the green alga Chlorella emersonii C211-8h. Phytochemistry, 1996, 41, 1527-1529.	2.9	16
75	Biotransformations of progesterone by Chlorella spp Phytochemistry, 1996, 42, 685-688.	2.9	21
76	Useful Plants in Renal Therapy according to Pliny the Elder. American Journal of Nephrology, 1994, 14, 399-411.	3.1	17
77	Progesterone bioconversion by microalgal cultures. Phytochemistry, 1994, 37, 1269-1272.	2.9	39
78	Effects of the potential allelochemical \hat{l}_{\pm} -asarone on growth, physiology and ultrastructure of two unicellular green algae. Journal of Applied Phycology, 1993, 5, 395-403.	2.8	29
79	Structure-activity relationships of phenylpropanoids as growth inhibitors of the green alga Selenastrum capricornutum. Phytochemistry, 1992, 31, 4119-4123.	2.9	27
80	Biotransformation of $5\hat{l}_{\pm}$ -androstane-3,17-dione by microalgal cultures. Bioorganic and Medicinal Chemistry Letters, 1991, 1, 673-674.	2.2	19
81	Allelochemical activity of phenylpropanes from Acorus gramineus. Phytochemistry, 1989, 28, 2319-2321.	2.9	50