List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/86261/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Systematic review of host genetic association with Covidâ€19 prognosis and susceptibility: What have we learned in 2020?. Reviews in Medical Virology, 2022, 32, e2283.	8.3	15
2	Identification and characterisation of SARS-CoV-2 and Human alphaherpesvirus 1 from a productive coinfection in a fatal COVID-19 case. Memorias Do Instituto Oswaldo Cruz, 2022, 116, e210176.	1.6	2
3	Seroprevalence, Prevalence, and Genomic Surveillance: Monitoring the Initial Phases of the SARS-CoV-2 Pandemic in Betim, Brazil. Frontiers in Microbiology, 2022, 13, 799713.	3.5	4
4	IFITM3, FURIN, ACE1, and TNF-α Genetic Association With COVID-19 Outcomes: Systematic Review and Meta-Analysis. Frontiers in Genetics, 2022, 13, 775246.	2.3	10
5	Delta Variant of SARS-CoV-2 Replacement in Brazil: A National Epidemiologic Surveillance Program. Viruses, 2022, 14, 847.	3.3	11
6	Blockade of interleukin seventeen (IL-17A) with secukinumab in hospitalized COVID-19 patients – the BISHOP study. Infectious Diseases, 2022, 54, 591-599.	2.8	17
7	Biosafety in Dental Health Care During the COVID-19 Pandemic: A Longitudinal Study. Frontiers in Oral Health, 2022, 3, .	3.0	6
8	Spatial and temporal fluctuations in COVID-19 fatality rates in Brazilian hospitals. Nature Medicine, 2022, 28, 1476-1485.	30.7	24
9	Plasma and memory antibody responses to Gamma SARS-CoV-2 provide limited cross-protection to other variants. Journal of Experimental Medicine, 2022, 219, .	8.5	6
10	In silico evaluation of lapachol derivatives binding to the Nsp9 of SARS-CoV-2. Journal of Biomolecular Structure and Dynamics, 2021, , 1-15.	3.5	6
11	Epidemiological dynamics of SARS-CoV-2 VOC Gamma in Rio de Janeiro, Brazil. Virus Evolution, 2021, 7, veab087.	4.9	23
12	Exome-Wide Search for Genes Associated With Central Nervous System Inflammatory Demyelinating Diseases Following CHIKV Infection: The Tip of the Iceberg. Frontiers in Genetics, 2021, 12, 639364.	2.3	8
13	Common Dysregulation of Innate Immunity Pathways in Human Primary Astrocytes Infected With Chikungunya, Mayaro, Oropouche, and Zika Viruses. Frontiers in Cellular and Infection Microbiology, 2021, 11, 641261.	3.9	7
14	Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil. Science, 2021, 372, 815-821.	12.6	1,125
15	Epidemic Spread of SARS-CoV-2 Lineage B.1.1.7 in Brazil. Viruses, 2021, 13, 984.	3.3	14
16	Whole-exome sequencing reveals insights into genetic susceptibility to Congenital Zika Syndrome. PLoS Neglected Tropical Diseases, 2021, 15, e0009507.	3.0	5
17	Clinical and magnetic resonance imaging patterns of extensive Chikungunya virus–associated myelitis. Journal of NeuroVirology, 2021, 27, 616-625.	2.1	11
18	Association between Maternal Non-Coding Interferon-λ Polymorphisms and Congenital Zika Syndrome in a Cohort from Brazilian Northeast. Viruses, 2021, 13, 2253.	3.3	1

#	Article	IF	CITATIONS
19	Congenital Zika syndrome is associated with maternal protein malnutrition. Science Advances, 2020, 6, eaaw6284.	10.3	55
20	Obstetric and perinatal outcomes in cases of congenital Zika syndrome. Prenatal Diagnosis, 2020, 40, 1732-1740.	2.3	2
21	Reactivation of Latent HIV-1 via AID/APOBEC. AIDS Research and Human Retroviruses, 2020, 36, 793-794.	1.1	0
22	Neutrophil extracellular traps from healthy donors and HIV-1-infected individuals restrict HIV-1 production in macrophages. Scientific Reports, 2020, 10, 19603.	3.3	9
23	Genomic Surveillance of Yellow Fever Virus Epizootic in São Paulo, Brazil, 2016 – 2018. PLoS Pathogens, 2020, 16, e1008699.	4.7	39
24	Evolution and epidemic spread of SARS-CoV-2 in Brazil. Science, 2020, 369, 1255-1260.	12.6	454
25	Epidemiological and clinical characteristics of the COVID-19 epidemic in Brazil. Nature Human Behaviour, 2020, 4, 856-865.	12.0	281
26	Laboratory Acquired Zika Virus Infection Through Mouse Bite: A Case Report. Open Forum Infectious Diseases, 2020, 7, ofaa259.	0.9	2
27	Molecular alterations in the extracellular matrix in the brains of newborns with congenital Zika syndrome. Science Signaling, 2020, 13, .	3.6	39
28	Genomic and Epidemiological Surveillance of Zika Virus in the Amazon Region. Cell Reports, 2020, 30, 2275-2283.e7.	6.4	37
29	Importation and early local transmission of COVID-19 in Brazil, 2020. Revista Do Instituto De Medicina Tropical De Sao Paulo, 2020, 62, e30.	1.1	80
30	MicroRNAs 145 and 148a Are Upregulated During Congenital Zika Virus Infection. ASN Neuro, 2019, 11, 175909141985098.	2.7	24
31	Emergence of the Asian lineage of Zika virus in Angola: an outbreak investigation. Lancet Infectious Diseases, The, 2019, 19, 1138-1147.	9.1	63
32	TLR-2 and TLR-4 agonists favor expansion of CD4+ T cell subsets implicated in the severity of neuromyelitis optica spectrum disorders. Multiple Sclerosis and Related Disorders, 2019, 34, 66-76.	2.0	12
33	Association between MBL2 haplotypes and dengue severity in children from Rio de Janeiro, Brazil. Memorias Do Instituto Oswaldo Cruz, 2019, 114, e190004.	1.6	11
34	Genomic, epidemiological and digital surveillance of Chikungunya virus in the Brazilian Amazon. PLoS Neglected Tropical Diseases, 2019, 13, e0007065.	3.0	75
35	The expansion of circulating IL-6 and IL-17-secreting follicular helper T cells is associated with neurological disabilities in neuromyelitis optica spectrum disorders. Journal of Neuroimmunology, 2019, 330, 12-18.	2.3	25
36	Variations in maternal adenylate cyclase genes are associated with congenital Zika syndrome in a cohort from Northeast, Brazil. Journal of Internal Medicine, 2019, 285, 215-222.	6.0	18

#	Article	IF	CITATIONS
37	Dengue Virus IgM Serotyping by ELISA with Recombinant Mutant Envelope Proteins. Emerging Infectious Diseases, 2019, 25, 1111-1115.	4.3	9
38	Identification of Zika virus in immature phases of Aedes aegypti and Aedes albopictus: a surveillance strategy for outbreak anticipation. Brazilian Journal of Medical and Biological Research, 2019, 52, e8339.	1.5	8
39	Gottesfeld–Hohler Memorial Foundation Zika Virus Think Tank Summary. Obstetrics and Gynecology, 2018, 131, 661-665.	2.4	1
40	Crispoic acid, a new compound from <i>Laelia marginata</i> (Orchidaceae), and biological evaluations against parasites, human cancer cell lines and Zika virus. Natural Product Research, 2018, 32, 2916-2921.	1.8	7
41	Reactivation of latent HIV-1 in vitro using an ethanolic extract from Euphorbia umbellata (Euphorbiaceae) latex. PLoS ONE, 2018, 13, e0207664.	2.5	6
42	Biomimetic Placenta-Fetus Model Demonstrating Maternal–Fetal Transmission and Fetal Neural Toxicity of Zika Virus. Annals of Biomedical Engineering, 2018, 46, 1963-1974.	2.5	28
43	Genomic and epidemiological monitoring of yellow fever virus transmission potential. Science, 2018, 361, 894-899.	12.6	279
44	MicroRNA and cellular targets profiling reveal miR-217 and miR-576-3p as proviral factors during Oropouche infection. PLoS Neglected Tropical Diseases, 2018, 12, e0006508.	3.0	7
45	Zika virus disrupts molecular fingerprinting of human neurospheres. Scientific Reports, 2017, 7, 40780.	3.3	120
46	HTLV-1 Tax activates HIV-1 transcription in latency models. Virology, 2017, 504, 45-51.	2.4	14
47	Expansion of IL-6+ Th17-like cells expressing TLRs correlates with microbial translocation and neurological disabilities in NMOSD patients. Journal of Neuroimmunology, 2017, 307, 82-90.	2.3	14
48	The spectrum of neuropathological changes associated with congenital Zika virus infection. Acta Neuropathologica, 2017, 133, 983-999.	7.7	155
49	Immune activation in amniotic fluid from Zika virus–associated microcephaly. Annals of Neurology, 2017, 81, 152-156.	5.3	53
50	X-ray structure of O-methyl-acrocol and anti-cancer, anti-parasitic, anti-bacterial and anti-Zika virus evaluations of the Brazilian palm tree Acrocomia totai. Industrial Crops and Products, 2017, 109, 483-492.	5.2	9
51	First report of persistent dengue-1-associated autoimmune neurological disturbance: neuromyelitis optica spectrum disorder. Journal of NeuroVirology, 2017, 23, 768-771.	2.1	9
52	Chloroquine, an Endocytosis Blocking Agent, Inhibits Zika Virus Infection in Different Cell Models. Viruses, 2016, 8, 322.	3.3	227
53	Interplay between Inflammation and Cellular Stress Triggered by Flaviviridae Viruses. Frontiers in Microbiology, 2016, 7, 1233.	3.5	50
54	Zika Virus Causing Encephalomyelitis Associated With Immunoactivation. Open Forum Infectious Diseases, 2016, 3, ofw203.	0.9	31

#	Article	IF	CITATIONS
55	Congenital Zika Virus Infection. JAMA Neurology, 2016, 73, 1407.	9.0	334
56	Congenital Brain Abnormalities and Zika Virus: What the Radiologist Can Expect to See Prenatally and Postnatally. Radiology, 2016, 281, 203-218.	7.3	231
57	Detection and sequencing of Zika virus from amniotic fluid of fetuses with microcephaly in Brazil: a case study. Lancet Infectious Diseases, The, 2016, 16, 653-660.	9.1	981
58	Natural Plant Alkaloid (Emetine) Inhibits HIV-1 Replication by Interfering with Reverse Transcriptase Activity. Molecules, 2015, 20, 11474-11489.	3.8	56
59	Genetic diversity and proviral DNA load in different neural compartments of HIV-1 subtype C infection. Journal of NeuroVirology, 2015, 21, 399-414.	2.1	3
60	Modulation of α-Enolase Post-Translational Modifications by Dengue Virus: Increased Secretion of the Basic Isoforms in Infected Hepatic Cells. PLoS ONE, 2014, 9, e88314.	2.5	10
61	Jatropha sp. Extracts Induces CD4 Internalization and Inhibits HIV-1 Entry. AIDS Research and Human Retroviruses, 2014, 30, A142-A142.	1.1	0
62	Reactivation of latent HIV-1 by new semi-synthetic ingenol esters. Virology, 2014, 462-463, 328-339.	2.4	79
63	Nef Neutralizes the Ability of Exosomes from CD4+ T Cells to Act as Decoys during HIV-1 Infection. PLoS ONE, 2014, 9, e113691.	2.5	87
64	2´,3´-Dialdehyde of ATP, ADP, and Adenosine Inhibit HIV-1 Reverse Transcriptase and HIV-1 Replication. Current HIV Research, 2014, 12, 347-358.	0.5	6
65	Differential In Vitro Kinetics of Drug Resistance Mutation Acquisition in HIV-1 RT of Subtypes B and C. PLoS ONE, 2012, 7, e46622.	2.5	4
66	The nerve growth factor reduces APOBEC3G synthesis and enhances HIV-1 transcription and replication in human primary macrophages. Blood, 2011, 117, 2944-2952.	1.4	18
67	Interactions between SIVNef, SIVGagPol and Alix correlate with viral replication and progression to AIDS in rhesus macaques. Virology, 2009, 394, 47-56.	2.4	9
68	APOBEC3 proteins and reverse transcription. Virus Research, 2008, 134, 74-85.	2.2	49
69	Vpr.A3A Chimera Inhibits HIV Replication. Journal of Biological Chemistry, 2008, 283, 2518-2525.	3.4	57
70	Development of a New Methodology for Screening of Human Immunodeficiency Virus Type 1 Microbicides Based on Real-Time PCR Quantification. Antimicrobial Agents and Chemotherapy, 2007, 51, 638-644.	3.2	10
71	Interactions between Nef and AIP1 proliferate multivesicular bodies and facilitate egress of HIV-1. Retrovirology, 2006, 3, 33.	2.0	50
72	Gag–Pol bearing a reverse transcriptase drug-resistant mutation influences viral genomic RNA incorporation into human immunodeficiency virus type 1 particles. Journal of General Virology, 2006, 87, 2669-2677.	2.9	1

#	Article	IF	CITATIONS
73	Biological characterization of human immunodeficiency virus type 1 subtype C protease carrying indinavir drug-resistance mutations. Journal of General Virology, 2006, 87, 1303-1309.	2.9	8
74	Impact of Nelfinavir Resistance Mutations on In Vitro Phenotype, Fitness, and Replication Capacity of Human Immunodeficiency Virus Type 1 with Subtype B and C Proteases. Antimicrobial Agents and Chemotherapy, 2004, 48, 3552-3555.	3.2	49
75	Usefulness of microsatellite typing in population genetic studies of Trypanosoma cruzi. Memorias Do Instituto Oswaldo Cruz, 2001, 96, 407-413.	1.6	54