Michael R Green

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8625478/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Dissecting the Regulatory Circuitry of a Eukaryotic Genome. Cell, 1998, 95, 717-728.	28.9	1,722
2	ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-chip data. BMC Bioinformatics, 2010, 11, 237.	2.6	963
3	Oncogenic BRAF Induces Senescence and Apoptosis through Pathways Mediated by the Secreted Protein IGFBP7. Cell, 2008, 132, 363-374.	28.9	787
4	Nucleosome disruption and enhancement of activator binding by a human SW1/SNF complex. Nature, 1994, 370, 477-481.	27.8	744
5	Transcriptional Regulatory Elements in the Human Genome. Annual Review of Genomics and Human Genetics, 2006, 7, 29-59.	6.2	724
6	Mechanism of action of an acidic transcriptional activator in vitro. Cell, 1991, 64, 971-981.	28.9	608
7	Facilitated binding of TATA-binding protein to nucleosomal DNA. Nature, 1994, 370, 481-485.	27.8	598
8	Cloning and domain structure of the mammalian splicing factor U2AF. Nature, 1992, 355, 609-614.	27.8	557
9	A factor, U2AF, is required for U2 snRNP binding and splicing complex assembly. Cell, 1988, 52, 207-219.	28.9	531
10	Functional recognition of the 3′ splice site AG by the splicing factor U2AF35. Nature, 1999, 402, 832-835.	27.8	390
11	Expressing the human genome. Nature, 2001, 409, 832-833.	27.8	378
12	Redundant roles for the TFIID and SAGA complexes in global transcription. Nature, 2000, 405, 701-704.	27.8	330
13	A human nucleoporin-like protein that specifically interacts with HIV Rev. Nature, 1995, 376, 530-533.	27.8	288
14	Localization of pre-mRNA splicing in mammalian nuclei. Nature, 1994, 372, 809-812.	27.8	272
15	A Mammalian Siderophore Synthesized by an Enzyme with a Bacterial Homolog Involved in Enterobactin Production. Cell, 2010, 141, 1006-1017.	28.9	259
16	An elaborate pathway required for Ras-mediated epigenetic silencing. Nature, 2007, 449, 1073-1077.	27.8	254
17	Transcription activation in cells lacking TAFIIs. Nature, 1996, 383, 185-188.	27.8	241
18	F-box protein FBXO31 mediates cyclin D1 degradation to induce G1 arrest after DNA damage. Nature, 2009, 459, 722-725.	27.8	234

#	Article	IF	CITATIONS
19	Enhancement of TBP binding by activators and general transcription factors. Nature, 1999, 399, 605-609.	27.8	228
20	Inhibition of tumor angiogenesis by p53: a new role for the guardian of the genome. Journal of Molecular Medicine, 2007, 85, 1175-1186.	3.9	218
21	TBP-associated factors (TAF II s): multiple, selective transcriptional mediators in common complexes. Trends in Biochemical Sciences, 2000, 25, 59-63.	7.5	198
22	A Novel Peptide Recognition Mode Revealed by the X-Ray Structure of a Core U2AF35/U2AF65 Heterodimer. Cell, 2001, 106, 595-605.	28.9	192
23	Activator-induced conformational change in general transcription factor TFIIB. Nature, 1994, 371, 717-720.	27.8	190
24	The BRAF Oncoprotein Functions through the Transcriptional Repressor MAFG to Mediate the CpG Island Methylator Phenotype. Molecular Cell, 2014, 55, 904-915.	9.7	179
25	p53-Mediated Inhibition of Angiogenesis Through Up-Regulation of a Collagen Prolyl Hydroxylase. Science, 2006, 313, 968-971.	12.6	170
26	Structural Basis for Polypyrimidine Tract Recognition by the Essential Pre-mRNA Splicing Factor U2AF65. Molecular Cell, 2006, 23, 49-59.	9.7	170
27	A Pathway of Sequential Arginine-Serine-Rich Domain-Splicing Signal Interactions during Mammalian Spliceosome Assembly. Molecular Cell, 2004, 16, 363-373.	9.7	169
28	In vivo target of a transcriptional activator revealed by fluorescence resonance energy transfer. Genes and Development, 2004, 18, 333-343.	5.9	165
29	Yeast TAF IIS in a multisubunit complex required for activated transcription. Nature, 1994, 371, 523-527.	27.8	163
30	TRIM37 is a new histone H2A ubiquitin ligase and breast cancer oncoprotein. Nature, 2014, 516, 116-120.	27.8	152
31	Recognition of bZIP proteins by the human T-cell leukaemia virus transactivator Tax. Nature, 1995, 376, 602-605.	27.8	148
32	A genome-wide RNA interference screen reveals an essential CREB3L2-ATF5-MCL1 survival pathway in malignant glioma with therapeutic implications. Nature Medicine, 2010, 16, 671-677.	30.7	144
33	Yeast TAFII145 Required for Transcription of G1/S Cyclin Genes and Regulated by the Cellular Growth State. Cell, 1997, 90, 607-614.	28.9	143
34	A KRAS-directed transcriptional silencing pathway that mediates the CpG island methylator phenotype. ELife, 2014, 3, e02313.	6.0	142
35	Resistance to therapy in <i>BRCA2</i> mutant cells due to loss of the nucleosome remodeling factor CHD4. Genes and Development, 2015, 29, 489-494.	5.9	124
36	Targeting of U2AF65 to Sites of Active Splicing in the Nucleus. Journal of Cell Biology, 1997, 137, 975-987.	5.2	115

#	Article	IF	CITATIONS
37	Epigenetic Silencing of the RASSF1A Tumor Suppressor Gene through HOXB3-Mediated Induction of DNMT3B Expression. Molecular Cell, 2009, 36, 219-230.	9.7	111
38	U2AF35(S34F) Promotes Transformation by Directing Aberrant ATG7 Pre-mRNA 3′ End Formation. Molecular Cell, 2016, 62, 479-490.	9.7	111
39	BCR-ABL suppresses autophagy through ATF5-mediated regulation of mTOR transcription. Blood, 2011, 118, 2840-2848.	1.4	110
40	Inhibition of Enhancer of zeste homolog 2 (EZH2) induces natural killer cell-mediated eradication of hepatocellular carcinoma cells. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E3509-E3518.	7.1	109
41	HIV-1 Tat Stimulates Transcription Complex Assembly through Recruitment of TBP in the Absence of TAFs. PLoS Biology, 2005, 3, e44.	5.6	107
42	A genome-wide shRNA screen identifies <i>GAS1</i> as a novel melanoma metastasis suppressor gene. Genes and Development, 2008, 22, 2932-2940.	5.9	105
43	A therapeutically targetable mechanism of BCR-ABL–independent imatinib resistance in chronic myeloid leukemia. Science Translational Medicine, 2014, 6, 252ra121.	12.4	105
44	Broad, but Not Universal, Transcriptional Requirement for yTAFII17, a Histone H3–like TAFII Present in TFIID and SAGA. Molecular Cell, 1998, 2, 653-661.	9.7	94
45	Sequence-specific interaction between HIV-1 matrix protein and viral genomic RNA revealed by in vitro genetic selection. Rna, 2001, 7, 576-584.	3.5	92
46	Genetic and pharmacological reactivation of the mammalian inactive X chromosome. Proceedings of the United States of America, 2014, 111, 12591-12598.	7.1	78
47	Common BRAF(V600E)-directed pathway mediates widespread epigenetic silencing in colorectal cancer and melanoma. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1250-1255.	7.1	74
48	Initiation of zebrafish haematopoiesis by the TATA-box-binding protein-related factor Trf3. Nature, 2007, 450, 1082-1085.	27.8	72
49	Regulation of DNA methylation dictates Cd4 expression during the development of helper and cytotoxic T cell lineages. Nature Immunology, 2015, 16, 746-754.	14.5	72
50	Rapid identification and characterization of hammerhead-ribozyme inhibitors using fluorescence-based technology. Nature Biotechnology, 2001, 19, 56-61.	17.5	70
51	The Blk pathway functions as a tumor suppressor in chronic myeloid leukemia stem cells. Nature Genetics, 2012, 44, 861-871.	21.4	69
52	TRF3, a TATA-box-binding protein-related factor, is vertebrate-specific and widely expressed. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 14887-14891.	7.1	68
53	MARCH1 regulates insulin sensitivity by controlling cell surface insulin receptor levels. Nature Communications, 2016, 7, 12639.	12.8	66
54	Eukaryotic Transcription Activation: Right on Target. Molecular Cell, 2005, 18, 399-402.	9.7	63

4

#	Article	IF	CITATIONS
55	MELK Promotes Melanoma Growth by Stimulating the NF-κB Pathway. Cell Reports, 2017, 21, 2829-2841.	6.4	61
56	Dichotomous regulators. Nature, 1995, 375, 105-106.	27.8	59
57	An extended U2AF65–RNA-binding domain recognizes the 3′ splice site signal. Nature Communications, 2016, 7, 10950.	12.8	58
58	Differential recognition of the polypyrimidine-tract by the general splicing factor U2AF65 and the splicing repressor sex-lethal. Rna, 2000, 6, 901-911.	3.5	52
59	Resistance to vemurafenib resulting from a novel mutation in the <scp>BRAFV</scp> 600 <scp>E</scp> kinase domain. Pigment Cell and Melanoma Research, 2014, 27, 124-133.	3.3	51
60	ATF5 regulates β-cell survival during stress. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1341-1346.	7.1	51
61	F-box protein FBXO31 directs degradation of MDM2 to facilitate p53-mediated growth arrest following genotoxic stress. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8632-8637.	7.1	50
62	CRISPR-Cas9–mediated saturated mutagenesis screen predicts clinical drug resistance with improved accuracy. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11751-11756.	7.1	50
63	Cancer-relevant Splicing Factor CAPERα Engages the Essential Splicing Factor SF3b155 in a Specific Ternary Complex. Journal of Biological Chemistry, 2014, 289, 17325-17337.	3.4	49
64	Transcription factor ATF5 is required for terminal differentiation and survival of olfactory sensory neurons. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18589-18594.	7.1	47
65	KLF7 promotes pancreatic cancer growth and metastasis by up-regulating ISC expression and maintaining Golgi complex integrity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12341-12351.	7.1	46
66	U2AF65 adapts to diverse pre-mRNA splice sites through conformational selection of specific and promiscuous RNA recognition motifs. Nucleic Acids Research, 2013, 41, 3859-3873.	14.5	43
67	Reply to Enrichment of regulatory motifs upstream of predicted DAF-16 targets. Nature Genetics, 2006, 38, 398-398.	21.4	38
68	A KLF4-DYRK2–mediated pathway regulating self-renewal in CML stem cells. Blood, 2019, 134, 1960-1972.	1.4	38
69	A role for Tau protein in maintaining ribosomal DNA stability and cytidine deaminase-deficient cell survival. Nature Communications, 2017, 8, 693.	12.8	37
70	EZH2 inhibits NK cell–mediated antitumor immunity by suppressing CXCL10 expression in an HDAC10-dependent manner. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	37
71	Oncogenic RAS directs silencing of tumor suppressor genes through ordered recruitment of transcriptional repressors. Genes and Development, 2013, 27, 2221-2226.	5.9	36
72	Non-canonical TAF complexes regulate active promoters in human embryonic stem cells. ELife, 2012, 1, e00068.	6.0	36

#	Article	IF	CITATIONS
73	Global Promotion of Alternative Internal Exon Usage by mRNA 3′ End Formation Factors. Molecular Cell, 2015, 58, 819-831.	9.7	34
74	From polyadenylation to splicing: Dual role for mRNA 3' end formation factors. RNA Biology, 2016, 13, 259-264.	3.1	34
75	Pharmacological reactivation of inactive X-linked <i>Mecp2</i> in cerebral cortical neurons of living mice. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7991-7996.	7.1	34
76	Loss of BOP1 confers resistance to BRAF kinase inhibitors in melanoma by activating MAP kinase pathway. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4583-4591.	7.1	33
77	Genetic disruption of oncogenic Kras sensitizes lung cancer cells to Fas receptor-mediated apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3648-3653.	7.1	32
78	A Synthetic Interaction Screen Identifies Factors Selectively Required for Proliferation and TERT Transcription in p53-Deficient Human Cancer Cells. PLoS Genetics, 2012, 8, e1003151.	3.5	31
79	Synergistic tumor suppression by combined inhibition of telomerase and CDKN1A. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3062-71.	7.1	31
80	Solution Conformation and Thermodynamic Characteristics of RNA Binding by the Splicing Factor U2AF65. Journal of Biological Chemistry, 2008, 283, 33641-33649.	3.4	30
81	Identification of Epigenetic Regulators of DUX4-fl for Targeted Therapy of Facioscapulohumeral Muscular Dystrophy. Molecular Therapy, 2018, 26, 1797-1807.	8.2	29
82	Selective interaction between Trf3 and Taf3 required for early development and hematopoiesis. Developmental Dynamics, 2009, 238, 2540-2549.	1.8	28
83	PSF contacts exon 7 of SMN2 pre-mRNA to promote exon 7 inclusion. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 517-525.	1.9	26
84	Exon 9 skipping of apoptotic caspase-2 pre-mRNA is promoted by SRSF3 through interaction with exon 8. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 25-32.	1.9	25
85	OneStopRNAseq: A Web Application for Comprehensive and Efficient Analyses of RNA-Seq Data. Genes, 2020, 11, 1165.	2.4	25
86	The histone H3K9 demethylase KDM3A promotes anoikis by transcriptionally activating pro-apoptotic genes BNIP3 and BNIP3L. ELife, 2016, 5, .	6.0	23
87	Senescence: Not Just for Tumor Suppression. Cell, 2008, 134, 562-564.	28.9	22
88	The CREB Coactivator CRTC2 Is a Lymphoma Tumor Suppressor that Preserves Genome Integrity through Transcription of DNA Mismatch Repair Genes. Cell Reports, 2015, 11, 1350-1357.	6.4	22
89	An Embryonic Stem Cell-Specific NuRD Complex Functions through Interaction with WDR5. Stem Cell Reports, 2017, 8, 1488-1496.	4.8	22
90	PEA15 Regulates the DNA Damage-Induced Cell Cycle Checkpoint and Oncogene-Directed Transformation. Molecular and Cellular Biology, 2014, 34, 2264-2282.	2.3	21

#	Article	IF	CITATIONS
91	SRSF2 promotes splicing and transcription of exon 11 included isoform in Ron proto-oncogene. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 1132-1140.	1.9	21
92	Inactivation of 3- <i>hydroxybutyrate dehydrogenase</i> 2 delays zebrafish erythroid maturation by conferring premature mitophagy. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1460-9.	7.1	20
93	Degradation of FBXO31 by APC/C is regulated by AKT- and ATM-mediated phosphorylation. Proceedings of the United States of America, 2018, 115, 998-1003.	7.1	18
94	A Large-Scale RNAi-Based Mouse Tumorigenesis Screen Identifies New Lung Cancer Tumor Suppressors That Repress FGFR Signaling. Cancer Discovery, 2014, 4, 1168-1181.	9.4	15
95	A large-scale RNA interference screen identifies genes that regulate autophagy at different stages. Scientific Reports, 2018, 8, 2822.	3.3	12
96	Genetic analysis of TAF68/61 reveals links to cell cycle regulators. Yeast, 2001, 18, 1197-1205.	1.7	11
97	Prosurvival kinase PIM2 is a therapeutic target for eradication of chronic myeloid leukemia stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10482-10487.	7.1	10
98	dagLogo: An R/Bioconductor package for identifying and visualizing differential amino acid group usage in proteomics data. PLoS ONE, 2020, 15, e0242030.	2.5	10
99	Prostaglandin E2 stimulates cAMP signaling and resensitizes human leukemia cells to glucocorticoid-induced cell death. Blood, 2021, 137, 500-512.	1.4	9
100	Genome Wide Association Analysis of a Founder Population Identified TAF3 as a Gene for MCHC in Humans. PLoS ONE, 2013, 8, e69206.	2.5	9
101	The odd coupling. Nature, 2001, 413, 583-585.	27.8	6
102	Global analysis of CPSF2-mediated alternative splicing: Integration of global iCLIP and transcriptome profiling data. Genomics Data, 2015, 6, 217-221.	1.3	5
103	High-Throughput Screening of Tyrosine Kinase Inhibitor Resistant Genes in CML. Methods in Molecular Biology, 2016, 1465, 159-173.	0.9	4
104	A Diphtheria Toxin Negative Selection in RNA Interference Screening. Methods in Molecular Biology, 2014, 1176, 59-72.	0.9	4
105	ESRRB regulates glucocorticoid gene expression in mice and patients with acute lymphoblastic leukemia. Blood Advances, 2020, 4, 3154-3168.	5.2	3
106	Fluorescence Reporter-Based Genome-Wide RNA Interference Screening to Identify Alternative Splicing Regulators. Methods in Molecular Biology, 2017, 1507, 1-12.	0.9	1
107	Identifying Mechanisms of Glucocorticoid Resistance in Relapsed Pediatric T-ALL. Blood, 2016, 128, 2769-2769.	1.4	1
108	An shRNA kinase screen identifies regulators of UHRF1 stability and activity in mouse embryonic stem cells. Epigenetics, 2022, , 1-18.	2.7	1

#	Article	IF	CITATIONS
109	Irf3 polymorphism alters induction of IFNβ in response to L. monocytogenes infection. PLoS Genetics, 2005, preprint, e152.	3.5	Ο
110	DYRK2 Inhibits the Self-Renewal of Leukemic Stem Cells in Chronic Myeloid Leukemia By Inducing Degradation of c-Myc Downstream of the Reprogramming Factor KLF4. Blood, 2016, 128, 1879-1879.	1.4	0
111	Title is missing!. , 2020, 15, e0242030.		0
112	Title is missing!. , 2020, 15, e0242030.		0
113	Title is missing!. , 2020, 15, e0242030.		0
114	Title is missing!. , 2020, 15, e0242030.		0