
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8624980/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrical and structural properties of low resistivity tinâ€doped indium oxide films. Journal of Applied Physics, 1992, 71, 3356-3364.	2.5	352
2	A microstructural study of low resistivity tin-doped indium oxide prepared by d.c. magnetron sputtering. Thin Solid Films, 1994, 238, 44-50.	1.8	201
3	Study of the effect of Sn doping on the electronic transport properties of thin film indium oxide. Applied Physics Letters, 1993, 62, 1268-1270.	3.3	185
4	Thin film TiO2 photocatalyst deposited by reactive magnetron sputtering. Thin Solid Films, 2003, 442, 227-231.	1.8	185
5	Origin of characteristic grain-subgrain structure of tin-doped indium oxide films. Thin Solid Films, 1995, 259, 38-45.	1.8	131
6	Transparent conductive Nb-doped TiO2 films deposited by direct-current magnetron sputtering using a TiO2â^' target. Thin Solid Films, 2008, 516, 5758-5762.	1.8	130
7	Study of the effect of ion implantation on the electrical and microstructural properties of tinâ€doped indium oxide thin films. Journal of Applied Physics, 1993, 73, 3805-3811.	2.5	117
8	Electrical and Structural Properties of Tin-Doped Indium Oxide Films Deposited by DC Sputtering at Room Temperature. Japanese Journal of Applied Physics, 1999, 38, 2921-2927.	1.5	115
9	Thermal transport properties of polycrystalline tin-doped indium oxide films. Journal of Applied Physics, 2009, 105, .	2.5	103
10	Crystallinity and electrical properties of tin-doped indium oxide films deposited by DC magnetron sputtering. Applied Surface Science, 1991, 48-49, 269-275.	6.1	101
11	Study on Crystallinity of Tin-Doped Indium Oxide Films Deposited by DC Magnetron Sputtering. Japanese Journal of Applied Physics, 1998, 37, 1870-1876.	1.5	100
12	Photochromic Properties of Amorphous WO3Films. Japanese Journal of Applied Physics, 1991, 30, 1457-1462.	1.5	86
13	Doping mechanisms of tinâ€doped indium oxide films. Applied Physics Letters, 1992, 61, 73-75.	3.3	83
14	Electrical properties of heteroepitaxial grown tinâ€doped indium oxide films. Journal of Applied Physics, 1996, 80, 978-984.	2.5	83
15	Experimental observation on the Fermi level shift in polycrystalline Al-doped ZnO films. Journal of Applied Physics, 2012, 112, .	2.5	83
16	Preparation and Crystallization of Tin-doped and Undoped Amorphous Indium Oxide Films Deposited by Sputtering. Japanese Journal of Applied Physics, 1999, 38, 5224-5226.	1.5	81
17	Analysis on thermal properties of tin doped indium oxide films by picosecond thermoreflectance measurement. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2005, 23, 1180-1186.	2.1	79
18	Heteroepitaxial growth of tinâ€doped indium oxide films on single crystalline yttria stabilized zirconia substrates. Applied Physics Letters, 1994, 64, 2712-2714.	3.3	75

#	Article	IF	CITATIONS
19	Thermochromic VO2Films Deposited by RF Magnetron Sputtering Using V2O3or V2O5Targets. Japanese Journal of Applied Physics, 2000, 39, 6016-6024.	1.5	75
20	Emission spectroscopy during directâ€currentâ€biased, microwaveâ€plasma chemical vapor deposition of diamond. Applied Physics Letters, 1993, 63, 314-316.	3.3	73
21	Study on Electronic Structure and Optoelectronic Properties of Indium Oxide by First-Principles Calculations. Japanese Journal of Applied Physics, 1997, 36, 5551-5554.	1.5	72
22	The Structural Changes of Indium-Tin Oxide and a-WO3Films by Introducing Water to the Deposition Processes. Japanese Journal of Applied Physics, 1991, 30, 814-819.	1.5	70
23	Study on Thermochromic VO2Films Grown on ZnO-Coated Glass Substrates for "Smart Windows― Japanese Journal of Applied Physics, 2003, 42, 6523-6531.	1.5	68
24	Electronic Structure Analyses of Sn-doped In2O3. Japanese Journal of Applied Physics, 2001, 40, 3231-3235.	1.5	67
25	Temperature dependence of thermal conductivity of VO ₂ thin films across metal–insulator transition. Japanese Journal of Applied Physics, 2015, 54, 053201.	1.5	65
26	A time-resolved reflectivity study of the amorphous-to-crystalline transformation kinetics in dc-magnetron sputtered indium tin oxide. Journal of Applied Physics, 1998, 83, 145-154.	2.5	62
27	Doping Mechanisms of Sn in In2O3Powder Studied Using119Sn Mössbauer Spectroscopy and X-Ray Diffraction. Japanese Journal of Applied Physics, 1999, 38, 2856-2862.	1.5	59
28	Thermal Conductivity of Amorphous Indium–Gallium–Zinc Oxide Thin Films. Applied Physics Express, 2013, 6, 021101.	2.4	59
29	Al-Doped ZnO Films Deposited by Reactive Magnetron Sputtering in Mid-Frequency Mode with Dual Cathodes. Japanese Journal of Applied Physics, 2002, 41, 814-819.	1.5	55
30	Oriented Tin-Doped Indium Oxide Films on \$f langle 001angle \$ Preferred Oriented Polycrystalline ZnO Films. Japanese Journal of Applied Physics, 1995, 34, 1638-1642.	1.5	53
31	Microstructure of Low-Resistivity Tin-Doped Indium Oxide Films Deposited at \$f 150sim 200^{circ}C\$. Japanese Journal of Applied Physics, 1995, 34, L244-L247.	1.5	51
32	Structural, electrical, and optical properties of transparent conductive In2O3–SnO2 films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2005, 23, 1167-1172.	2.1	51
33	Nanocrystalline germanium synthesis from hydrothermally oxidized Si1â^'xGexalloys. Applied Physics Letters, 1992, 60, 2886-2888.	3.3	50
34	Donor Compensation and Carrier-Transport Mechanisms in Tin-doped In2O3Films Studied by Means of Conversion Electron119Sn Mössbauer Spectroscopy and Hall Effect Measurements. Japanese Journal of Applied Physics, 2000, 39, 4158-4163.	1.5	48
35	Assembled structures of nanocrystals in polymer/calcium carbonate thin-film composites formed by the cooperation of chitosan and poly(aspartate). Journal of Polymer Science Part A, 2006, 44, 5153-5160.	2.3	48
36	DC sputter deposition of amorphous indium–gallium–zinc–oxide (a-IGZO) films with H2O introduction. Thin Solid Films, 2010, 518, 3004-3007.	1.8	46

#	Article	IF	CITATIONS
37	Crystallinity of Gallium-Doped Zinc Oxide Films Deposited by DC Magnetron Sputtering Using Ar, Ne or Kr Gas. Japanese Journal of Applied Physics, 2002, 41, 6174-6179.	1.5	45
38	Impedance Control of Reactive Sputtering Process in Mid-Frequency Mode with Dual Cathodes to Deposit Al-Doped ZnO Films. Japanese Journal of Applied Physics, 2003, 42, 263-269.	1.5	44
39	Study on inverse spinel zinc stannate, Zn2SnO4, as transparent conductive films deposited by rf magnetron sputtering. Thin Solid Films, 2009, 518, 1304-1308.	1.8	44
40	Effects of Energetic Ion Bombardment on Structural and Electrical Properties of Al-Doped ZnO Films Deposited by RF-Superimposed DC Magnetron Sputtering. Japanese Journal of Applied Physics, 2010, 49, 071103.	1.5	44
41	Thermophysical properties of aluminum oxide and molybdenum layered films. Thin Solid Films, 2010, 518, 3119-3121.	1.8	42
42	Crystallinity and Photocatalytic Activity of TiO2Films Deposited by Reactive Sputtering Using Various Magnetic Field Strengths. Japanese Journal of Applied Physics, 2004, 43, L442-L445.	1.5	41
43	Biasâ€enhanced nucleation of diamond during microwaveâ€assisted chemical vapor deposition. Journal of Applied Physics, 1994, 75, 5001-5008.	2.5	40
44	Comparative study on early stages of film growth for transparent conductive oxide films deposited by dc magnetron sputtering. Thin Solid Films, 2008, 516, 4598-4602.	1.8	40
45	Influence of dopant species and concentration on grain boundary scattering in degenerately doped In2O3 thin films. Thin Solid Films, 2016, 614, 62-68.	1.8	40
46	Carrier Density Dependence of Optical Band Gap and Work Function in Sn-Doped In ₂ O ₃ Films. Applied Physics Express, 2010, 3, 061101.	2.4	38
47	Electrical and optical properties of Nb-doped TiO2 films deposited by dc magnetron sputtering using slightly reduced Nb-doped TiO2â^'x ceramic targets. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2010, 28, 851-855.	2.1	36
48	Crystal Structure and Photocatalytic Activity of TiO2Films Deposited by Reactive Sputtering Using Ne, Ar, Kr, or Xe Gases. Japanese Journal of Applied Physics, 2004, 43, L358-L361.	1.5	35
49	<i>In situ</i> analyses on negative ions in the sputtering process to deposit Al-doped ZnO films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2010, 28, 846-850.	2.1	34
50	Al-doped ZnO (AZO) films deposited by reactive sputtering with unipolar-pulsing and plasma-emission control systems. Thin Solid Films, 2010, 518, 2980-2983.	1.8	33
51	Interfacial stability of an indium tin oxide thin film deposited on Si and Si0.85Ge0.15. Journal of Applied Physics, 2000, 88, 3717-3724.	2.5	32
52	Photocatalytic Properties of TiO2Films Deposited by Reactive Sputtering in Mid-Frequency Mode with Dual Cathodes. Japanese Journal of Applied Physics, 2004, 43, 8234-8241.	1.5	32
53	<i>In situ</i> analyses on negative ions in the indium-gallium-zinc oxide sputtering process. Applied Physics Letters, 2013, 103, .	3.3	31
54	Thermal conductivity of hetero-epitaxial ZnO thin films on <i>c</i> - and <i>r</i> -plane sapphire substrates: Thickness and grain size effect. Journal of Applied Physics, 2019, 125, .	2.5	31

#	Article	IF	CITATIONS
55	Lattice Defects in O+Implanted Tin-Doped Indium Oxide Films. Japanese Journal of Applied Physics, 1993, 32, L1352-L1355.	1.5	30
56	In Situ Observation of Adsorbed Heptylviologen Cation Radicals by Slab Optical Waveguide Spectroscopy Utilizing Indium-tin-oxide Electrode. Chemistry Letters, 1998, 27, 125-126.	1.3	30
57	Structure and Internal Stress of Tin-Doped Indium Oxide and Indium–Zinc Oxide Films Deposited by DC Magnetron Sputtering. Japanese Journal of Applied Physics, 2007, 46, 7806-7811.	1.5	30
58	On the Crystal Structural Control of Sputtered TiO2 Thin Films. Nanoscale Research Letters, 2016, 11, 324.	5.7	30
59	Electrochromic Properties of Li[sub x]Ni[sub y]O Films Deposited by RF Magnetron Sputtering. Journal of the Electrochemical Society, 2009, 156, H629.	2.9	29
60	Sputter deposition of Al-doped ZnO films with various incident angles. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2009, 27, 1166-1171.	2.1	28
61	Origin of carrier scattering in polycrystalline Al-doped ZnO films. Applied Physics Express, 2014, 7, 105802.	2.4	28
62	Effects of Magnetic Field Gradient on Crystallographic Properties in Tin-Doped Indium Oxide Films Deposited by Electron Cyclotron Resonance Plasma Sputtering. Japanese Journal of Applied Physics, 1994, 33, 4997-5004.	1.5	27
63	Effects of water partial pressure on the activated electron beam evaporation process to deposit tinâ€doped indiumâ€oxide films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1995, 13, 268-275.	2.1	27
64	Effects of Tin Concentrations on Structural Characteristics and Electrooptical Properties of Tin-Doped Indium Oxide Films Prepared by RF Magnetron Sputtering. Japanese Journal of Applied Physics, 1995, 34, 600-605.	1.5	27
65	Study on Fluorine-Doped Indium Oxide Films Deposited by RF Magnetron Sputtering. Japanese Journal of Applied Physics, 2000, 39, 6422-6426.	1.5	27
66	Electrical and optical properties of Al-doped ZnO films deposited by hollow cathode gas flow sputtering. Thin Solid Films, 2009, 517, 3048-3052.	1.8	27
67	Thermophysical and electrical properties of Al-doped ZnO films. Journal of Applied Physics, 2012, 111, .	2.5	27
68	Comparative study of heteroepitaxial and polycrystalline tin-doped indium oxide films. Journal of Non-Crystalline Solids, 1997, 218, 267-272.	3.1	25
69	Evolution of Defect Structures and Deep Subgap States during Annealing of Amorphous In-Ga-Zn Oxide for Thin-Film Transistors. Physical Review Applied, 2018, 9, .	3.8	25
70	Nucleation and growth during the chemical vapor deposition of diamond on SiO ₂ substrates. Journal of Materials Research, 1994, 9, 2164-2173.	2.6	24
71	Electronic State of Amorphous Indium Gallium Zinc Oxide Films Deposited by DC Magnetron Sputtering with Water Vapor Introduction. Applied Physics Express, 2012, 5, 075802.	2.4	24
72	Transparent conductive Nb-doped TiO2 films deposited by reactive dc sputtering using Ti–Nb alloy target, precisely controlled in the transition region using impedance feedback system. Applied Surface Science, 2014, 301, 551-556.	6.1	24

#	Article	IF	CITATIONS
73	Study on early stages of film growth for Sn doped In2O3 films deposited at various substrate temperatures. Thin Solid Films, 2008, 516, 5868-5871.	1.8	23
74	Study on MoO3â	2.1	23
75	Amorphous indium-tin-zinc oxide films deposited by magnetron sputtering with various reactive gases: Spatial distribution of thin film transistor performance. Applied Physics Letters, 2015, 106, .	3.3	23
76	Visible-light active thin-film WO ₃ photocatalyst with controlled high-rate deposition by low-damage reactive-gas-flow sputtering. APL Materials, 2015, 3, 104407.	5.1	23
77	A visible-light active TiO ₂ photocatalyst multilayered with WO ₃ . Physical Chemistry Chemical Physics, 2017, 19, 17342-17348.	2.8	23
78	Photoinduced Hydrophilicity of Epitaxially Grown TiO2Films by RF Magnetron Sputtering. Japanese Journal of Applied Physics, 2003, 42, L1529-L1531.	1.5	22
79	Al-doped ZnO films deposited on a slightly reduced buffer layer by reactive dc unbalanced magnetron sputtering. Thin Solid Films, 2014, 555, 93-99.	1.8	22
80	High-rate deposition of Sb-doped SnO2 films by reactive sputtering using the impedance control method. Thin Solid Films, 2011, 520, 1178-1181.	1.8	21
81	Transparent conductive Al and Ga doped ZnO films deposited using off-axis sputtering. Thin Solid Films, 2014, 559, 69-77.	1.8	21
82	Crystallization behavior of amorphous indium–gallium–zinc-oxide films and its effects on thin-film transistor performance. Japanese Journal of Applied Physics, 2016, 55, 035504.	1.5	21
83	Visible-Light Active Photocatalytic WO ₃ Films Loaded with Pt Nanoparticles Deposited by Sputtering. Journal of Nanoscience and Nanotechnology, 2012, 12, 5082-5086.	0.9	20
84	Direct observation of the band gap shrinkage in amorphous In2O3–ZnO thin films. Journal of Applied Physics, 2013, 113, .	2.5	20
85	Electron microscopic and ion scattering studies of heteroepitaxial tinâ€doped indium oxide films. Applied Physics Letters, 1994, 65, 546-548.	3.3	19
86	Visible light-induced photocatalytic properties of WO3 films deposited by dc reactive magnetron sputtering. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2012, 30, .	2.1	19
87	Thermophysical Properties of Transparent Conductive Nb-Doped TiO ₂ Films. Japanese Journal of Applied Physics, 2012, 51, 035802.	1.5	19
88	Structure Analysis ofZnO–TeO2Glasses by Means of Neutron Diffraction and Molecular Dynamics. Japanese Journal of Applied Physics, 1996, 35, 694-698.	1.5	18
89	High-rate deposition of high-quality Sn-doped In2O3 films by reactive magnetron sputtering using alloy targets. Thin Solid Films, 2012, 520, 4101-4105.	1.8	18
90	Comparative study of sputterâ€deposited SnO ₂ films doped with antimony or tantalum. Physica Status Solidi (B): Basic Research, 2016, 253, 923-928.	1.5	18

#	Article	IF	CITATIONS
91	ITO thin-film transparent conductors: Microstructure and processing. Jom, 1995, 47, 47-50.	1.9	17
92	High rate reactive magnetron sputter deposition of Al-doped ZnO with unipolar pulsing and impedance control system. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2010, 28, 890-894.	2.1	17
93	Spatial distribution of electrical properties for Al-doped ZnO films deposited by dc magnetron sputtering using various inert gases. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2010, 28, 895-900.	2.1	16
94	In-situ analyses on the reactive sputtering process to deposit Al-doped ZnO films using an Al–Zn alloy target. Thin Solid Films, 2012, 520, 3751-3754.	1.8	16
95	Thermal Boundary Resistance of W/Al ₂ O ₃ Interface in W/Al ₂ O ₃ /W Three-Layered Thin Film and Its Dependence on Morphology. Japanese Journal of Applied Physics, 2013, 52, 065802.	1.5	15
96	Diamond nucleation on unscratched SiO2 substrates. Applied Physics Letters, 1994, 65, 210-212.	3.3	14
97	Thermal Diffusivities of Tris(8-hydroxyquinoline)aluminum and N,N'-Di(1-naphthyl)-N,N'-diphenylbenzidine Thin Films with Sub-Hundred Nanometer Thicknesses. Japanese Journal of Applied Physics, 2010, 49, 121602.	1.5	14
98	Effect of nitrogen addition on the structural, electrical, and optical properties of In-Sn-Zn oxide thin films. Applied Surface Science, 2017, 396, 897-901.	6.1	14
99	Effect of Sn Doping on the Crystal Growth of Indium Oxide Films. Japanese Journal of Applied Physics, 1998, 37, 6585-6586.	1.5	13
100	Novel emission properties of melem caused by the heavy metal effect of lanthanides(iii) in a LB film. Photochemical and Photobiological Sciences, 2007, 6, 804.	2.9	13
101	High rate deposition of photocatalytic TiO2 films with high activity by hollow cathode gas-flow sputtering method. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2008, 26, 893-897.	2.1	13
102	Thermophysical properties of SnO ₂ -based transparent conductive films: Effect of dopant species and structure compared with In ₂ O ₃ -, ZnO-, and TiO ₂ -based films. Journal of Materials Research, 2014, 29, 1579-1584.	2.6	13
103	Characterization of RF-Enhanced DC Sputtering to Deposit Tin-Doped Indium Oxide Thin Films. Japanese Journal of Applied Physics, 1998, 37, 6210-6214.	1.5	12
104	Electrical properties and surface morphology of heteroepitaxial-grown tin-doped indium oxide thin films deposited by molecular-beam epitaxy. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2000, 18, 1663-1667.	2.1	12
105	Excitation energy transfer between D3h melamines and Pr(III) in the solid state. Science and Technology of Advanced Materials, 2006, 7, 72-76.	6.1	12
106	High rate deposition of photocatalytic TiO2 films by dc magnetron sputtering using a TiO2â^'x target. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2008, 26, 903-907.	2.1	12
107	Tailoring the crystal structure of TiO2 thin films from the anatase to rutile phase. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2015, 33, .	2.1	12
108	p-type conduction mechanism in continuously varied non-stoichimetric SnOx thin films deposited by reactive sputtering with the impedance control. Journal of Applied Physics, 2020, 127, 185703.	2.5	12

#	Article	IF	CITATIONS
109	Molecular Distortion Effect on ff-Emission in a Pr(III) Complex with 4,7-Diphenyl-1,10-Phenanthroline. ChemPhysChem, 2007, 8, 1345-1351.	2.1	11
110	In-situ Analyses on Reactive Sputtering Processes to Deposit Photocatalytic TiO ₂ Films. Japanese Journal of Applied Physics, 2010, 49, 041105.	1.5	11
111	Structure and thermophysical properties of GaN films deposited by reactive sputtering using a metal Ga target. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, .	2.1	11
112	GaN Films Deposited by DC Reactive Magnetron Sputtering. Japanese Journal of Applied Physics, 2004, 43, L164-L166.	1.5	10
113	Donor generation from native defects induced by In+ implantation into tinâ€doped indium oxide. Journal of Applied Physics, 1995, 77, 2572-2575.	2.5	9
114	In-situ analysis of positive and negative energetic ions generated during Sn-doped In2O3 deposition by reactive sputtering. Thin Solid Films, 2011, 520, 1182-1185.	1.8	9
115	Photocatalytic Activity of WO ₃ Films Crystallized by Postannealing in Air. Japanese Journal of Applied Physics, 2012, 51, 055501.	1.5	9
116	Photocatalytic oxidation of benzene in a microreactor with immobilized TiO2 thin films deposited by sputtering. Catalysis Communications, 2017, 100, 1-4.	3.3	9
117	Temporal Evolution of Microscopic Structure and Functionality during Crystallization of Amorphous Indium-Based Oxide Films. ACS Applied Materials & Interfaces, 2021, 13, 31825-31834.	8.0	9
118	Study on reactive sputtering to deposit transparent conductive amorphous In2O3–ZnO films using an In–Zn alloy target. Thin Solid Films, 2014, 559, 49-52.	1.8	8
119	Oxidation Resistance of Ti–Si–N and Ti–Al–Si–N Films Deposited by Reactive Sputtering Using Alloy Targets. Japanese Journal of Applied Physics, 2011, 50, 075802.	1.5	8
120	Effect of Oxygen Impurities on Thermal Diffusivity of AlN Thin Films Deposited by Reactive RF Magnetron Sputtering. Japanese Journal of Applied Physics, 2011, 50, 11RB01.	1.5	7
121	Nanocrystalline Ge synthesis by the chemical reduction of hydrothermally grown Si0.6Ge0.4O2. Journal of Electronic Materials, 1994, 23, 901-906.	2.2	6
122	Influence of Unbalanced Magnetron and Penning Ionization for RF Reactive Magnetron Sputtering. Japanese Journal of Applied Physics, 1999, 38, 186-191.	1.5	6
123	High-Performance and High-CRI OLEDs for Lighting and Their Fabrication Processes. Advances in Science and Technology, 2010, 75, 65-73.	0.2	6
124	Comparison of CF4 and C4F8 gas etching profiles by multiscale simulation. Japanese Journal of Applied Physics, 2015, 54, 036501.	1.5	6
125	Tuning hole charge collection efficiency in polymer photovoltaics by optimizing the work function of indium tin oxide electrodes with solution-processed LiF nanoparticles. Journal of Materials Science: Materials in Electronics, 2015, 26, 9205-9212.	2.2	6
126	Indium oxide-based transparent conductive films deposited by reactive sputtering using alloy targets. Japanese Journal of Applied Physics, 2017, 56, 045503.	1.5	6

#	Article	IF	CITATIONS
127	Carrier densities of Sn-doped In 2O 3 nanoparticles and their effect on X-ray photoelectron emission. Journal of Applied Physics, 2019, 125, 245303.	2.5	6
128	Effect of Oxygen Impurities on Thermal Diffusivity of AlN Thin Films Deposited by Reactive RF Magnetron Sputtering. Japanese Journal of Applied Physics, 2011, 50, 11RB01.	1.5	5
129	Crystallization behavior during transparent In ₂ O ₃ â€ZnO film growth. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 2291-2295.	1.8	5
130	Thermophysical Properties of Transparent Conductive Nb-Doped TiO ₂ Films. Japanese Journal of Applied Physics, 2012, 51, 035802.	1.5	5
131	Microstructruture of Heteroepitaxially Grown TiO2 Films by Magnetron Sputtering. Materials Research Society Symposia Proceedings, 2001, 672, 1.	0.1	4
132	Formation of homologous In2O3(ZnO)m thin films and its thermoelectric properties. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2016, 34, 041507.	2.1	4
133	Geometric structure of Sn dopants in sputtered TiO2film revealed by x-ray absorption spectroscopy and first-principles DFT calculations. Materials Research Express, 2018, 5, 046412.	1.6	4
134	Thermal conductivity across the van der Waals layers of <i>α</i> -MoO3 thin films composed of mosaic domains with in-plane 90° rotations. Journal of Applied Physics, 2021, 130, .	2.5	4
135	High Rate Reactive Sputter Deposition of TiO ₂ Films for Photocatalyst and Dye-Sensitized Solar Cells. Japanese Journal of Applied Physics, 2011, 50, 045802.	1.5	4
136	Photocatalytic Activity of WO ₃ Films Crystallized by Postannealing in Air. Japanese Journal of Applied Physics, 2012, 51, 055501.	1.5	4
137	Structures and Electrical Properties of Tin Doped Indium Oxide (ITO) Films Deposited on Different Substrates by Sputtering with H2O Introduction. Shinku/Journal of the Vacuum Society of Japan, 2004, 47, 796-801.	0.2	3
138	How the sputtering process influence structural, optical, and electrical properties of Zn3N2 films?. MRS Communications, 2018, 8, 314-321.	1.8	3
139	Metallization in a-Si:H TFT Array Fabrication — Deposition and Wet Etching of Conductors. , 2004, , 313-376.		3
140	Thermal Boundary Resistance between <i>N</i> , <i>N</i> ,'-Bis(1-naphthyl)- <i>N</i> , <i>N</i> '-diphenylbenzidine and Aluminum Films. Japanese Journal of Applied Physics, 2011, 50, 11RB02.	1.5	3
141	Nanocrystalline Ge Synthesis by Reduction of Si1-xGexO2 Formed by High Pressure Oxidation. Materials Research Society Symposia Proceedings, 1992, 283, 51.	0.1	2
142	<title>Thermochromic nondoped and W-doped
VO<formula><inf><roman>2</roman></inf></formula> films heteroepitaxially grown on glass
substrate using ZnO polycrystalline films as buffer layers</title> . , 2001, , .		2
143	ā,µāf¼āf¢āfªāf•āf¬ā,¯ā,¿āf³ā,1法ā«ā,^ā,< TiNx 藄膜ā®ç†±æ‹¡æ•£çއ⮿,¬å®š. Journal of the Vacuum S	ocietøøf Jar	oan,22008, 51
144	Transmission Electron Microscopy Observation on the Early Stages of Sn-Doped In2O3Film Growth Deposited on Amorphous Carbon Films by DC Magnetron Sputtering. Applied Physics Express, 2009, 2, 095501.	2.4	2

#	Article	IF	CITATIONS
145	Thermal Conductivity of Amorphous Indium Zinc Oxide Thin Films. Materials Research Society Symposia Proceedings, 2011, 1315, 1.	0.1	2
146	Effect of Nb Concentration on Thermal Diffusivity of Nb-Doped TiO2 Films. Netsu Bussei, 2014, 25, 117-120.	0.1	2
147	Deposition of TiO2 photocatalyst on polyethylene terephthalate or polyimide polymer films by reactive sputtering for flexible photocatalytic sheets. Japanese Journal of Applied Physics, 2019, 58, 055503.	1.5	2
148	In Based TCOs. , 2011, , 149-169.		2
149	Electronic Polarization in Mixed Alkali Silicate Glasses: A Molecular Dynamics Study. Japanese Journal of Applied Physics, 1996, 35, 2251-2252.	1.5	1
150	Thermochromic VO2 Films Heteroepitaxially Grown on ZnO Coated Glass by RF Sputtering. Materials Research Society Symposia Proceedings, 2001, 666, 1041.	0.1	1
151	Oxidation Resistance of Ti–Si–N and Ti–Al–Si–N Films Deposited by Reactive Sputtering Using Alloy Targets. Japanese Journal of Applied Physics, 2011, 50, 075802.	1.5	1
152	How mass disorder affects heat conduction in ternary amorphous alloys. AIP Advances, 2021, 11, 065026.	1.3	1
153	Targets for High Rate Reactive Sputtering. ITO Deposition by Reactive dc Magnetron Sputtering with Ozone Introduction Shinku/Journal of the Vacuum Society of Japan, 2000, 43, 779-784.	0.2	1
154	High Rate Depositions of Transparent Conductive Al-doped ZnO Films by Reactive Sputtering. Shinku/Journal of the Vacuum Society of Japan, 2004, 47, 727-733.	0.2	1
155	Oxidation of Si1â^'xGex Alloys at Elevated Pressure. Materials Research Society Symposia Proceedings, 1991, 251, 65.	0.1	0
156	Oxidation of Si via Solid State Interfacial Reaction with Deposited Sn-Doped In2O3. Materials Research Society Symposia Proceedings, 1993, 318, 109.	0.1	0
157	Interfacial Solid-State Oxidation Reactions In The Sn-Doped In2O3 On Si And Si0.85Ge0.15 Alloy Systems. Materials Research Society Symposia Proceedings, 1994, 345, 191.	0.1	0
158	Persistent Spectral Hole Burning in Samarium and AluminumCodoped Silica Films Prepared by RF Sputtering Journal of the Ceramic Society of Japan, 1999, 107, 494-496.	1.3	0
159	Nb-doped TiO2 films for transparent conductive electrodes with low resistivity deposited by dc magnetron sputtering using a TiO2-x–Nb2O5-x target. Materials Research Society Symposia Proceedings, 2008, 1109, 32601.	0.1	0
160	Thermal Boundary Resistance betweenN,N\$ '\$-Bis(1-naphthyl)-N,N\$ '\$-diphenylbenzidine and Aluminum Films. Japanese Journal of Applied Physics, 2011, 50, 11RB02.	1.5	0
161	High Rate Reactive Sputter Deposition of TiO2Films for Photocatalyst and Dye-Sensitized Solar Cells. Japanese Journal of Applied Physics, 2011, 50, 045802.	1.5	0
162	Annealing Effects on Ta Doped SnO2 Films. Materials Research Society Symposia Proceedings, 2012, 1454, 245-251.	0.1	0

#	Article	IF	CITATIONS
163	Early Stages of Sn-Doped In2O3Film Growth on Amorphous SiO2Surfaces Observed by Atomic Force Microscopy and Transmission Electron Microscopy. Japanese Journal of Applied Physics, 2013, 52, 128007.	1.5	Ο
164	Study on Relationships between Internal Stress and Photodecomposition Properties of Thin Film Titanium Dioxide Photocatalyst. Shinku/Journal of the Vacuum Society of Japan, 2007, 50, 432-436.	0.2	0
165	Ion implantation and dynamic recovery of tin-doped indium oxide films. , 1994, , 503-506.		Ο
166	ITO/AgPd/ITO Laminated Films for High-performance Transparent Thin Film Heaters. Vacuum and Surface Science, 2022, 65, 84-89.	0.1	0