Roland Bol

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8624740/publications.pdf

Version: 2024-02-01

280 papers

14,438 citations

59 h-index 29157 104 g-index

299 all docs

299 docs citations

times ranked

299

13210 citing authors

#	Article	IF	Citations
1	Improved estimation and prediction of the wind-erodible fraction for Aridisols in arid southeast Tunisia. Catena, 2022, 211, 106001.	5.0	9
2	CO2 emission and source partitioning from carbonate and non-carbonate soils during incubation. Pedosphere, 2022, 32, 452-462.	4.0	2
3	Effects of altitude on soil properties in coastal fog ecosystems in Morro Moreno National Park, Antofagasta, Chile. European Journal of Soil Science, 2022, 73, .	3.9	4
4	Globally elevated chemical weathering rates beneath glaciers. Nature Communications, 2022, 13, 407.	12.8	20
5	Potential denitrification activity response to long-term nitrogen fertilization - A global meta-analysis. Journal of Cleaner Production, 2022, 336, 130451.	9.3	15
6	Dust and aerosols in the Atacama Desert. Earth-Science Reviews, 2022, 226, 103925.	9.1	12
7	Fertilizer P-derived uranium continues to accumulate at Rothamsted long-term experiments. Science of the Total Environment, 2022, 820, 153118.	8.0	6
8	Home-Field Advantage of Litter Decomposition Faded 8 Years after Spruce Forest Clearcutting in Western Germany. Soil Systems, 2022, 6, 26.	2.6	1
9	Soil OC and N Stocks in the Saline Soil of Tunisian Gataaya Oasis Eight Years after Application of Manure and Compost. Land, 2022, 11, 442.	2.9	3
10	Fairy ringâ€induced soil potassium depletion gradients reshape microbial community composition in a montane grassland. European Journal of Soil Science, 2022, 73, .	3.9	3
11	Transport and Retention of Poly(Acrylic Acid-co-Maleic Acid) Coated Magnetite Nanoparticles in Porous Media: Effect of Input Concentration, Ionic Strength and Grain Size. Nanomaterials, 2022, 12, 1536.	4.1	1
12	Low-level nitrogen and short-term addition increase soil carbon sequestration in Chinese forest ecosystems. Catena, 2022, 215, 106333.	5.0	5
13	Microbial regulation of net N mineralisation is driven by C, N, P content and stoichiometry. European Journal of Soil Science, 2022, 73, .	3.9	5
14	Organic Carbon Speciation in Urban Anthrosolsâ€"The Legacy of Historical Waste Management. Soil Systems, 2022, 6, 53.	2.6	2
15	Iron isotope fractionation in soil and graminaceous crops after 100 years of liming in the longâ€term agricultural experimental site at Berlinâ€Dahlem, Germany. European Journal of Soil Science, 2021, 72, 289-299.	3.9	2
16	A century of liming affects the Mg isotopic composition of the soil and crops in a longâ€term agricultural field at Berlinâ€Dahlem, Germany. European Journal of Soil Science, 2021, 72, 300-312.	3.9	1
17	Meet the Editors ―Roland Bol. Rapid Communications in Mass Spectrometry, 2021, 35, e9026.	1.5	0
18	Stable isotopic signatures of carbon and nitrogen in soil aggregates following the conversion of natural forests to managed plantations in eastern China. Plant and Soil, 2021, 459, 371-385.	3.7	7

#	Article	IF	CITATIONS
19	Forest Soil Colloids Enhance Delivery of Phosphorus Into a Diffusive Gradient in Thin Films (DGT) Sink. Frontiers in Forests and Global Change, 2021, 3, .	2.3	13
20	Long-Term Compost Application and the Impact of Soil P Legacy on the Enhancement of Early Maize Growth. Journal of Soil Science and Plant Nutrition, 2021, 21, 873-881.	3.4	5
21	Redox-driven changes in water-dispersible colloids and their role in carbon cycling in hydromorphic soils. Geoderma, 2021, 385, 114894.	5.1	10
22	Bentonite clay combined with organic amendments to enhance soil fertility in oasis agrosystem. Arabian Journal of Geosciences, 2021, 14, 1.	1.3	4
23	Carbon stability in a Scottish lowland raised bog: potential legacy effects of historical land use and implications for global change. Soil Biology and Biochemistry, 2021, 154, 108124.	8.8	5
24	Organic Carbon Linkage with Soil Colloidal Phosphorus at Regional and Field Scales: Insights from Size Fractionation of Fine Particles. Environmental Science & Environmental Science & 2021, 55, 5815-5825.	10.0	32
25	Describing Phosphorus Sorption Processes on Volcanic Soil in the Presence of Copper or Silver Engineered Nanoparticles. Minerals (Basel, Switzerland), 2021, 11, 373.	2.0	7
26	Colloidal catchment response to snowmelt and precipitation events differs in a forested headwater catchment. Vadose Zone Journal, 2021, 20, e20126.	2.2	4
27	Variation in the rate of land subsidence induced by groundwater extraction and its effect on the response pattern of soil microbial communities. Earth Surface Processes and Landforms, 2021, 46, 1898-1908.	2.5	2
28	Exponential relationship between N2O emission and fertilizer nitrogen input and mechanisms for improving fertilizer nitrogen efficiency under intensive plastic-shed vegetable production in China: A systematic analysis. Agriculture, Ecosystems and Environment, 2021, 312, 107353.	5.3	19
29	Citric Acid Effect on the Abundance, Size and Composition of Water-Dispersible Soil Colloids and Its Relationship to Soil Phosphorus Desorption: A Case Study. Journal of Soil Science and Plant Nutrition, 2021, 21, 2436-2446.	3.4	9
30	Cellulose-Based Hectocycle Nanopolymers: Synthesis, Molecular Docking and Adsorption of Difenoconazole from Aqueous Medium. International Journal of Molecular Sciences, 2021, 22, 6090.	4.1	24
31	Microbial potential for denitrification in the hyperarid Atacama Desert soils. Soil Biology and Biochemistry, 2021, 157, 108248.	8.8	13
32	Influences of irrigation and fertilization on soil N cycle and losses from wheat–maize cropping system in northern China. Environmental Pollution, 2021, 278, 116852.	7.5	26
33	Distributions of straw-derived carbon in Mollisol's aggregates under different fertilization practices. Scientific Reports, 2021, 11, 17899.	3.3	6
34	Differential long-term fertilization alters residue-derived labile organic carbon fractions and microbial community during straw residue decomposition. Soil and Tillage Research, 2021, 213, 105120.	5.6	31
35	Water dispersible colloids and related nutrient availability in Amazonian Terra Preta soils. Geoderma, 2021, 397, 115103.	5.1	18
36	Phosphate oxygen isotope fingerprints of past biological activity in the Atacama Desert. Geochimica Et Cosmochimica Acta, 2021, 311, 1-11.	3.9	6

#	Article	IF	CITATIONS
37	What is the deal with the Green Deal: Will the new strategy help to improve European freshwater quality beyond the Water Framework Directive?. Science of the Total Environment, 2021, 791, 148080.	8.0	27
38	Novel, Environment-Friendly Cellulose-Based Derivatives for Tetraconazole Removal from Aqueous Solution. Polymers, 2021, 13, 450.	4.5	9
39	Phenoloxidase activity and organic carbon dynamics in historic Anthrosols in Scotland, UK. PLoS ONE, 2021, 16, e0259205.	2.5	3
40	GPR and EMI characterization of the hyperarid study site of Yungay, Chile: Implications of applying geophysical methods on Mars. Earth and Space Science, 2021, 8, e2021EA001790.	2.6	2
41	Tracing elevational changes in microbial life and organic carbon sources in soils of the Atacama Desert. Global and Planetary Change, 2020, 184, 103078.	3.5	37
42	â€~Co-evolution' of uranium concentration and oxygen stable isotope in phosphate rocks. Applied Geochemistry, 2020, 114, 104476.	3.0	13
43	Contrasting depth distribution of colloid-associated phosphorus in the active and abandoned sections of an alluvial fan in a hyper-arid region of the Atacama Desert. Global and Planetary Change, 2020, 185, 103090.	3.5	17
44	Enhanced soil aggregate stability limits colloidal phosphorus loss potentials in agricultural systems. Environmental Sciences Europe, 2020, 32, .	5.5	25
45	Enhanced Ibuprofen Adsorption and Desorption on Synthesized Functionalized Magnetic Multiwall Carbon Nanotubes from Aqueous Solution. Materials, 2020, 13, 3329.	2.9	48
46	Towards a global-scale soil climate mitigation strategy. Nature Communications, 2020, 11, 5427.	12.8	302
47	Bioavailability and -accessibility of subsoil allocated 33P-labelled hydroxyapatite to wheat under different moisture supply. Scientific Reports, 2020, 10, 17140.	3.3	6
48	Magnetic Multiwall Carbon Nanotube Decorated with Novel Functionalities: Synthesis and Application as Adsorbents for Lead Removal from Aqueous Medium. Processes, 2020, 8, 986.	2.8	13
49	Uranium Vertical and Lateral Distribution in a German Forested Catchment. Forests, 2020, 11, 1351.	2.1	1
50	Microbial assimilation dynamics differs but total mineralization from added root and shoot residues is similar in agricultural Alfisols. Soil Biology and Biochemistry, 2020, 148, 107901.	8.8	20
51	Resilience in coastal dune grasslands: pH and soil organic matter effects on P nutrition, plant strategies, and soil communities. Ecosphere, 2020, 11, e03112.	2.2	12
52	Rhizosphere processes in nitrate-rich barley soil tripled both N2O and N2 losses due to enhanced bacterial and fungal denitrification. Plant and Soil, 2020, 448, 509-522.	3.7	18
53	Intensive organic vegetable production increases soil organic carbon but with a lower carbon conversion efficiency than integrated management. Journal of Plant Nutrition and Soil Science, 2020, 183, 155-168.	1.9	4
54	Non-critical uranium accumulation in soils of German and Danish long-term fertilizer experiments. Geoderma, 2020, 370, 114336.	5.1	11

#	Article	IF	CITATIONS
55	Nitrogen Additions Retard Nutrient Release from Two Contrasting Foliar Litters in a Subtropical Forest, Southwest China. Forests, 2020, 11, 377.	2.1	7
56	Critical accumulation of fertilizer-derived uranium in Icelandic grassland Andosol. Environmental Sciences Europe, 2020, 32, .	5.5	11
57	Carbon accrual in the Atacama Desert. Global and Planetary Change, 2019, 181, 102993.	3.5	37
58	Insights into 33phosphorus utilisation from Fe- and Al-hydroxides in Luvisol and Ferralsol subsoils. Soil Research, 2019, 57, 447.	1.1	5
59	Quantifying N2O reduction to N2 during denitrification in soils via isotopic mapping approach: Model evaluation and uncertainty analysis. Environmental Research, 2019, 179, 108806.	7.5	46
60	Effects of land use change from natural forest to plantation on C, N and natural abundance of 13C and 15N along a climate gradient in eastern China. Scientific Reports, 2019, 9, 16516.	3.3	25
61	Soil Organic Matter Composition in Coastal and Continental Date Palm Systems: Insights from Tunisian Oases. Pedosphere, 2019, 29, 444-456.	4.0	14
62	Occurrence of Soil Fungi in Antarctic Pristine Environments. Frontiers in Bioengineering and Biotechnology, 2019, 7, 28.	4.1	45
63	Soil organic matter priming and carbon balance after straw addition is regulated by long-term fertilization. Soil Biology and Biochemistry, 2019, 135, 383-391.	8.8	81
64	Soil NO3â^ level and O2 availability are key factors in controlling N2O reduction to N2 following long-term liming of an acidic sandy soil. Soil Biology and Biochemistry, 2019, 132, 165-173.	8.8	61
65	Iron cycling and isotope fractionation in terrestrial ecosystems. Earth-Science Reviews, 2019, 190, 323-352.	9.1	62
66	Conservation farming practices in winter wheat–summer maize cropping reduce GHG emissions and maintain high yields. Agriculture, Ecosystems and Environment, 2019, 272, 266-275.	5.3	32
67	Improved isotopic model based on ¹⁵ N tracing and Rayleighâ€type isotope fractionation for simulating differential sources of N ₂ O emissions in a clay grassland soil. Rapid Communications in Mass Spectrometry, 2019, 33, 449-460.	1.5	3
68	Variation of $\langle \sup 13 \langle \sup \rangle C$ and $\langle \sup 15 \langle \sup \rangle N$ enrichments in different plant components of labeled winter wheat ($\langle i \rangle T$ riticum aestivum $\langle i \rangle$ L.). PeerJ, 2019, 7, e7738.	2.0	4
69	Measuring root system traits of wheat in 2D images to parameterize 3D root architecture models. Plant and Soil, 2018, 425, 457-477.	3.7	21
70	Leaching of natural colloids from forest topsoils and their relevance for phosphorus mobility. Science of the Total Environment, 2018, 634, 305-315.	8.0	74
71	Isotopic methods for nonâ€destructive assessment of carbon dynamics in shrublands under longâ€ŧerm climate change manipulation. Methods in Ecology and Evolution, 2018, 9, 866-880.	5.2	6
72	Allocation of photosynthesized carbon in an intensively farmed winter wheat–soil system as revealed by 14CO2 pulse labelling. Scientific Reports, 2018, 8, 3160.	3.3	16

#	Article	IF	Citations
73	Potential dual effect of nitrification inhibitor 3,4-dimethylpyrazole phosphate on nitrifier denitrification in the mitigation of peak N2O emission events in North China Plain cropping systems. Soil Biology and Biochemistry, 2018, 121, 147-153.	8.8	44
74	Organic phosphorus in the terrestrial environment: a perspective on the state of the art and future priorities. Plant and Soil, 2018, 427, 191-208.	3.7	145
75	Effect of longâ€term drainage on plant community, soil carbon and nitrogen contents and stable isotopic (<i>Í'</i> ¹³ C, <i>Î'</i> ¹⁵ N) composition of a permanent grassland. European Journal of Soil Science, 2018, 69, 48-68.	3.9	5
76	Phosphorus in water dispersible-colloids of forest soil profiles. Plant and Soil, 2018, 427, 71-86.	3.7	51
77	Moisture activation and carbon use efficiency of soil microbial communities along an aridity gradient in the Atacama Desert. Soil Biology and Biochemistry, 2018, 117, 68-71.	8.8	54
78	Straw amendment with nitrate-N decreased N2O/(N2O+N2) ratio but increased soil N2O emission: A case study of direct soil-born N2 measurements. Soil Biology and Biochemistry, 2018, 127, 301-304.	8.8	49
79	Historical charcoal additions alter water extractable, particulate and bulk soil C composition and stabilization. Journal of Plant Nutrition and Soil Science, 2018, 181, 809-817.	1.9	17
80	Interaction of straw amendment and soil NO3â^' content controls fungal denitrification and denitrification product stoichiometry in a sandy soil. Soil Biology and Biochemistry, 2018, 126, 204-212.	8.8	61
81	Isotopic evidence of biotrophy and unusual nitrogen nutrition in soilâ€dwelling Hygrophoraceae. Environmental Microbiology, 2018, 20, 3573-3588.	3 . 8	18
82	The TERENOâ€Rur Hydrological Observatory: A Multiscale Multiâ€Compartment Research Platform for the Advancement of Hydrological Science. Vadose Zone Journal, 2018, 17, 1-22.	2.2	81
83	Effect of biochar origin and soil pH on greenhouse gas emissions from sandy and clay soils. Applied Soil Ecology, 2018, 129, 121-127.	4.3	98
84	Straw incorporation increases crop yield and soil organic carbon sequestration but varies under different natural conditions and farming practices in China: a system analysis. Biogeosciences, 2018, 15, 1933-1946.	3.3	88
85	Greenhouse gas emissions during storage of manure and digestates: Key role of methane for prediction and mitigation. Agricultural Systems, 2018, 166, 26-35.	6.1	52
86	Rapid wet chemical synthesis for 33P-labelled hydroxyapatite – An approach for environmental research. Applied Geochemistry, 2018, 97, 181-186.	3.0	15
87	Challenges of Reducing Phosphorus Based Water Eutrophication in the Agricultural Landscapes of Northwest Europe. Frontiers in Marine Science, 2018, 5, .	2.5	91
88	Mitigating N2O emissions from clover residues by 3,4-dimethylpyrazole phosphate (DMPP) without adverse effects on the earthworm Lumbricus terrestris. Soil Biology and Biochemistry, 2017, 104, 95-107.	8.8	29
89	A Threeâ€Dimensional View on Soil Biogeochemistry: A Dataset for a Forested Headwater Catchment. Journal of Environmental Quality, 2017, 46, 210-218.	2.0	17
90	Agricultural sustainable intensification improved nitrogen use efficiency and maintained high crop yield during 1980–2014 in Northern China. Science of the Total Environment, 2017, 596-597, 61-68.	8.0	71

#	Article	lF	Citations
91	An evaluation of the hysteresis in chemical concentration–discharge (C–Q) relationships from drained, intensively managed grasslands in southwest England. Hydrological Sciences Journal, 2017, 62, 1243-1254.	2.6	10
92	Altitude affects the quality of the water-extractable organic matter (WEOM) from rhizosphere and bulk soil in European beech forests. Geoderma, 2017, 302, 6-13.	5.1	43
93	The effect of nitrification inhibitor on N2O, NO and N2 emissions under different soil moisture levels in a permanent grassland soil. Soil Biology and Biochemistry, 2017, 113, 153-160.	8.8	69
94	To Extract, or not to Extract Uranium from Phosphate Rock, that is the Question. Environmental Science & Environmental Science	10.0	54
95	Study of uranium toxicity using low-background gamma-ray spectrometry. Journal of Radioanalytical and Nuclear Chemistry, 2017, 314, 1367-1373.	1.5	9
96	Elemental Composition of Natural Nanoparticles and Fine Colloids in European Forest Stream Waters and Their Role as Phosphorus Carriers. Global Biogeochemical Cycles, 2017, 31, 1592-1607.	4.9	48
97	Soil organic phosphorus transformations during 2000 years of paddy-rice and non-paddy management in the Yangtze River Delta, China. Scientific Reports, 2017, 7, 10818.	3.3	8
98	Biogas Digester Hydraulic Retention Time Affects Oxygen Consumption Patterns and Greenhouse Gas Emissions after Application of Digestate to Soil. Journal of Environmental Quality, 2017, 46, 1114-1122.	2.0	7
99	Effects of cattle slurry and nitrification inhibitor application on spatial soil O2 dynamics and N2O production pathways. Soil Biology and Biochemistry, 2017, 114, 200-209.	8.8	42
100	Nitrification inhibitor's effect on mitigating N 2 O emissions was weakened by urease inhibitor in calcareous soils. Atmospheric Environment, 2017, 166, 142-150.	4.1	34
101	Impacts of natural factors and farming practices on greenhouse gas emissions in the North China Plain: A metaâ€analysis. Ecology and Evolution, 2017, 7, 6702-6715.	1.9	26
102	Nitrification inhibitors mitigate N2O emissions more effectively under straw-induced conditions favoring denitrification. Soil Biology and Biochemistry, 2017, 104, 197-207.	8.8	98
103	Characterization of organic carbon in decomposing litter exposed to nitrogen and sulfur additions: Links to microbial community composition and activity. Geoderma, 2017, 286, 116-124.	5.1	34
104	Effect of past peat cultivation practices on present dynamics of dissolved organic carbon. Science of the Total Environment, 2017, 574, 1243-1253.	8.0	17
105	Coupled incorporation of maize (Zea mays L.) straw with nitrogen fertilizer increased soil organic carbon in Fluvic Cambisol. Geoderma, 2017, 304, 19-27.	5.1	72
106	Phosphorus Binding to Nanoparticles and Colloids in Forest Stream Waters. Vadose Zone Journal, 2017, 16, 1-12.	2.2	54
107	Effect of soil saturation on denitrification in a grassland soil. Biogeosciences, 2017, 14, 4691-4710.	3.3	26
108	Spatiotemporal Analysis of Dissolved Organic Carbon and Nitrate in Waters of a Forested Catchment Using Wavelet Analysis. Vadose Zone Journal, 2017, 16, 1-14.	2.2	20

#	Article	IF	Citations
109	Colloid-bound and dissolved phosphorus species in topsoil water extracts along a grassland transect from Cambisol to Stagnosol. Biogeosciences, 2017, 14, 1153-1164.	3.3	33
110	A Dataset for Threeâ€Dimensional Distribution of 39 Elements Including Plant Nutrients and Other Metals and Metalloids in the Soils of a Forested Headwater Catchment. Journal of Environmental Quality, 2017, 46, 1510-1518.	2.0	6
111	Impact of anthropogenic induced nitrogen input and liming on phosphorus leaching in forest soils. Journal of Plant Nutrition and Soil Science, 2016, 179, 443-453.	1.9	40
112	Dissolved and colloidal phosphorus fluxes in forest ecosystems—an almost blind spot in ecosystem research. Journal of Plant Nutrition and Soil Science, 2016, 179, 425-438.	1.9	125
113	Longâ€term management changes topsoil and subsoil organic carbon and nitrogen dynamics in a temperate agricultural system. European Journal of Soil Science, 2016, 67, 421-430.	3.9	72
114	Not poles apart: Antarctic soil fungal communities show similarities to those of the distant Arctic. Ecology Letters, 2016, 19, 528-536.	6.4	109
115	N ₂ O source partitioning in soils using ¹⁵ N site preference values corrected for the N ₂ O reduction effect. Rapid Communications in Mass Spectrometry, 2016, 30, 620-626.	1.5	22
116	Effect of beech (Fagus sylvatica L.) rhizosphere on phosphorous availability in soils at different altitudes (Central Italy). Geoderma, 2016, 276, 53-63.	5.1	42
117	The contribution of hydroxylamine content to spatial variability of N2O formation in soil of a Norway spruce forest. Geochimica Et Cosmochimica Acta, 2016, 178, 76-86.	3.9	17
118	Comparison of extraction efficiencies for water-transportable phenols from different land uses. Organic Geochemistry, 2016, 102, 45-51.	1.8	7
119	Stage-specific response of litter decomposition to N and S amendments in a subtropical forest soil. Biology and Fertility of Soils, 2016, 52, 711-724.	4.3	32
120	Phosphorus forms in forest soil colloids as revealed by liquidâ€state ³¹ Pâ€NMR. Journal of Plant Nutrition and Soil Science, 2016, 179, 159-167.	1.9	54
121	Contrasting temperature responses of dissolved organic carbon and phenols leached from soils. Plant and Soil, 2016, 399, 13-27.	3.7	16
122	Soil organic matter amendments in date palm groves of the Middle Eastern and North African region: a mini-review. Journal of Arid Land, 2016, 8, 77-92.	2.3	22
123	Phosphorus Containing Water Dispersible Nanoparticles in Arable Soil. Journal of Environmental Quality, 2015, 44, 1772-1781.	2.0	61
124	Isotope fractionation factors controlling isotopocule signatures of soil-emitted N ₂ O produced by denitrification processes of various rates. Rapid Communications in Mass Spectrometry, 2015, 29, 269-282.	1.5	43
125	Spatioâ€ŧemporal Variations of Dissolved Organic Matter in a German Forested Mountainous Headwater Catchment. Vadose Zone Journal, 2015, 14, 1-12.	2.2	12
126	Speciation and distribution of P associated with Fe and Al oxides in aggregate-sized fraction of an arable soil. Biogeosciences, 2015, 12, 6443-6452.	3.3	68

#	Article	IF	Citations
127	Potential use of rare earth oxides as tracers of organic matter in grassland. Journal of Plant Nutrition and Soil Science, 2015, 178, 288-296.	1.9	9
128	Innovative methods in soil phosphorus research: A review. Journal of Plant Nutrition and Soil Science, 2015, 178, 43-88.	1.9	256
129	Anaerobic digestates lower N2O emissions compared to cattle slurry by affecting rate and product stoichiometry of denitrification – An N2O isotopomer case study. Soil Biology and Biochemistry, 2015, 84, 65-74.	8.8	57
130	Land use and soil factors affecting accumulation of phosphorus species in temperate soils. Geoderma, 2015, 257-258, 29-39.	5.1	133
131	A terrestrial observatory approach to the integrated investigation of the effects of deforestation on water, energy, and matter fluxes. Science China Earth Sciences, 2015, 58, 61-75.	5.2	50
132	Distribution of Phosphorusâ€Containing Fine Colloids and Nanoparticles in Stream Water of a Forest Catchment. Vadose Zone Journal, 2014, 13, 1-11.	2.2	59
133	Carbon loss by water erosion in drylands: implications from a study of vegetation change in the southâ€west USA. Hydrological Processes, 2014, 28, 2212-2222.	2.6	23
134	Bacteria and Fungi Respond Differently to Multifactorial Climate Change in a Temperate Heathland, Traced with 13C-Glycine and FACE CO2. PLoS ONE, 2014, 9, e85070.	2.5	42
135	Carbon and nitrogen in soil and vine roots in harrowed and grass-covered vineyards. Agriculture, Ecosystems and Environment, 2014, 193, 70-82.	5.3	52
136	Nutrient dynamics during decomposition of the residues from a sown legume or ruderal plant cover in an olive oil orchard. Agriculture, Ecosystems and Environment, 2014, 184, 115-123.	5.3	40
137	Quantifying the spatial variability of soil physical and chemical properties in relation to mitigation of diffuse water pollution. Geoderma, 2014, 214-215, 25-41.	5.1	37
138	Flooding effects on soil phenol oxidase activity and phenol release during rice straw decomposition. Journal of Plant Nutrition and Soil Science, 2014, 177, 541-547.	1.9	18
139	Sorption of inositol hexaphosphate on desert soils. Geoderma, 2014, 232-234, 573-580.	5.1	23
140	Woody plant encroachment into grasslands leads to accelerated erosion of previously stable organic carbon from dryland soils. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 2345-2357.	3.0	31
141	Variations in concentrations of N and P forms in leachates from dried soils rewetted at different rates. Biology and Fertility of Soils, 2013, 49, 79-87.	4.3	39
142	Novel laser spectroscopic technique for continuous analysis of N ₂ O isotopomers – application and intercomparison with isotope ratio mass spectrometry. Rapid Communications in Mass Spectrometry, 2013, 27, 216-222.	1.5	50
143	Effect of slurry and ammonium nitrate application on greenhouse gas fluxes of a grassland soil under atypical South West England weather conditions. Agriculture, Ecosystems and Environment, 2013, 181, 1-11.	5.3	24
144	Export of dissolved organic carbon and nitrate from grassland in winter using high temporal resolution, in situ UV sensing. Science of the Total Environment, 2013, 456-457, 384-391.	8.0	11

#	Article	IF	CITATIONS
145	Agrochemical characterization, net N mineralization, and potential N leaching of composted oliveâ€mill pomace currently produced in southern Spain. Journal of Plant Nutrition and Soil Science, 2013, 176, 655-664.	1.9	11
146	Changes in ecosystem structure, function and hydrological connectivity control water, soil and carbon losses in semiâ€arid grass to woody vegetation transitions. Earth Surface Processes and Landforms, 2013, 38, 1602-1611.	2.5	27
147	Understanding spatial variability of soil properties: a key step in establishing fieldâ€to farmâ€scale agroâ€ecosystem experiments. Rapid Communications in Mass Spectrometry, 2012, 26, 2413-2421.	1.5	43
148	Dissolved phosphorus composition of grassland leachates following application of dairyâ€slurry size fractions. Journal of Plant Nutrition and Soil Science, 2012, 175, 78-85.	1.9	10
149	Advances in the understanding of nutrient dynamics and management in UK agriculture. Science of the Total Environment, 2012, 434, 39-50.	8.0	101
150	Soil mineral N retention and N ₂ O emissions following combined application of ¹⁵ Nâ€labelled fertiliser and weed residues. Rapid Communications in Mass Spectrometry, 2012, 26, 2379-2385.	1.5	16
151	Stable carbon isotope analysis of fluvial sediment fluxes over two contrasting C ₄ ₃ semiâ€arid vegetation transitions. Rapid Communications in Mass Spectrometry, 2012, 26, 2386-2392.	1.5	15
152	Greenhouse gas (GHG) emissions from soils amended with digestate derived from anaerobic treatment of food waste. Rapid Communications in Mass Spectrometry, 2012, 26, 2422-2430.	1.5	43
153	Recovering Phosphorus from Soil: A Root Solution?. Environmental Science & Environmental Science & Recovering Phosphorus from Soil: A Root Solution?. Environmental Science & Root & Roo	10.0	116
154	Extensive Management Promotes Plant and Microbial Nitrogen Retention in Temperate Grassland. PLoS ONE, 2012, 7, e51201.	2.5	105
155	Nitric oxide and greenhouse gases emissions following the application of different cattle slurry particle size fractions to soil. Atmospheric Environment, 2012, 47, 373-380.	4.1	7
156	A novel application of natural fluorescence to understand the sources and transport pathways of pollutants from livestock farming in small headwater catchments. Science of the Total Environment, 2012, 417-418, 169-182.	8.0	32
157	A Review of Quantitative Tools for Assessing the Diffuse Pollution Response to Farmer Adaptations and Mitigation Methods Under Climate Change. Advances in Agronomy, 2011, , 1-54.	5.2	16
158	Effect of antecedent soil moisture conditions on emissions and isotopologue distribution of N2O during denitrification. Soil Biology and Biochemistry, 2011, 43, 240-250.	8.8	78
159	Natural abundance radiocarbon in soil microbial biomass: Results from a glacial foreland. Soil Biology and Biochemistry, 2011, 43, 1356-1361.	8.8	6
160	Rapid shift from denitrification to nitrification in soil after biogas residue application as indicated by nitrous oxide isotopomers. Soil Biology and Biochemistry, 2011, 43, 1671-1677.	8.8	62
161	Using artificial fluorescent particles as tracers of livestock wastes within an agricultural catchment. Science of the Total Environment, 2011, 409, 1095-1103.	8.0	6
162	Carbon mineralization and distribution of nutrients within different particle-size fractions of commercially produced olive mill pomace. Bioresource Technology, 2011, 102, 9997-10005.	9.6	10

#	Article	IF	Citations
163	Gross and net rates of nitrogen mineralisation in soil amended with composted olive mill pomace. Rapid Communications in Mass Spectrometry, 2011, 25, 1472-1478.	1.5	12
164	Longâ€term release of carbon from grassland soil amended with different slurry particle size fractions: a laboratory incubation study. Rapid Communications in Mass Spectrometry, 2011, 25, 1514-1520.	1.5	9
165	BMSS ISOâ€SIG (27â€"28 April), SIMSUG 2010 (28â€"30 April) and SIBAE (28â€"29 April 2010), University of ExUK. Rapid Communications in Mass Spectrometry, 2011, 25, 1459-1460.	xeter. 1.5	1
166	Towards a Holistic Classification of Diffuse Agricultural Water Pollution from Intensively Managed Grasslands on Heavy Soils. Advances in Agronomy, 2010, 105, 83-115.	5.2	39
167	Biotic and Abiotic Changes in Ecosystem Structure over a Shrub-Encroachment Gradient in the Southwestern USA. Ecosystems, 2010, 13, 1239-1255.	3.4	59
168	High Temporal Resolution Monitoring of Multiple Pollutant Responses in Drainage from an Intensively Managed Grassland Catchment Caused by a Summer Storm. Water, Air, and Soil Pollution, 2010, 205, 377-393.	2.4	25
169	Nitrous oxide production and denitrification rates in estuarine intertidal saltmarsh and managed realignment zones. Estuarine, Coastal and Shelf Science, 2010, 87, 591-600.	2.1	34
170	Short term N2O, CH4 and CO2 production from soil sampled at different depths and amended with a fine sized slurry fraction. Chemosphere, 2010, 81, 100-108.	8.2	17
171	Applications of stable isotope ratio mass spectrometry in cattle dung carbon cycling studies. Rapid Communications in Mass Spectrometry, 2010, 24, 495-500.	1.5	31
172	Measurement at the field scale of soil $\langle i \rangle \hat{l}' \langle i \rangle \langle sup \rangle 13 \langle sup \rangle C$ and $\langle i \rangle \hat{l}' \langle i \rangle \langle sup \rangle 15 \langle sup \rangle N$ under improved grassland. Rapid Communications in Mass Spectrometry, 2010, 24, 511-518.	1.5	17
173	Organic matter dynamics in a compostâ€amended anthropogenic landfill cappingâ€soil. European Journal of Soil Science, 2010, 61, 35-47.	3.9	21
174	Dual isotope and isotopomer measurements for the understanding of N ₂ O production and consumption during denitrification in an arable soil. European Journal of Soil Science, 2010, 61, 364-374.	3.9	49
175	Carbon isotopic composition of branched tetraether membrane lipids in soils suggest a rapid turnover and a heterotrophic life style of their source organism(s). Biogeosciences, 2010, 7, 2959-2973.	3.3	145
176	Carbonâ€mineralization kinetics in an organically managed Cambic Arenosol amended with organic fertilizers. Journal of Plant Nutrition and Soil Science, 2010, 173, 39-45.	1.9	50
177	Phosphorus Solubilization and Potential Transfer to Surface Waters from the Soil Microbial Biomass Following Drying–Rewetting and Freezing–Thawing. Advances in Agronomy, 2010, 106, 1-35.	5.2	115
178	A Review of Biochar and Its Use and Function in Soil. Advances in Agronomy, 2010, 105, 47-82.	5.2	1,490
179	Tracing the rate and extent of N and C flow from 13C,15N-glycine and glutamate into individual de novo synthesised soil amino acids. Organic Geochemistry, 2010, 41, 1259-1268.	1.8	54
180	Assessment of natural fluorescence as a tracer of diffuse agricultural pollution from slurry spreading on intensely-farmed grasslands. Water Research, 2010, 44, 1701-1712.	11.3	40

#	Article	IF	Citations
181	In situ determination of dissolved organic carbon in freshwaters using a reagentless UV sensor. Journal of Environmental Monitoring, 2010, 12, 1678.	2.1	15
182	Assessing multiple novel tracers to improve the understanding of the contribution of agricultural farm waste to diffuse water pollution. Journal of Environmental Monitoring, 2010, 12, 1159.	2.1	11
183	Interactions Among Agricultural Production and Other Ecosystem Services Delivered from European Temperate Grassland Systems. Advances in Agronomy, 2010, 109, 117-154.	5.2	62
184	Effects of active silicon uptake by rice on ²⁹ Si fractionation in various plant parts. Rapid Communications in Mass Spectrometry, 2009, 23, 2398-2402.	1.5	11
185	Molecular turnover time of soil organic matter in particleâ€size fractions of an arable soil. Rapid Communications in Mass Spectrometry, 2009, 23, 2551-2558.	1.5	99
186	Tracking the fate of dung-derived carbohydrates in a temperate grassland soil using compound-specific stable isotope analysis. Organic Geochemistry, 2009, 40, 1210-1218.	1.8	38
187	Effect of tillage system and straw management on organic matter dynamics. Agronomy for Sustainable Development, 2009, 29, 525-533.	5.3	58
188	Large old trees influence patterns of $\langle i \rangle \hat{l} \langle i \rangle \langle sup \rangle 13 \langle sup \rangle C$ and $\langle i \rangle \hat{l} \langle i \rangle \langle sup \rangle 15 \langle sup \rangle N$ in forests. Rapid Communications in Mass Spectrometry, 2008, 22, 1627-1630.	1.5	12
189	Offâ€ine pyrolysis and compoundâ€specific stable carbon isotope analysis of lignin moieties: a new method for determining the fate of lignin residues in soil. Rapid Communications in Mass Spectrometry, 2008, 22, 1631-1639.	1.5	36
190	Enhancing the understanding of earthworm feeding behaviour via the use of fatty acid <i>Î</i> ¹³ C values determined by gas chromatographyâ€combustionâ€isotope ratio mass spectrometry. Rapid Communications in Mass Spectrometry, 2008, 22, 1643-1652.	1.5	25
191	Using $\langle i \rangle \hat{i}' \langle i \rangle \langle \sup \rangle 15 \langle sup \rangle N$ and $\langle i \rangle \hat{i}' \langle i \rangle \langle \sup \rangle 18 \langle sup \rangle O$ to evaluate the sources and pathways of NO in rainfall event discharge from drained agricultural grassland lysimeters at high temporal resolutions. Rapid Communications in Mass Spectrometry, 2008, 22, 1681-1689.	1.5	24
192	Use of carbon isotope analysis to understand semiâ€arid erosion dynamics and longâ€term semiâ€arid land degradation. Rapid Communications in Mass Spectrometry, 2008, 22, 1697-1702.	1.5	29
193	Influence of recent vegetation on labile and recalcitrant carbon soil pools in central Queensland, Australia: evidence from thermal analysisâ€quadrupole mass spectrometryâ€isotope ratio mass spectrometry. Rapid Communications in Mass Spectrometry, 2008, 22, 1751-1758.	1.5	25
194	Longâ€term influence of manure and mineral nitrogen applications on plant and soil ¹⁵ N and ¹³ C values from the Broadbalk Wheat Experiment. Rapid Communications in Mass Spectrometry, 2008, 22, 1735-1740.	1.5	56
195	Amino acid ¹⁵ N in longâ€term bare fallow soils: influence of annual N fertilizer and manure applications. European Journal of Soil Science, 2008, 59, 617-629.	3.9	31
196	Do plant species with different growth strategies vary in their ability to compete with soil microbes for chemical forms of nitrogen?. Soil Biology and Biochemistry, 2008, 40, 228-237.	8.8	119
197	Chapter 6 Combining Biomarker with Stable Isotope Analyses for Assessing the Transformation and Turnover of Soil Organic Matter. Advances in Agronomy, 2008, , 155-250.	5.2	300
198	PREFERENCES FOR DIFFERENT NITROGEN FORMS BY COEXISTING PLANT SPECIES AND SOIL MICROBES: REPLY. Ecology, 2008, 89, 879-880.	3.2	4

#	Article	IF	CITATIONS
199	Assessment of the potential N mineralization of different particleâ€size fractions in two dairy cattle slurries. Journal of Plant Nutrition and Soil Science, 2008, 171, 313-315.	1.9	26
200	Earthworm responses to long term agricultural management practices: Spatial relationships with soil properties. European Journal of Soil Biology, 2007, 43, S171-S175.	3.2	16
201	Heterotrophic microbial communities use ancient carbon following glacial retreat. Biology Letters, 2007, 3, 487-490.	2.3	201
202	Processes affecting transfer of sediment and colloids, with associated phosphorus, from intensively farmed grasslands: tracing sediment and organic matter. Hydrological Processes, 2007, 21, 417-422.	2.6	35
203	Multiple stable isotope (¹⁸ O, ¹³ C, ¹⁵ N and ³⁴ S) analysis of human hair to identify the recent migrants in a rural community in SW England. Rapid Communications in Mass Spectrometry, 2007, 21, 2951-2954.	1.5	56
204	Development of a stable isotope index to assess decadal-scale vegetation change and application to woodlands of the Burdekin catchment, Australia. Global Change Biology, 2007, 13, 1455-1468.	9.5	31
205	The effect of diet manipulation on nitrous oxide and methane emissions from manure application to incubated grassland soils. Atmospheric Environment, 2007, 41, 7096-7107.	4.1	57
206	Quantification of priming and CO2 emission sources following the application of different slurry particle size fractions to a grassland soil. Soil Biology and Biochemistry, 2007, 39, 2608-2620.	8.8	57
207	Nitrate leaching in soil: Tracing the NO3â^' sources with the help of stable N and O isotopes. Soil Biology and Biochemistry, 2007, 39, 3024-3033.	8.8	55
208	Free amino sugar reactions in soil in relation to soil carbon and nitrogen cycling. Soil Biology and Biochemistry, 2007, 39, 3081-3092.	8.8	74
209	PREFERENCES FOR DIFFERENT NITROGEN FORMS BY COEXISTING PLANT SPECIES AND SOIL MICROBES. Ecology, 2007, 88, 989-999.	3.2	237
210	Nutrient Cycling Budgets in Managed Pastures. , 2007, , 215-255.		3
211	Phosphorus-31–nuclear magnetic–resonance spectroscopy to trace organic dung phosphorus in a temperate grassland soil. Journal of Plant Nutrition and Soil Science, 2006, 169, 69-75.	1.9	15
212	Influence of microbial activity on plant–microbial competition for organic and inorganic nitrogen. Plant and Soil, 2006, 289, 321-334.	3.7	89
213	Sources and mechanisms of priming effect induced in two grassland soils amended with slurry and sugar. Soil Biology and Biochemistry, 2006, 38, 747-758.	8.8	240
214	Processes affecting transfer of sediment and colloids, with associated phosphorus, from intensively farmed grasslands: an overview of key issues. Hydrological Processes, 2006, 20, 4407-4413.	2.6	73
215	Rapid intrinsic rates of amino acid biodegradation in soils are unaffected by agricultural management strategy. Soil Biology and Biochemistry, 2005, 37, 1267-1275.	8.8	121
216	Savanna-derived organic matter remaining in arable soils of the South African Highveld long-term mixed cropping: Evidence from 13C and 15N natural abundance. Soil Biology and Biochemistry, 2005, 37, 1898-1909.	8.8	53

#	Article	IF	Citations
217	Preferential uptake of soil nitrogen forms by grassland plant species. Oecologia, 2005, 142, 627-635.	2.0	222
218	14C of grasses as an indicator of fossil fuel CO2 pollution. Environmental Chemistry Letters, 2005, 3, 78-81.	16.2	14
219	Three sources of CO2 efflux from soil partitioned by 13C natural abundance in an incubation study. Rapid Communications in Mass Spectrometry, 2005, 19, 1417-1423.	1.5	13
220	Short-term dynamics of slurry-derived plant and microbial sugars in a temperate grassland soil as assessed by compound-specificl´13C analyses. Rapid Communications in Mass Spectrometry, 2005, 19, 1437-1446.	1.5	31
221	Nitrogen-15 in NO3â° characterises differently reactive soil organic N pools. Rapid Communications in Mass Spectrometry, 2005, 19, 3177-3181.	1.5	7
222	Application of simultaneous thermal analysis mass spectrometry and stable carbon isotope analysis in a carbon sequestration study. Rapid Communications in Mass Spectrometry, 2005, 19, 3192-3198.	1.5	37
223	The natural abundance of 13C, 15N, 34S and 14C in archived (1923-2000) plant and soil samples from the Askov long-term experiments on animal manure and mineral fertilizer. Rapid Communications in Mass Spectrometry, 2005, 19, 3216-3226.	1.5	122
224	Selected papers of the 1stJoint European Stable Isotope Users Group Meeting (JESIUM), August 30 to September 3, 2004, Vienna, Austria. Isotopes in Environmental and Health Studies, 2005, 41, 185-188.	1.0	0
225	Quantification of dung carbon incorporation in a temperate grassland soil following spring application using bulk stable carbon isotope determinations. Isotopes in Environmental and Health Studies, 2005, 41, 3-11.	1.0	35
226	Recent vegetation changes in central Queensland, Australia: Evidence from $\hat{l}'13C$ and $14C$ analyses of soil organic matter. Geoderma, 2005, 126, 241-259.	5.1	84
227	Soil microbial respiration responses to repeated urea applications in three grasslands. Soil Research, 2005, 43, 905.	1.1	24
228	Dynamics of a Pasture Soil Microbial Community after Deposition of Cattle Urine Amended with [13 C]Urea. Applied and Environmental Microbiology, 2004, 70, 6363-6369.	3.1	49
229	Short-term N2O, CO2, NH3 fluxes, and N/C transfers in a Danish grass-clover pasture after simulated urine deposition in autumn. Journal of Plant Nutrition and Soil Science, 2004, 167, 568-576.	1.9	48
230	Short-term sequestration of slurry-derived carbon into particle size fractions of a temperate grassland soil. Isotopes in Environmental and Health Studies, 2004, 40, 81-87.	1.0	11
231	Clear-cutting of a Norway spruce stand: implications for controls on the dynamics of dissolved organic matter in the forest floor. European Journal of Soil Science, 2004, 55, 401-413.	3.9	71
232	Influence of flooding onl 15N, l 18O, l 15N and 2l 15N signatures of N2O released from estuarine soilsâ€" a laboratory experiment using tidal flooding chambers. Rapid Communications in Mass Spectrometry, 2004, 18, 1561-1568.	1.5	27
233	Role of aggregate surface and core fraction in the sequestration of carbon from dung in a temperate grassland soil. European Journal of Soil Science, 2004, 55, 71-77.	3.9	29
234	Long term changes in the distribution and $\hat{l}'15N$ values of individual soil amino acids in the absence of plant and fertiliser inputs. Isotopes in Environmental and Health Studies, 2004, 40, 243-256.	1.0	21

#	Article	IF	CITATIONS
235	Using natural 13C abundances to differentiate between three CO2 sources during incubation of a grassland soil amended with slurry and sugar. Journal of Plant Nutrition and Soil Science, 2004, 167, 669-677.	1.9	26
236	Short-term effects of dairy slurry amendment on carbon sequestration and enzyme activities in a temperate grassland. Soil Biology and Biochemistry, 2003, 35, 1411-1421.	8.8	83
237	Quantification of priming and CO2 respiration sources following slurry-C incorporation into two grassland soils with different C content. Rapid Communications in Mass Spectrometry, 2003, 17, 2585-2590.	1.5	81
238	Dual isotope and isotopomer ratios of N2O emitted from a temperate grassland soil after fertiliser application. Rapid Communications in Mass Spectrometry, 2003, 17, 2550-2556.	1.5	73
239	SOIL MICROBES COMPETE EFFECTIVELY WITH PLANTS FOR ORGANIC-NITROGEN INPUTS TO TEMPERATE GRASSLANDS. Ecology, 2003, 84, 1277-1287.	3.2	313
240	Natural abundance of 13C and 15N in earthworms from different cropping treatments. Pedobiologia, 2003, 47, 560-567.	1.2	7
241	Inter-specific variability in organic nitrogen uptake of three temperate grassland species. Journal of Plant Nutrition and Soil Science, 2003, 166, 606-611.	1.9	55
242	Recalcitrant soil organic materials mineralize more efficiently at higher temperatures. Journal of Plant Nutrition and Soil Science, 2003, 166, 300-307.	1.9	77
243	Natural abundance of 13C and 15N in earthworms from different cropping treatmentsThe 7th international symposium on earthworm ecology · Cardiff · Wales · 2002. Pedobiologia, 2003, 47, 560-567.	1.2	20
244	Fate of dung-applied copper in a British grassland soil. Geoderma, 2002, 106, 273-288.	5.1	9
245	Molecular dynamics of organic matter in a cultivated soil. Organic Geochemistry, 2002, 33, 357-366.	1.8	299
246	Compound specific plant amino acid \hat{l} 15N values differ with functional plant strategies in temperate grassland. Journal of Plant Nutrition and Soil Science, 2002, 165, 661-667.	1.9	43
247	Stable isotope (13C,15N and34S) analysis of the hair of modern humans and their domestic animals. Rapid Communications in Mass Spectrometry, 2002, 16, 2195-2200.	1.5	124
248	Spatio-temporal variation of stable isotope ratios in earthworms under grassland and maize cropping systems. Soil Biology and Biochemistry, 2001, 33, 1673-1682.	8.8	30
249	Short-term sequestration of slurry-derived carbon and nitrogen in temperate grassland soil as assessed by 13C and 15N natural abundance measurements. Journal of Plant Nutrition and Soil Science, 2001, 164, 467.	1.9	39
250	Use of a novel nitrification inhibitor to reduce nitrous oxide emission from 15N-labelled dairy slurry injected into soil. Rapid Communications in Mass Spectrometry, 2001, 15, 1291-1296.	1.5	65
251	Diurnal fluxes and the isotopomer ratios of N2O in a temperate grassland following urine amendment. Rapid Communications in Mass Spectrometry, 2001, 15, 1263-1269.	1.5	73
252	Amino acids as a nitrogen source in temperate upland grasslands: the use of dual labelled (13C,15N) glycine to test for direct uptake by dominant grasses. Rapid Communications in Mass Spectrometry, 2000, 14, 1351-1355.	1.5	90

#	Article	IF	Citations
253	Effects of dung and urine amendments on the isotopic content of N2O released from grasslands. Rapid Communications in Mass Spectrometry, 2000, 14, 1356-1360.	1.5	46
254	Incorporation of 15N from spiked cattle dung pats into soil under two moorland plant communities. Rapid Communications in Mass Spectrometry, 2000, 14, 1361-1367.	1.5	9
255	The role of 14C dating in ironpan formation. Holocene, 2000, 10, 281-285.	1.7	2
256	Tracing dung-derived carbon in temperate grassland using 13C natural abundance measurements. Soil Biology and Biochemistry, 2000, 32, 1337-1343.	8.8	84
257	Radiocarbon Dating of Aliphatic Hydrocarbons A New Approach for Dating Passiveâ€Fraction Carbon in Soil Horizons. Soil Science Society of America Journal, 1999, 63, 1181-1187.	2.2	58
258	ESTIMATING NET PRIMARY PRODUCTION FROM MEASUREMENTS MADE ON SOIL ORGANIC MATTER. Ecology, 1999, 80, 2762-2773.	3.2	58
259	The influence of soil processes on carbon isotope distribution and turnover in the British uplands. European Journal of Soil Science, 1999, 50, 41-51.	3.9	88
260	Title is missing!. Plant and Soil, 1999, 216, 35-45.	3.7	27
261	Molecular insight into soil carbon turnover. , 1999, 13, 1278-1283.		128
262	Natural 13C abundance: a tool to trace the incorporation of dung-derived carbon into soil particle-size fractions., 1999, 13, 1291-1294.		46
263	A dynamic study of earthworm feeding ecology Âusing stable isotopes. , 1999, 13, 1300-1304.		19
264	Interpreting early land management through compound specific stable isotope analyses of archaeological soils., 1999, 13, 1315-1319.		35
265	Short-term changes in \hat{l} 13C and \hat{l} 15N signatures of water discharged from grazed grasslands. , 1999, 13, 1803-1807.		5
266	The Influence of Dung Amendments on Dissolved Organic Matter in Grassland Soil Leachates - Preliminary Results from a Lysimeter Study. Isotopes in Environmental and Health Studies, 1999, 35, 97-109.	1.0	29
267	Estimating the contribution of Spartina anglica biomass to salt-marsh sediments using compound specific stable carbon isotope measurements. Organic Geochemistry, 1999, 30, 477-483.	1.8	22
268	Climatic influences on the leaching of dissolved organic matter from upland UK moorland soils, investigated by a field manipulation experiment. Environment International, 1999, 25, 83-95.	10.0	210
269	Compound specific δ15N‰ values: amino acids in grassland and arable soils. Soil Biology and Biochemistry, 1999, 31, 1751-1755.	8.8	42
270	Dissolved organic matter and its parent organic matter in grass upland soil horizons studied by analytical pyrolysis techniques. European Journal of Soil Science, 1998, 49, 1-15.	3.9	104

#	Article	IF	CITATIONS
271	Î 13C values of soil organic carbon and their use in documenting vegetation change in a subtropical savanna ecosystem. Geoderma, 1998, 82, 5-41.	5.1	445
272	Amino Acid ¹⁵ N/ ¹⁴ N Analysis at Natural Abundances: A New Tool for Soil Organic Matter Studies in Agricultural Systems. Isotopes in Environmental and Health Studies, 1998, 34, 87-93.	1.0	14
273	Effects of Long-Term Fertilizer and Manure Treatments on the Distribution and 15N Natural Abundance of Amino Acids in the Palace Leas Meadow Hay Plots: A Preliminary Study. ACS Symposium Series, 1998, , 309-320.	0.5	5
274	Absence of carbon isotope fractionation of individual n-alkanes in a 23-year field decomposition experiment with Calluna vulgaris. Organic Geochemistry, 1997, 26, 497-501.	1.8	86
275	Compound-specific \hat{l} 15N amino acid signals in palaeosols as indicators of early land use: a preliminary study. Archaeological Prospection, 1997, 4, 147-152.	2.2	18
276	Post-glacial variations in distributions, 13C and 14C contents of aliphatic hydrocarbons and bulk organic matter in three types of British acid upland soils. Organic Geochemistry, 1996, 24, 273-287.	1.8	124
277	The 14C age and residence time of organic matter and its lipid constituents in a stagnohumic gley soil. European Journal of Soil Science, 1996, 47, 215-222.	3.9	68
278	The Use of Zeolite Molecular Sieves for Trapping Low Concentrations of CO2 from Environmental Atmospheres. Radiocarbon, 1995, 37, 643-647.	1.8	24
279	Quantification of soil carbon inputs under elevated CO2: C3 plants in a C4 soil. Plant and Soil, 1995, 187, 345-350.	3.7	106
280	The Compost of Olive Mill Pomace: From a Waste to a Resource - Environmental Benefits of Its Application in Olive Oil Groves. , 0, , .		8