Christophe Bernard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8623988/publications.pdf

Version: 2024-02-01

177 papers 11,660 citations

41344 49 h-index 99 g-index

200 all docs

200 docs citations

200 times ranked 12563 citing authors

#	Article	IF	CITATIONS
1	In vivo recordings of brain activity using organic transistors. Nature Communications, 2013, 4, 1575.	12.8	776
2	On the nature of seizure dynamics. Brain, 2014, 137, 2210-2230.	7.6	598
3	Dendritic but not somatic GABAergic inhibition is decreased in experimental epilepsy. Nature Neuroscience, 2001, 4, 52-62.	14.8	506
4	High-performance transistors for bioelectronics through tuning of channel thickness. Science Advances, $2015,1,e1400251.$	10.3	501
5	Acquired Dendritic Channelopathy in Temporal Lobe Epilepsy. Science, 2004, 305, 532-535.	12.6	402
6	Highly Conformable Conducting Polymer Electrodes for In Vivo Recordings. Advanced Materials, 2011, 23, H268-72.	21.0	319
7	The Virtual Epileptic Patient: Individualized whole-brain models of epilepsy spread. Neurolmage, 2017, 145, 377-388.	4.2	315
8	The Safety of Ingested Caffeine: A Comprehensive Review. Frontiers in Psychiatry, 2017, 8, 80.	2.6	301
9	Multiple facets of GABAergic neurons and synapses: multiple fates of GABA signalling in epilepsies. Trends in Neurosciences, 2005, 28, 108-115.	8.6	292
10	GluR5 kainate receptor activation in interneurons increases tonic inhibition of pyramidal cells. Nature Neuroscience, 1998, 1, 470-478.	14.8	284
11	A systematic framework for functional connectivity measures. Frontiers in Neuroscience, 2014, 8, 405.	2.8	279
12	Newly formed excitatory pathways provide a substrate for hyperexcitability in experimental temporal lobe epilepsy., 1999, 408, 449-460.		232
13	Early Development of Neuronal Activity in the Primate Hippocampus <i>In Utero</i> . Journal of Neuroscience, 2001, 21, 9770-9781.	3.6	219
14	Commonalities in epileptogenic processes from different acute brain insults: Do they translate?. Epilepsia, 2018, 59, 37-66.	5.1	206
15	Impaired consciousness during temporal lobe seizures is related to increased long-distance cortical–subcortical synchronization. Brain, 2009, 132, 2091-2101.	7.6	201
16	Animal models of temporal lobe epilepsy following systemic chemoconvulsant administration. Journal of Neuroscience Methods, 2016, 260, 45-52.	2.5	201
17	Membrane Potential of CA3 Hippocampal Pyramidal Cells During Postnatal Development. Journal of Neurophysiology, 2003, 90, 2964-2972.	1.8	190
18	Early Deficits in Spatial Memory and Theta Rhythm in Experimental Temporal Lobe Epilepsy. Journal of Neuroscience, 2009, 29, 5402-5410.	3.6	189

#	Article	IF	Citations
19	Nrf2-dependent persistent oxidative stress results in stress-induced vulnerability to depression. Molecular Psychiatry, 2017, 22, 1701-1713.	7.9	167
20	Neuronâ€restrictive silencer factorâ€mediated hyperpolarizationâ€activated cyclic nucleotide gated channelopathy in experimental temporal lobe epilepsy. Annals of Neurology, 2011, 70, 454-465.	5. 3	163
21	Vulnerability to Depression: From Brain Neuroplasticity to Identification of Biomarkers. Journal of Neuroscience, 2011, 31, 12889-12899.	3.6	154
22	Adenosine Receptor Antagonists Including Caffeine Alter Fetal Brain Development in Mice. Science Translational Medicine, 2013, 5, 197ra104.	12.4	148
23	Presynaptic Kainate Receptors that Enhance the Release of GABA on CA1 Hippocampal Interneurons. Neuron, 2001, 29, 497-508.	8.1	147
24	Cycles in epilepsy. Nature Reviews Neurology, 2021, 17, 267-284.	10.1	146
25	Localized Neuron Stimulation with Organic Electrochemical Transistors on Delaminating Depth Probes. Advanced Materials, 2015, 27, 4405-4410.	21.0	139
26	Controlling Epileptiform Activity with Organic Electronic Ion Pumps. Advanced Materials, 2015, 27, 3138-3144.	21.0	138
27	h channel-dependent deficit of theta oscillation resonance and phase shift in temporal lobe epilepsy. Neurobiology of Disease, 2009, 33, 436-447.	4.4	129
28	Altering cannabinoid signaling during development disrupts neuronal activity. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9388-9393.	7.1	126
29	Operative GABAergic inhibition in hippocampal CA1 pyramidal neurons in experimental epilepsy. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 12151-12156.	7.1	123
30	Electrophoretic drug delivery for seizure control. Science Advances, 2018, 4, eaau1291.	10.3	118
31	The transcription factor NRSF contributes to epileptogenesis by selective repression of a subset of target genes. ELife, 2014, 3, e01267.	6.0	115
32	Permittivity Coupling across Brain Regions Determines Seizure Recruitment in Partial Epilepsy. Journal of Neuroscience, 2014, 34, 15009-15021.	3.6	109
33	Bioelectronic neural pixel: Chemical stimulation and electrical sensing at the same site. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9440-9445.	7.1	107
34	What is GABAergic Inhibition? How Is it Modified in Epilepsy?. Epilepsia, 2000, 41, S90-S95.	5.1	104
35	Treatment during a vulnerable developmental period rescues a genetic epilepsy. Nature Medicine, 2015, 21, 1436-1444.	30.7	104
36	Effects of Single Cage Housing on Stress, Cognitive, and Seizure Parameters in the Rat and Mouse Pilocarpine Models of Epilepsy. ENeuro, 2019, 6, ENEURO.0179-18.2019.	1.9	100

#	Article	IF	CITATIONS
37	Deficit of quantal release of GABA in experimental models of temporal lobe epilepsy. Nature Neuroscience, 1999, 2, 499-500.	14.8	99
38	Towards an integrated view of HCN channel role in epilepsy. Current Opinion in Neurobiology, 2011, 21, 873-879.	4.2	95
39	Changes in interictal spike features precede the onset of temporal lobe epilepsy. Annals of Neurology, 2012, 71, 805-814.	5. 3	87
40	Cell domain-dependent changes in the glutamatergic and GABAergic drives during epileptogenesis in the rat CA1 region. Journal of Physiology, 2007, 578, 193-211.	2.9	86
41	The Kainic Acid Models of Temporal Lobe Epilepsy. ENeuro, 2021, 8, ENEURO.0337-20.2021.	1.9	86
42	Seizure Forecasting from Idea to Reality. Outcomes of the My Seizure Gauge Epilepsy Innovation Institute Workshop. ENeuro, 2017, 4, ENEURO.0349-17.2017.	1.9	86
43	A taxonomy of seizure dynamotypes. ELife, 2020, 9, .	6.0	86
44	<scp>WONOEP</scp> appraisal: Molecular and cellular biomarkers for epilepsy. Epilepsia, 2016, 57, 1354-1362.	5.1	81
45	Selective Activation of Resting-State Networks following Focal Stimulation in a Connectome-Based Network Model of the Human Brain. ENeuro, 2016, 3, ENEURO.0068-16.2016.	1.9	80
46	Interneurones are not so dormant in temporal lobe epilepsy: a critical reappraisal of the dormant basket cell hypothesis. Epilepsy Research, 1998, 32, 93-103.	1.6	70
47	Individual structural features constrain the mouse functional connectome. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26961-26969.	7.1	66
48	Predicting and treating stressâ€Induced vulnerability to epilepsy and depression. Annals of Neurology, 2015, 78, 128-136.	5.3	62
49	Model of local connectivity patterns in CA3 and CA1 areas of the hippocampus. Hippocampus, 1994, 4, 497-529.	1.9	60
50	Excitatory GABA: How a Correct Observation May Turn Out to be an Experimental Artifact. Frontiers in Pharmacology, 2012, 3, 65.	3.5	60
51	Fast–Slow Bursters in the Unfolding of a High Codimension Singularity and the Ultra-slow Transitions of Classes. Journal of Mathematical Neuroscience, 2017, 7, 7.	2.4	60
52	A glucose sensor via stable immobilization of the GOx enzyme on an organic transistor using a polymer brush. Journal of Polymer Science Part A, 2015, 53, 372-377.	2.3	58
53	Endogenous multidien rhythm of epilepsy in rats. Experimental Neurology, 2019, 315, 82-87.	4.1	56
54	Seizures, refractory status epilepticus, and depolarization block as endogenous brain activities. Physical Review E, 2015, 91, 010701.	2.1	54

#	Article	IF	Citations
55	Computational Modeling of Seizure Dynamics Using Coupled Neuronal Networks: Factors Shaping Epileptiform Activity. PLoS Computational Biology, 2015, 11, e1004209.	3.2	53
56	The Virtual Mouse Brain: A Computational Neuroinformatics Platform to Study Whole Mouse Brain Dynamics. ENeuro, 2017, 4, ENEURO.0111-17.2017.	1.9	51
57	The circadian dynamics of the hippocampal transcriptome and proteome is altered in experimental temporal lobe epilepsy. Science Advances, 2020, 6, .	10.3	50
58	The Nucleus Reuniens Controls Long-Range Hippocampo–Prefrontal Gamma Synchronization during Slow Oscillations. Journal of Neuroscience, 2018, 38, 3026-3038.	3.6	48
59	Distance-Dependent Modifiable Threshold for Action Potential Back-Propagation in Hippocampal Dendrites. Journal of Neurophysiology, 2003, 90, 1807-1816.	1.8	47
60	Hub GABA Neurons Mediate Gamma-Frequency Oscillations at Ictal-like Event Onset in the Immature Hippocampus. Neuron, 2012, 74, 57-64.	8.1	47
61	A bilayered PVA/PLGA-bioresorbable shuttle to improve the implantation of flexible neural probes. Journal of Neural Engineering, 2018, 15, 065001.	3.5	47
62	Pro-epileptic changes in synaptic function can be accompanied by pro-epileptic changes in neuronal excitability. Trends in Neurosciences, 1998, 21, 167-174.	8.6	46
63	Autoclave Sterilization of PEDOT:PSS Electrophysiology Devices. Advanced Healthcare Materials, 2016, 5, 3094-3098.	7.6	46
64	The Epileptor Model: A Systematic Mathematical Analysis Linked to the Dynamics of Seizures, Refractory Status Epilepticus, and Depolarization Block. ENeuro, 2020, 7, ENEURO.0485-18.2019.	1.9	46
65	Hyperexcitability of the CA1 Hippocampal Region during Epileptogenesis. Epilepsia, 2007, 48, 131-139.	5.1	44
66	Convergence of adenosine and GABA signaling for synapse stabilization during development. Science, 2021, 374, eabk2055.	12.6	44
67	Differential Dorso-ventral Distributions of Kv4.2 and HCN Proteins Confer Distinct Integrative Properties to Hippocampal CA1 Pyramidal Cell Distal Dendrites. Journal of Biological Chemistry, 2012, 287, 17656-17661.	3.4	43
68	Dorsoventral Differences in Intrinsic Properties in Developing CA1 Pyramidal Cells. Journal of Neuroscience, 2012, 32, 3736-3747.	3.6	42
69	Plasticity of AMPA and NMDA receptor-mediated epileptiform activity in a chronic model of temporal lobe epilepsy. Epilepsy Research, 1995, 21, 95-107.	1.6	38
70	Distribution of spontaneous currents along the somato-dendritic axis of rat hippocampal CA1 pyramidal neurons. Neuroscience, 2000, 99, 593-603.	2.3	37
71	Neuroinflammation Alters Integrative Properties of Rat Hippocampal Pyramidal Cells. Molecular Neurobiology, 2018, 55, 7500-7511.	4.0	36
72	Interneurons targeting similar layers receive synaptic inputs with similar kinetics. Hippocampus, 2006, 16, 408-420.	1.9	35

#	Article	IF	CITATIONS
73	Common data elements and data management: Remedy to cure underpowered preclinical studies. Epilepsy Research, 2017, 129, 87-90.	1.6	35
74	Expression of EPSP/spike potentiation following low frequency and tetanic stimulation in the CA1 area of the rat hippocampus. Journal of Neuroscience, 1995, 15, 6542-6551.	3.6	34
75	Redox modulation of synaptic responses and plasticity in rat CA1 hippocampal neurons. Experimental Brain Research, 1997, 113, 343-352.	1.5	34
76	Neuronal Cascades Shape Whole-Brain Functional Dynamics at Rest. ENeuro, 2021, 8, ENEURO.0283-21.2021.	1.9	34
77	Changing the Way We Report, Interpret, and Discuss Our Results to Rebuild Trust in Our Research. ENeuro, 2019, 6, ENEURO.0259-19.2019.	1.9	34
78	Active direct current (DC) shifts and "Red slow†two new concepts for seizure mechanisms and identification of the epileptogenic zone. Neuroscience Research, 2020, 156, 95-101.	1.9	33
79	Methodological standards for inÂvitro models of epilepsy and epileptic seizures. A <scp>TASK</scp> 1â€ <scp>WG</scp> 4 report of the <scp>AES</scp> / <scp>ILAE</scp> Translational Task Force of the ILAE. Epilepsia, 2017, 58, 40-52.	5.1	31
80	Early-life exposure to caffeine affects the construction and activity of cortical networks in mice. Experimental Neurology, 2017, 295, 88-103.	4.1	29
81	A role for synaptic and network plasticity in controlling epileptiform activity in CA1 in the kainic acid-lesioned rat hippocampus in vitro Journal of Physiology, 1996, 495, 127-142.	2.9	28
82	Computing hubs in the hippocampus and cortex. Science Advances, 2019, 5, eaax4843.	10.3	26
83	Postictal electroencephalographic (<scp>EEG</scp>) suppression: A stereoâ€ <scp>EEG</scp> study of 100 focal to bilateral tonic–clonic seizures. Epilepsia, 2019, 60, 63-73.	5.1	26
84	Multimodal Characterization of Neural Networks Using Highly Transparent Electrode Arrays. ENeuro, 2018, 5, ENEURO.0187-18.2018.	1.9	25
85	Investigation of Linear Coupling Between Single-Event Blood Flow Responses and Interictal Discharges in a Model of Experimental Epilepsy. Journal of Neurophysiology, 2010, 103, 3139-3152.	1.8	23
86	Monitoring Intrinsic Optical Signals in Brain Tissue with Organic Photodetectors. Advanced Materials Technologies, 2018, 3, 1700333.	5.8	23
87	Simultaneous Expression of Long-term Depression of NMDA and Long-term Potentiation of AMPA Receptor-mediated Synaptic Responses in the CA1 Area of the Kainic Acid-lesioned Hippocampus. European Journal of Neuroscience, 1995, 7, 1651-1655.	2.6	22
88	Editorial: Gender Bias in Publishing: Double-Blind Reviewing as a Solution?. ENeuro, 2018, 5, ENEURO.0225-18.2018.	1.9	22
89	Synaptic integration of NMDA and non-NMDA receptors in large neuronal network models solved by means of differential equations. Biological Cybernetics, 1994, 70, 267-273.	1.3	21
90	Metabolic responses differentiate between interictal, ictal and persistent epileptiform activity in intact, immature hippocampus in vitro. Neurobiology of Disease, 2015, 75, 1-14.	4.4	21

#	Article	IF	Citations
91	Modeling seizures: From single neurons to networks. Seizure: the Journal of the British Epilepsy Association, 2021, 90, 4-8.	2.0	20
92	The Diathesis–Epilepsy Model: How Past Events Impact the Development of Epilepsy and Comorbidities. Cold Spring Harbor Perspectives in Medicine, 2016, 6, a022418.	6.2	19
93	Redox sites of NMDA receptors can modulate epileptiform activity in hippocampal slices from kainic acid-treated rats. Neuroscience Letters, 1996, 212, 171-174.	2.1	18
94	Propagation of parallel fiber volleys in the cerebellar cortex: a computer simulation. Brain Research, 1991, 565, 195-208.	2.2	17
95	How do we use inÂvitro models to understand epileptiform and ictal activity? A report of the <scp>TASK</scp> 1â€ <scp>WG</scp> 4 group of the <scp>ILAE</scp> / <scp>AES</scp> Joint Translational Task Force. Epilepsia Open, 2018, 3, 460-473.	2.4	17
96	Antioxidant treatment after epileptogenesis onset prevents comorbidities in rats sensitized by a past stressful event. Epilepsia, 2019, 60, 648-655.	5.1	17
97	Dynamic core-periphery structure of information sharing networks in entorhinal cortex and hippocampus. Network Neuroscience, 2020, 4, 946-975.	2.6	17
98	Simultaneous expression of excitatory postsynaptic potential/spike potentiation and excitatory postsynaptic potential/spike depression in the hippocampus. Neuroscience, 1995, 67, 73-82.	2.3	16
99	Brain state-dependent neuronal computation. Frontiers in Computational Neuroscience, 2012, 6, 77.	2.1	16
100	MULAN: Evaluation and ensemble statistical inference for functional connectivity. NeuroImage, 2018, 166, 167-184.	4.2	16
101	Changes in neuronal excitability and synaptic function in a chronic model of temporal lobe epilepsy. Neuroscience, 2001, 103, 17-26.	2.3	15
102	Caffeine Consumption During Pregnancy Accelerates the Development of Cognitive Deficits in Offspring in a Model of Tauopathy. Frontiers in Cellular Neuroscience, 2019, 13, 438.	3.7	15
103	Circadian/multidien Molecular Oscillations and Rhythmicity of Epilepsy (MORE). Epilepsia, 2021, 62, S49-S68.	5.1	15
104	A unified physiological framework of transitions between seizures, sustained ictal activity and depolarization block at the single neuron level. Journal of Computational Neuroscience, 2022, 50, 33-49.	1.0	15
105	Brain State Dependent Postinhibitory Rebound in Entorhinal Cortex Interneurons. Journal of Neuroscience, 2012, 32, 6501-6510.	3.6	14
106	Modern Concepts of Seizure Modeling. International Review of Neurobiology, 2014, 114, 121-153.	2.0	14
107	Effects of recurrent collateral inhibition on Purkinje cell activity in the immature rat cerebellar cortex - an in vivo electrophysiological study. Brain Research, 1993, 626, 234-258.	2.2	13
108	Low \hat{I}^2 2 Main Peak Frequency in the Electroencephalogram Signs Vulnerability to Depression. Frontiers in Neuroscience, 2016, 10, 495.	2.8	13

#	Article	IF	CITATIONS
109	Sheep pox in Tunisia: Current status and perspectives. Transboundary and Emerging Diseases, 2018, 65, 50-63.	3.0	13
110	On Fallacies in Neuroscience. ENeuro, 2020, 7, ENEURO.0491-20.2020.	1.9	13
111	Model of spatio-temporal propagation of action potentials in the Schaffer collateral pathway of the CA1 area of the rat hippocampus., 1997, 7, 58-72.		12
112	Spatio-temporal heterogeneity in hippocampal metabolism in control and epilepsy conditions. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	12
113	Spreading depression: Epilepsy's wave of death. Science Translational Medicine, 2015, 7, 282fs14.	12.4	11
114	Molecular detection methods of resistance to antituberculosis drugs in Mycobacterium tuberculosis. Médecine Et Maladies Infectieuses, 2017, 47, 340-348.	5.0	11
115	Estimation Statistics, One Year Later. ENeuro, 2021, 8, ENEURO.0091-21.2021.	1.9	11
116	Cell Assemblies in the Cortico-Hippocampal-Reuniens Network during Slow Oscillations. Journal of Neuroscience, 2020, 40, 8343-8354.	3.6	11
117	Optimal approximation of square integrable functions by a flexible one-hidden-layer neural network of excitatory and inhibitory neuron pairs. Neural Networks, 1991, 4, 803-815.	5.9	10
118	Dogma and dreams: experimental lessons for epilepsy mechanism chasers. Cellular and Molecular Life Sciences, 2005, 62, 1177-1181.	5.4	10
119	Effects of collateral inhibition in a model of the immature rat cerebellar cortex: multineuron correlations. Cognitive Brain Research, 1993, 1, 100-122.	3.0	9
120	Optogenetics: Keep Interpretations Light. ENeuro, 2020, 7, ENEURO.0091-20.2020.	1.9	9
121	Reversal of excitatory postsynaptic potential/spike potentiation in the CA1 area of the rat hippocampus. Neuroscience, 1998, 86, 431-436.	2.3	8
122	Hippocampal Slices: Designing and Interpreting Studies in Epilepsy Research., 2006,, 59-72.		8
123	Alterations in synaptic function in epilepsy. Epilepsia, 2010, 51, 42-42.	5.1	8
124	Plastic neuronal probes for implantation in cortical and subcortical areas of the rat brain. International Journal of Nanotechnology, 2012, 9, 517.	0.2	8
125	Interneurons contribute to the hemodynamic/metabolic response to epileptiform discharges. Journal of Neurophysiology, 2016, 115, 1157-1169.	1.8	8
126	Dendrites and disease., 2007,, 531-550.		8

#	Article	IF	CITATIONS
127	Understanding and Predicting Epilepsy [Life Sciences]. IEEE Signal Processing Magazine, 2016, 33, 90-95.	5.6	7
128	On the interpretation of results obtained in singly housed animals. Epilepsia, 2019, 60, 2013-2015.	5.1	7
129	Monitoring fluorescent calcium signals in neural cells with organic photodetectors. Journal of Materials Chemistry C, 2019, 7, 9049-9056.	5. 5	7
130	Epileptiform activity but not synaptic plasticity is blocked by oxidation of NMDA receptors in a chronic model of temporal lobe epilepsy. Epilepsy Research, 1997, 26, 373-380.	1.6	6
131	Postictal stereoâ€ <scp>EEG</scp> changes following bilateral tonicâ€elonic seizures. Epilepsia, 2019, 60, 1743-1745.	5.1	6
132	Design and Operation of Hybrid Microfluidic Iontronic Probes for Regulated Drug Delivery. Advanced Materials Technologies, 2021, 6, 2001006.	5.8	6
133	Using Monte-Carlo-Simulated Radiation Transport to Calculate Dose Distribution in Rats before Irradiation with Leksell Gamma Knife® 4C: Technical Note. Stereotactic and Functional Neurosurgery, 2010, 88, 208-215.	1.5	5
134	Virtual Brain for neurological disease modeling. Drug Discovery Today: Disease Models, 2016, 19, 5-10.	1.2	5
135	In Vivo Characterization of Neurophysiological Diversity in the Lateral Supramammillary Nucleus during Hippocampal Sharp-wave Ripples of Adult Rats. Neuroscience, 2020, 435, 95-111.	2.3	5
136	Non-involvement of the redox site of NMDA receptors in bidirectional synaptic plasticity in the CA1 area of the rat hippocampus in vitro. Neuroscience Letters, 1995, 193, 197-200.	2.1	4
137	Treating Epilepsy with a Light Potassium Diet. Science Translational Medicine, 2012, 4, 161fs40.	12.4	4
138	PEDOT:PSS electrodes for acute experimental evaluation of vagus nerve stimulation on rodents., 2018, 2018, 4760-4763.		4
139	Synaptic integration of NMDA and non-NMDA receptors in large neuronal network models solved by means of differential equations. Biological Cybernetics, 1994, 70, 267-273.	1.3	4
140	Editorial: Scientific Rigor or Rigor Mortis?. ENeuro, 2016, 3, ENEURO.0176-16.2016.	1.9	3
141	Global changes in entropy and in spatial organisation of activity in a network of formal neurons with inhibitory interactions. Neural Networks, 1988, 1, 238.	5.9	2
142	The Beauty and the Beast. ENeuro, 2021, 8, ENEURO.0142-21.2021.	1.9	2
143	Antiseizure effects of <i>Anacyclus pyrethrum</i> in socially isolated rats with and without a positive handling strategy. Epilepsia, 2021, 62, 2551-2564.	5.1	2
144	Hippocampus In Vitro. , 2017, , 261-272.		2

#	Article	IF	CITATIONS
145	Calling Names. ENeuro, 2020, 7, ENEURO.0314-20.2020.	1.9	2
146	Editorial: Experimental Bias in Electrophysiological Studies. ENeuro, 2017, 4, ENEURO.0432-17.2017.	1.9	2
147	Editorial: Code Case - Investigating Transparency and Reproducibility. ENeuro, 2017, 4, ENEURO.0233-17.2017.	1.9	2
148	SfN Journals: Two Paths, One Goal: Sharing Strong Science. Journal of Neuroscience, 2016, 36, 7075-7075.	3.6	1
149	Assessment of the Use of Multi-Channel Organic Electrodes to Record ENG on Small Nerves: Application to Phrenic Nerve Burst Detection. Sensors, 2021, 21, 5594.	3.8	1
150	The Functional and Structural Impact of Epileptic Seizures on the Adult Brain., 2010,, 329-334.		1
151	Editorial: A Message from the Editor-in-Chief. ENeuro, 2017, 4, ENEURO.0023-17.2017.	1.9	1
152	Editorial: Rethinking the Failure to Replicate. ENeuro, 2018, 5, ENEURO.0042-18.2018.	1.9	1
153	Editorial: Introducing Registered Reports. ENeuro, 2018, 5, ENEURO.0089-18.2018.	1.9	1
154	Editorial: Acknowledging Those Who Did the Work. ENeuro, 2018, 5, ENEURO.0490-18.2018.	1.9	1
155	Everything You Always Wanted to Say about Science (But Were Afraid to Publish). ENeuro, 2022, 9, ENEURO.0115-22.2022.	1.9	1
156	Neurostéroïdes etÂépilepsie. Epilepsies, 2009, 21, 367-373.	0.0	0
157	Modeling epileptic dynamics in the hippocampus using a multiscale approach. BMC Neuroscience, 2013, 14, .	1.9	0
158	Editorial: Introducing Research Resource Identification Initiative at eNeuro. ENeuro, 2016, 3, ENEURO.0046-16.2016.	1.9	0
159	Dysfunction of the redox-sensitive transcription factor Nrf2 in vulnerable animals. Molecular Psychiatry, 2017, 22, 1655-1655.	7.9	0
160	Seizures: About the right time to explore their mechanisms. Epilepsia, 2021, 62, S1.	5.1	0
161	Un déséquilibre sélectif entre excitation et inhibition dendritique pourrait expliquer la genÃ"se des crises d'épilepsie Medecine/Sciences, 2001, 17, 141.	0.2	0
162	GABA Plasticity of GABAergic Systems during Epileptogenesis., 2009,, 308-314.		0

#	Article	IF	CITATIONS
163	Nos modÃ [*] les etÂconcepts sont-ils opÃ@rants?. Epilepsies, 2009, 21, 268-271.	0.0	0
164	SfN Journals: Two Paths, One Goal: Sharing Strong Science. ENeuro, 2016, 3, ENEURO.0154-16.2016.	1.9	0
165	"lch bin ein Reviewer―("l am a Reviewerâ€). ENeuro, 2016, 3, ENEURO.0277-16.2016.	1.9	0
166	Editorial: Letter of Recommendation. ENeuro, 2016, 3, ENEURO.0357-16.2016.	1.9	0
167	Editorial: Acknowledging Our Work as Reviewers. ENeuro, 2017, 4, ENEURO.0031-17.2017.	1.9	0
168	Editorial: Extended Data at eNeuro. ENeuro, 2017, 4, ENEURO.0103-17.2017.	1.9	0
169	Editorial: eNeuro Offers a Unique Interactive Experience to Reviewer Training. ENeuro, 2017, 4, ENEURO.0157-17.2017.	1.9	0
170	Editorial: Transparency Must Prevail. ENeuro, 2017, 4, ENEURO.0300-17.2017.	1.9	0
171	Editorial: Improving the Way Science is Done, Evaluated, and Published. ENeuro, 2017, 4, ENEURO.0373-17.2017.	1.9	0
172	Diversity: The Art of Reviewing Independently Together. ENeuro, 2018, 5, ENEURO.0350-18.2018.	1.9	0
173	Thank You—A Thousand Times. ENeuro, 2019, 6, ENEURO.0174-19.2019.	1.9	0
174	Open Source Tools and Methods. ENeuro, 2019, 6, ENEURO.0342-19.2019.	1.9	0
175	The Good Reviewer's Guide to the Publishing Galaxy. ENeuro, 2019, 6, ENEURO.0362-19.2019.	1.9	0
176	Doing Socially Responsible Science in the Age of Selfies and Immediacy. ENeuro, 2022, 9, ENEURO.0114-22.2022.	1.9	0
177	Comment le cerveau élimine les synapses surnuméraires auÂcours du développement. Medecine/Sciences, 2022, 38, 511-513.	0.2	0