Manuel Prieto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8623299/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sphingomyelin/Phosphatidylcholine/Cholesterol Phase Diagram: Boundaries and Composition of Lipid Rafts. Biophysical Journal, 2003, 85, 2406-2416.	0.5	796
2	Ceramide: A simple sphingolipid with unique biophysical properties. Progress in Lipid Research, 2014, 54, 53-67.	11.6	290
3	Lipid Rafts have Different Sizes Depending on Membrane Composition: A Time-resolved Fluorescence Resonance Energy Transfer Study. Journal of Molecular Biology, 2005, 346, 1109-1120.	4.2	288
4	Quantifying molecular partition into model systems of biomembranes: an emphasis on optical spectroscopic methods. Biochimica Et Biophysica Acta - Biomembranes, 2003, 1612, 123-135.	2.6	226
5	A Critical Role for Ceramide Synthase 2 in Liver Homeostasis. Journal of Biological Chemistry, 2010, 285, 10902-10910.	3.4	213
6	Phase diagrams of lipid mixtures relevant to the study of membrane rafts. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2008, 1781, 665-684.	2.4	186
7	Effect of ceramide structure on membrane biophysical properties: The role of acyl chain length and unsaturation. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 2753-2760.	2.6	172
8	Ceramide-Domain Formation and Collapse in Lipid Rafts: Membrane Reorganization by an Apoptotic Lipid. Biophysical Journal, 2007, 92, 502-516.	0.5	169
9	Novel hybrids of graphitic carbon nitride sensitized with free-base meso-tetrakis(carboxyphenyl) porphyrins for efficient visible light photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2018, 221, 56-69.	20.2	136
10	Cholesterol-rich Fluid Membranes Solubilize Ceramide Domains. Journal of Biological Chemistry, 2009, 284, 22978-22987.	3.4	127
11	Complexity of Lipid Domains and Rafts in Giant Unilamellar Vesicles Revealed by Combining Imaging and Microscopic and Macroscopic Time-Resolved Fluorescence. Biophysical Journal, 2007, 93, 539-553.	0.5	125
12	Membrane lipid domains and rafts: current applications of fluorescence lifetime spectroscopy and imaging. Chemistry and Physics of Lipids, 2009, 157, 61-77.	3.2	125
13	Ceramide-platform formation and -induced biophysical changes in a fluid phospholipid membrane. Molecular Membrane Biology, 2006, 23, 137-148.	2.0	119
14	Ribonuclease T1 and alcohol dehydrogenase fluorescence quenching by acrylamide: A laboratory experiment for undergraduate students. Journal of Chemical Education, 1993, 70, 425.	2.3	118
15	Fluid–Fluid Membrane Microheterogeneity: A Fluorescence Resonance Energy Transfer Study. Biophysical Journal, 2001, 80, 776-788.	0.5	118
16	Formation of Ceramide/Sphingomyelin Gel Domains in the Presence of an Unsaturated Phospholipid: A Quantitative Multiprobe Approach. Biophysical Journal, 2007, 93, 1639-1650.	0.5	118
17	Membrane Domain Formation, Interdigitation, and Morphological Alterations Induced by the Very Long Chain Asymmetric C24:1 Ceramide. Biophysical Journal, 2008, 95, 2867-2879.	0.5	104
18	FRET in membrane biophysics: an overview. Frontiers in Physiology, 2011, 2, 82.	2.8	97

#	Article	IF	CITATIONS
19	Making environmental law for the market: the emergence, character, and implications of Chile's environmental regime. Environmental Politics, 2011, 20, 879-898.	5.4	94
20	Resonance energy transfer in a model system of membranes: application to gel and liquid crystalline phases. Biophysical Journal, 1996, 71, 1823-1836.	0.5	93
21	β yclodextrin as a Precursor to Holey Câ€Doped g ₃ N ₄ Nanosheets for Photocatalytic Hydrogen Generation. ChemSusChem, 2018, 11, 2681-2694.	6.8	92
22	Self-association of the polyene antibiotic nystatin in dipalmitoylphosphatidylcholine vesicles: a time-resolved fluorescence study. Biophysical Journal, 1995, 69, 2541-2557.	0.5	89
23	Interaction of the Major Epitope Region of HIV Protein gp41 with Membrane Model Systems. A Fluorescence Spectroscopy Studyâ€. Biochemistry, 1998, 37, 8674-8682.	2.5	89
24	Lipid Raft Composition Modulates Sphingomyelinase Activity and Ceramide-Induced Membrane Physical Alterations. Biophysical Journal, 2009, 96, 3210-3222.	0.5	87
25	Fluorescence quenching data interpretation in biological systems. Biochimica Et Biophysica Acta - Biomembranes, 1998, 1373, 1-16.	2.6	80
26	Nonequilibrium Phenomena in the Phase Separation of a Two-Component Lipid Bilayer. Biophysical Journal, 2002, 82, 823-834.	0.5	76
27	Mixing Block Copolymers with Phospholipids at the Nanoscale: From Hybrid Polymer/Lipid Wormlike Micelles to Vesicles Presenting Lipid Nanodomains. Langmuir, 2017, 33, 1705-1715.	3.5	75
28	Exclusion of a cholesterol analog from the cholesterol-rich phase in model membranes. Biochimica Et Biophysica Acta - Biomembranes, 2001, 1511, 236-243.	2.6	73
29	Lateral Distribution of the Transmembrane Domain of Influenza Virus Hemagglutinin Revealed by Time-resolved Fluorescence Imaging. Journal of Biological Chemistry, 2009, 284, 15708-15716.	3.4	73
30	Privatizing Water in the Chilean Andes: The Case of Las Vegas de Chiu-Chiu. Mountain Research and Development, 2015, 35, 220-229.	1.0	73
31	Time-Resolved Fluorescence in Lipid Bilayers: Selected Applications and Advantages over Steady State. Biophysical Journal, 2014, 107, 2751-2760.	0.5	69
32	Phase Separation and Nanodomain Formation in Hybrid Polymer/Lipid Vesicles. ACS Macro Letters, 2015, 4, 182-186.	4.8	69
33	Methylation of glycosylated sphingolipid modulates membrane lipid topography and pathogenicity of Cryptococcus neoformans. Cellular Microbiology, 2012, 14, 500-516.	2.1	67
34	Energy transfer in spherical geometry. Application to micelles. Journal of the Chemical Society, Faraday Transactions 2, 1987, 83, 1391.	1.1	65
35	Topography of Nicotinic Acetylcholine Receptor Membrane-embedded Domains. Journal of Biological Chemistry, 2000, 275, 37333-37339.	3.4	65
36	Partition of membrane probes in a gel/fluid two-component lipid system: a fluorescence resonance energy transfer study. Biochimica Et Biophysica Acta - Biomembranes, 2000, 1467, 101-112.	2.6	63

#	Article	IF	CITATIONS
37	Cooperative Partition Model of Nystatin Interaction with Phospholipid Vesicles. Biophysical Journal, 2003, 84, 3061-3078.	0.5	63
38	Ablation of ceramide synthase 2 strongly affects biophysical properties of membranes. Journal of Lipid Research, 2012, 53, 430-436.	4.2	62
39	Localization of ?-Tocopherol in Membranes. Annals of the New York Academy of Sciences, 1989, 570, 109-120.	3.8	61
40	Dehydroergosterol structural organization in aqueous medium and in a model system of membranes. Biophysical Journal, 1997, 72, 2226-2236.	0.5	61
41	Cholesterol and Ergosterol Influence Nystatin Surface Aggregation: Relation to Pore Formation. Biophysical Journal, 2004, 87, 3264-3276.	0.5	59
42	Role of Helix 0 of the N-BAR Domain in Membrane Curvature Generation. Biophysical Journal, 2008, 94, 3065-3073.	0.5	58
43	Modulation of phase separation at the micron scale and nanoscale in giant polymer/lipid hybrid unilamellar vesicles (GHUVs). Soft Matter, 2017, 13, 627-637.	2.7	57
44	Interaction of rifampicin and isoniazid with large unilamellar liposomes: spectroscopic location studies. Biochimica Et Biophysica Acta - General Subjects, 2003, 1620, 151-159.	2.4	56
45	Filipin-Induced Lesions in Planar Phospholipid Bilayers Imaged by Atomic Force Microscopy. Biophysical Journal, 1998, 75, 1869-1873.	0.5	55
46	Production of subterranean resources in the Atacama Desert: 19th and early 20th century mining/water extraction in The Taltal district, northern Chile. Political Geography, 2020, 81, 102194.	2.5	55
47	Changes in membrane biophysical properties induced by sphingomyelinase depend on the sphingolipid N-acyl chain. Journal of Lipid Research, 2014, 55, 53-61.	4.2	51
48	Fluorescence study of the location and dynamics of α-tocopherol in phospholipid vesicles. Biochimica Et Biophysica Acta - Biomembranes, 1989, 985, 26-32.	2.6	50
49	Membrane Probe Distribution Heterogeneity:Â A Resonance Energy Transfer Study. Journal of Physical Chemistry B, 2000, 104, 6920-6931.	2.6	47
50	Intrinsic Tyrosine Fluorescence as a Tool To Study the Interaction of the Shaker B "Ball―Peptide with Anionic Membranesâ€. Biochemistry, 2003, 42, 7124-7132.	2.5	47
51	Competitive Binding of Cholesterol and Ergosterol to the Polyene Antibiotic Nystatin. A Fluorescence Study. Biophysical Journal, 2006, 90, 3625-3631.	0.5	47
52	Ca2+ induces PI(4,5)P2 clusters on lipid bilayers at physiological PI(4,5)P2 and Ca2+ concentrations. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 822-830.	2.6	47
53	Cholesterol Modulates the Organization of the γM4 Transmembrane Domain of the Muscle Nicotinic Acetylcholine Receptor. Biophysical Journal, 2004, 86, 2261-2272.	0.5	46
54	FRET analysis of domain formation and properties in complex membrane systems. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 209-224.	2.6	46

#	Article	IF	CITATIONS
55	Filipin fluorescence quenching by spin-labeled probes: studies in aqueous solution and in a membrane model system. Biophysical Journal, 1995, 69, 155-168.	0.5	45
56	Characterization of DNA/Lipid Complexes by Fluorescence Resonance Energy Transfer. Biophysical Journal, 2003, 85, 3106-3119.	0.5	44
57	Edelfosine and Miltefosine Effects on Lipid Raft Properties: Membrane Biophysics in Cell Death by Antitumor Lipids. Journal of Physical Chemistry B, 2013, 117, 7929-7940.	2.6	44
58	Energetics and Partition of Two Cecropin-Melittin Hybrid Peptides to Model Membranes of Different Composition. Biophysical Journal, 2008, 94, 2128-2141.	0.5	43
59	Dependence of M13 Major Coat Protein Oligomerization and Lateral Segregation on Bilayer Composition. Biophysical Journal, 2003, 85, 2430-2441.	0.5	42
60	Quantification of Protein-Lipid Selectivity using FRET: Application to the M13 Major Coat Protein. Biophysical Journal, 2004, 87, 344-352.	0.5	42
61	Quantification of protein–lipid selectivity using FRET. European Biophysics Journal, 2010, 39, 565-578.	2.2	40
62	Reorganization of lipid domain distribution in giant unilamellar vesicles upon immobilization with different membrane tethers. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 2605-2615.	2.6	38
63	A combined fluorescence spectroscopy, confocal and 2-photon microscopy approach to re-evaluate the properties of sphingolipid domains. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 2099-2110.	2.6	38
64	Membrane properties of giant polymer and lipid vesicles obtained by electroformation and pva gel-assisted hydration methods. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 533, 347-353.	4.7	38
65	Absence of clustering of phosphatidylinositol-(4,5)-bisphosphate in fluid phosphatidylcholine. Journal of Lipid Research, 2006, 47, 1521-1525.	4.2	37
66	Cytotoxic bile acids, but not cytoprotective species, inhibit the ordering effect of cholesterol in model membranes at physiologically active concentrations. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 2152-2163.	2.6	36
67	Deoxycholic acid modulates cell death signaling through changes in mitochondrial membrane properties. Journal of Lipid Research, 2015, 56, 2158-2171.	4.2	36
68	Rod-like cholesterol micelles in aqueous solution studied using polarized and depolarized dynamic light scattering. Biophysical Journal, 1992, 63, 1455-1461.	0.5	35
69	The effect of variable liposome brightness on quantifying lipid–protein interactions using fluorescence correlation spectroscopy. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 2559-2568.	2.6	35
70	Hydroelectric power generation in Chile: an institutional critique of the neutrality of market mechanisms. Water International, 2012, 37, 131-146.	1.0	35
71	Biophysical study of human induced Pluripotent Stem Cell-Derived cardiomyocyte structural maturation during long-term culture. Biochemical and Biophysical Research Communications, 2018, 499, 611-617.	2.1	35
72	Interaction of α-Melanocyte Stimulating Hormone with Binary Phospholipid Membranes: Structural Changes and Relevance of Phase Behavior. Biophysical Journal, 2001, 80, 2273-2283.	0.5	34

#	Article	IF	CITATIONS
73	Interaction of peptides with binary phospholipid membranes: application of fluorescence methodologies. Chemistry and Physics of Lipids, 2003, 122, 77-96.	3.2	34
74	Location and interaction of N-(9-anthroyloxy)-stearic acid probes incorporated in phosphatidylcholine vesicles. Chemistry and Physics of Lipids, 1991, 59, 9-16.	3.2	33
75	Ciprofloxacin interactions with bacterial protein OmpF: Modelling of FRET from a multi-tryptophan protein trimer. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 2822-2830.	2.6	33
76	Membrane microheterogeneity: Förster resonance energy transfer characterization of lateral membrane domains. European Biophysics Journal, 2010, 39, 589-607.	2.2	33
77	Fluorescence study of the macrolide pentaene antibiotic filipin in aqueous solution and in a model system of membranes. FEBS Journal, 1992, 207, 125-134.	0.2	32
78	The transverse location of the fluorescent probe trans-parinaric acid in lipid bilayers. Biochimica Et Biophysica Acta - Biomembranes, 1996, 1279, 164-168.	2.6	32
79	Effect of glucosylceramide on the biophysical properties of fluid membranes. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 1122-1130.	2.6	32
80	Insights into gold nanoparticles as a mucoadhesive system. Scientific Reports, 2018, 8, 14357.	3.3	32
81	The geopolitics of presence and absence at the ruins of Fort Henry. Environment and Planning D: Society and Space, 2021, 39, 139-157.	3.4	32
82	Nystatin-induced lipid vesicles permeabilization is strongly dependent on sterol structure. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 452-459.	2.6	31
83	The photophysics of a Rhodamine head labeled phospholipid in the identification and characterization of membrane lipid phases. Chemistry and Physics of Lipids, 2012, 165, 311-319.	3.2	30
84	Homo- and hetero-oligomerization of hydrophobic pulmonary surfactant proteins SP-B and SP-C in surfactant phospholipid membranes. Journal of Biological Chemistry, 2018, 293, 9399-9411.	3.4	30
85	Detection and Characterization of Membrane Microheterogeneity by Resonance Energy Transfer. Journal of Fluorescence, 2001, 11, 197-209.	2.5	29
86	Cellular uptake of S413-PV peptide occurs upon conformational changes induced by peptide–membrane interactions. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 336-346.	2.6	29
87	Structural and Dynamic Characterization of the Interaction of the Putative Fusion Peptide of the S2 SARS-CoV Virus Protein with Lipid Membranes. Journal of Physical Chemistry B, 2008, 112, 6997-7007.	2.6	29
88	Topology and lipid selectivity of pulmonary surfactant protein SP-B in membranes: Answers from fluorescence. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 1717-1725.	2.6	29
89	Fluorescence study of a derivatized diacylglycerol incorporated in model membranes. Chemistry and Physics of Lipids, 1994, 69, 75-85.	3.2	28
90	Pathological levels of glucosylceramide change the biophysical properties of artificial and cell membranes. Physical Chemistry Chemical Physics, 2017, 19, 340-346.	2.8	28

#	Article	IF	CITATIONS
91	Monte Carlo simulation of orientational effects on direct energy transfer. Journal of Chemical Physics, 1988, 88, 6341-6349.	3.0	27
92	Resonance Energy Transfer in Heterogeneous Planar and Bilayer Systems:Â Theory and Simulation. Journal of Physical Chemistry B, 2000, 104, 6911-6919.	2.6	27
93	Interaction of a Peptide Derived from the N-Heptad Repeat Region of gp41 Env Ectodomain with Model Membranes. Modulation of Phospholipid Phase Behaviorâ€. Biochemistry, 2005, 44, 14275-14288.	2.5	27
94	Structural Effects of a Basic Peptide on the Organization of Dipalmitoylphosphatidylcholine/Dipalmitoylphosphatidylserine Membranes:  A Fluorescent Resonance Energy Transfer Study. Journal of Physical Chemistry B, 2006, 110, 8130-8141.	2.6	27
95	Pinched Multilamellar Structure of Aggregates of Lysozyme and Phosphatidylserine-Containing Membranes Revealed by FRET. Biophysical Journal, 2008, 95, 4726-4736.	0.5	27
96	A fluorescence study of the interaction and location of (+)-totarol, a diterpenoid bioactive molecule, in model membranes. Biochimica Et Biophysica Acta - Biomembranes, 2000, 1509, 167-175.	2.6	26
97	Is There a Preferential Interaction between Cholesterol and Tryptophan Residues in Membrane Proteins?. Biochemistry, 2008, 47, 2638-2649.	2.5	26
98	Bringing water markets down to Chile's Atacama Desert. Water International, 2016, 41, 191-212.	1.0	25
99	Glucosylceramide Reorganizes Cholesterol-Containing Domains in a Fluid Phospholipid Membrane. Biophysical Journal, 2016, 110, 612-622.	0.5	24
100	Interaction of S413-PV cell penetrating peptide with model membranes: relevance to peptide translocation across biological membranes. Journal of Peptide Science, 2007, 13, 301-313.	1.4	23
101	Organization and Dynamics of Fas Transmembrane Domain in Raft Membranes and Modulation by Ceramide. Biophysical Journal, 2011, 101, 1632-1641.	0.5	23
102	Exploring homo-FRET to quantify the oligomer stoichiometry of membrane-bound proteins involved in a cooperative partition equilibrium. Physical Chemistry Chemical Physics, 2014, 16, 18105-18117.	2.8	23
103	INTERACTION OF THE PEPTIDE HORMONE ADRENOCORTICOTROPIC ACTH(I-24), WITH A MEMBRANE MODEL SYSTEM: A FLUORESCENCE STUDY. Photochemistry and Photobiology, 1993, 57, 431-437.	2.5	22
104	PHOTOPHYSICAL BEHAVIOUR OF 5-METHOXYPSORALEN IN DIOXANE-WATER MIXTURES. Photochemistry and Photobiology, 1988, 48, 429-437.	2.5	21
105	Structure and dynamics of the γM4 transmembrane domain of the acetylcholine receptor in lipid bilayers: insights into receptor assembly and function. Molecular Membrane Biology, 2006, 23, 305-315.	2.0	21
106	Effect of ionic strength and presence of serum on lipoplexes structure monitorized by FRET. BMC Biotechnology, 2008, 8, 20.	3.3	21
107	Modification of plasma membrane lipid order and H + -ATPase activity as part of the response of Saccharomyces cerevisiae to cultivation under mild and high copper stress. Archives of Microbiology, 2000, 173, 262-268.	2.2	20
108	El Riego que el Mercado no Quiere Ver: Historia del Despojo HÃdrico en las Comunidades de Lasana y Chiu-Chiu (Desierto de Atacama, Chile). Journal of Latin American Geography, 2017, 16, 69-91.	0.1	20

#	Article	IF	CITATIONS
109	The combination of block copolymers and phospholipids to form giant hybrid unilamellar vesicles (CHUVs) does not systematically lead to "intermediate―membrane properties. Soft Matter, 2018, 14, 6476-6484.	2.7	20
110	Conformational plasticity in the KcsA potassium channel pore helix revealed by homo-FRET studies. Scientific Reports, 2019, 9, 6215.	3.3	19
111	Immobilization and characterization of giant unilamellar vesicles (GUVs) within porous silica glasses. Soft Matter, 2012, 8, 408-417.	2.7	18
112	Pulmonary surfactant protein SP-B nanorings induce the multilamellar organization of surfactant complexes. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183216.	2.6	18
113	Dibucaine interaction with phospholipid vesicles. A resonance energy-transfer study. FEBS Journal, 1990, 189, 387-393.	0.2	17
114	Excited-state intramolecular relaxation of the lipophilic probe 12-(9-anthroyloxy)stearic acid. The Journal of Physical Chemistry, 1991, 95, 5471-5475.	2.9	17
115	Structural characterization (shape and dimensions) and stability of polysaccharide/lipid nanoparticles. Biopolymers, 1997, 41, 511-520.	2.4	17
116	Lactose permease lipid selectivity using Förster resonance energy transfer. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 1707-1713.	2.6	17
117	Lipid Hydroperoxide Compromises the Membrane Structure Organization and Softens Bending Rigidity. Langmuir, 2021, 37, 9952-9963.	3.5	16
118	Fluorescence methods for lipoplex characterization. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 2694-2705.	2.6	15
119	A scale out approach towards neural induction of human induced pluripotent stem cells for neurodevelopmental toxicity studies. Toxicology Letters, 2018, 294, 51-60.	0.8	15
120	Picosecond electronic energy-transfer studies in sodium dodecyl sulfate micelles. Journal of the Chemical Society, Faraday Transactions, 1992, 88, 255.	1.7	14
121	The pentaene macrolide antibiotic filipin prefers more rigid DPPC bilayers: a fluorescence pressure dependence study. Biochimica Et Biophysica Acta - Biomembranes, 1999, 1419, 1-14.	2.6	14
122	Binding assays of inhibitors towards selected V-ATPase domains. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 1777-1786.	2.6	13
123	Electrostatically driven lipid–protein interaction: Answers from FRET. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 1837-1848.	2.6	13
124	Membrane Order Is a Key Regulator of Divalent Cation-Induced Clustering of PI(3,5)P ₂ and PI(4,5)P ₂ . Langmuir, 2017, 33, 12463-12477.	3.5	13
125	A photophysical study of the polyene antibiotic filipin. Biochimica Et Biophysica Acta - Biomembranes, 2001, 1510, 125-135.	2.6	12
126	Orientational Order of the Polyene Fatty Acid Membrane Probetrans-Parinaric Acid in Langmuirâ^'Blodgett Multilayer Films. Journal of Physical Chemistry B, 2001, 105, 562-568.	2.6	12

#	Article	IF	CITATIONS
127	Membrane Protein–Lipid Selectivity: Enhancing Sensitivity for Modeling FRET Data. Journal of Physical Chemistry B, 2012, 116, 2438-2445.	2.6	12
128	Influence of Intracellular Membrane pH on Sphingolipid Organization and Membrane Biophysical Properties. Langmuir, 2014, 30, 4094-4104.	3.5	12
129	Liposome complexation efficiency monitored by FRET: effect of charge ratio, helper lipid and plasmid size. European Biophysics Journal, 2007, 36, 609-620.	2.2	11
130	The C-terminal SAM domain of p73 binds to the N terminus of MDM2. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 760-770.	2.4	11
131	Lipid domain formation and membrane shaping by C24-ceramide. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183400.	2.6	11
132	Human importin α3 and its N-terminal truncated form, without the importin-β-binding domain, are oligomeric species with a low conformational stability in solution. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129609.	2.4	11
133	Effect of Solâ~'Gel Confinement on the Structural Dynamics of the Enzyme Bovine Cu,Zn Superoxide Dismutase. Journal of Physical Chemistry B, 2008, 112, 15021-15028.	2.6	10
134	Equity vs. Efficiency and the Human Right to Water. Water (Switzerland), 2021, 13, 278.	2.7	10
135	Quantifying Lipid-Protein Interaction by Fluorescence Correlation Spectroscopy (FCS). Methods in Molecular Biology, 2014, 1076, 575-595.	0.9	10
136	Nuevas aproximaciones teóricas a las regiones-commodity desde la ecologÃa polÃŧica. Eure, 2019, 45, 153-176.	0.3	10
137	Conformation and self-assembly of a nystatin nitrobenzoxadiazole derivative in lipid membranes. Biochimica Et Biophysica Acta - Biomembranes, 2003, 1617, 69-79.	2.6	9
138	Interaction of a peptide corresponding to the loop domain of the S2 SARS-CoV virus protein with model membranes. Molecular Membrane Biology, 2009, 26, 236-248.	2.0	9
139	Understanding Bofedales as Cultural Landscapes in the Central Andes. Wetlands, 2021, 41, 1.	1.5	9
140	Dynamics of Tryptophan in the Histidine-Containing Phosphocarrier Protein of Streptomyces coelicolor:  Evidence of Multistate Equilibrium Unfolding. Biochemistry, 2007, 46, 7252-7260.	2.5	8
141	Membraneâ€bound peptides from Vâ€ATPase subunit <i>a</i> do not interact with an indoleâ€ŧype inhibitor. Journal of Peptide Science, 2008, 14, 383-388.	1.4	8
142	FRET studies of lipidâ€protein aggregates related to amyloidâ€like fibers. Journal of Neurochemistry, 2011, 116, 696-701.	3.9	8
143	Fluorescence Detection of Lipid-Induced Oligomeric Intermediates Involved in Lysozyme "Amyloid-Like― Fiber Formation Driven by Anionic Membranes. Journal of Physical Chemistry B, 2013, 117, 2906-2917.	2.6	8
144	Indigenous Resurgence, Identity Politics, and the Anticommodification of Nature: The Chilean Water Market and the Atacameño People. Annals of the American Association of Geographers, 2022, 112, 487-504.	2.2	8

#	Article	IF	CITATIONS
145	Laurdan in live cell imaging: Effect of acquisition settings, cell culture conditions and data analysis on generalized polarization measurements. Journal of Photochemistry and Photobiology B: Biology, 2022, 228, 112404.	3.8	8
146	The (not-so-free) Chilean water model. The case of the Antofagasta Region, Atacama Desert, Chile. The Extractive Industries and Society, 2022, 11, 101081.	1.2	8
147	Filipin and its interaction with cholesterol in aqueous media studied using static and dynamic light scattering. Biopolymers, 1994, 34, 447-456.	2.4	7
148	Structural characterization of organized systems of polysaccharides and phospholipids by light scattering spectroscopy and electron microscopy. Carbohydrate Research, 1997, 300, 31-40.	2.3	7
149	Electrostatically driven lipid–lysozyme mixed fibers display a multilamellar structure without amyloid features. Soft Matter, 2014, 10, 840-850.	2.7	7
150	Modeling FRET to investigate the selectivity of lactose permease of <i>Escherichia coli</i> for lipids. Molecular Membrane Biology, 2014, 31, 120-130.	2.0	7
151	Photophysical Behavior of a Dimeric Cyanine Dye (BOBO-1) Within Cationic Liposomes. Photochemistry and Photobiology, 2005, 81, 1450.	2.5	6
152	Phospholipid–Lactose Permease Interaction As Reported by a Head-Labeled Pyrene Phosphatidylethanolamine: A FRET Study. Journal of Physical Chemistry B, 2013, 117, 6741-6748.	2.6	6
153	Neutral Diclofenac Causes Remarkable Changes in Phosphatidylcholine Bilayers: Relevance for Gastric Toxicity Mechanisms. Molecular Pharmacology, 2020, 97, 295-303.	2.3	6
154	Tetraoctylammonium, a Long Chain Quaternary Ammonium Blocker, Promotes a Noncollapsed, Resting-Like Inactivated State in KcsA. International Journal of Molecular Sciences, 2021, 22, 490.	4.1	6
155	Probing the Structural Dynamics of the Activation Gate of KcsA Using Homo-FRET Measurements. International Journal of Molecular Sciences, 2021, 22, 11954.	4.1	6
156	Mining, Urban Growth, and Agrarian Changes in the Atacama Desert: The Case of the Calama Oasis in Northern Chile. Land, 2021, 10, 1262.	2.9	6
157	Structural information on probe solubilization in micelles by FT—IR spectroscopy. Journal of Colloid and Interface Science, 1988, 124, 233-237.	9.4	5
158	Interaction of the Indole Class of Vacuolar H+-ATPase Inhibitors with Lipid Bilayersâ€. Biochemistry, 2006, 45, 5271-5279.	2.5	5
159	Accurate quantification of inter-domain partition coefficients in GUVs exhibiting lipid phase coexistence. RSC Advances, 2016, 6, 66641-66649.	3.6	5
160	Canonical and 1-Deoxy(methyl) Sphingoid Bases: Tackling the Effect of the Lipid Structure on Membrane Biophysical Properties. Langmuir, 2020, 36, 6007-6016.	3.5	5
161	A comment on the localization of cyanine dye binding to brush-border membranes by the fluorescence quenching of n-(9-anthroyloxy) fatty acid probes. Biochimica Et Biophysica Acta - Biomembranes, 1990, 1026, 133-134.	2.6	4
162	Urban Heat Islands and Vulnerable Populations in a Mid-Size Coastal City in an Arid Environment. Atmosphere, 2021, 12, 917.	2.3	4

#	Article	IF	CITATIONS
163	The long chain base unsaturation has a stronger impact on 1-deoxy(methyl)-sphingolipids biophysical properties than the structure of its C1 functional group. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183628.	2.6	4
164	Fluorescence Resonance Energy Transfer to Characterize Cholesterol-Induced Domains. Methods in Molecular Biology, 2007, 400, 489-501.	0.9	4
165	Solution conformation of a nitrobenzoxadiazole derivative of the polyene antibiotic nystatin: a FRET study. Journal of Photochemistry and Photobiology B: Biology, 2003, 72, 17-26.	3.8	3
166	Characterization of Peptide-Induced Morphological Alterations in Membranes by Fluorescence Resonance Energy Transfer. Protein and Peptide Letters, 2009, 16, 726-735.	0.9	3
167	Tele-production of miningscapes in the open-pit era: The case of low-grade copper, Bingham Canyon, US and Chuquicamata, Chile (1903–1923). The Extractive Industries and Society, 2021, 8, 100830.	1.2	3
168	Interface-Mediated Mechanism of Action—The Root of the Cytoprotective Effect of Immediate-Release Omeprazole. Journal of Medicinal Chemistry, 2021, 64, 5171-5184.	6.4	3
169	Membrane binding properties of the C-terminal segment of retinol dehydrogenase 8. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183605.	2.6	3
170	"Chilote tipo salmón― Relaciones entre comodificación de la naturaleza y procesos de producción identitaria El caso de la región de Los Lagos y la industria salmonera. Estudios Atacamenos, 2020, , 383-402.	0.3	3
171	Methodologies and formalisms of resonance energy transfer in biophysics. Application to membrane model systems. International Journal of Photoenergy, 2003, 5, 223-231.	2.5	2
172	Application of Fluorescence to Understand the Interaction of Peptides with Binary Lipid Membranes. Reviews in Fluorescence, 2005, , 271-323.	0.5	2
173	Limnological response from high-altitude wetlands to the water supply in the Andean Altiplano. Scientific Reports, 2021, 11, 7681.	3.3	2
174	Nature Is for Trees, Culture Is for Humans: A Critical Reading of the IPCC Report. Sustainability, 2021, 13, 11903.	3.2	2
175	La Cuestión agraria y el cobre en la Provincia de El Loa (1929/30 – 2006/07). Andes centro-sur, norte de Chile. Estudios Atacamenos, 0, , .	0.3	2
176	Cholesterol-Rich Fluid Membranes Solubilize Ceramide Gel Domains. Implications for the Organization of Mammalian Membranes. Biophysical Journal, 2010, 98, 230a.	0.5	1
177	Lateral Membrane Heterogeneity Probed by FRET Spectroscopy and Microscopy. Springer Series on Fluorescence, 2012, , 71-113.	0.8	1
178	Exploring Fluorescence Lifetime and Homo-FRET Measurements to Monitor Lysozyme Oligomerization in Anionic Lipid Membranes: Relation to "Amyloid-Like―Fibril Formation. Biophysical Journal, 2012, 102, 433a-434a.	0.5	1
179	Förster Resonance Energy Transfer as a Tool for Quantification of Protein–Lipid Selectivity. Methods in Molecular Biology, 2019, 2003, 369-382.	0.9	1
180	Measuring the Impact of Bile Acids on the Membrane Order of Primary Hepatocytes and Isolated Mitochondria by Fluorescence Imaging and Spectroscopy. Methods in Molecular Biology, 2019, 1981, 99-115.	0.9	1

#	Article	IF	CITATIONS
181	From Lipid Phases to Membrane Protein Organization: Fluorescence Methodologies in the Study of Lipid-Protein Interactions. Springer Series in Biophysics, 2006, , 1-33.	0.4	1
182	Advanced FRET Methodologies: Protein–Lipid Selectivity Detection and Quantification. Advances in Experimental Medicine and Biology, 2012, 749, 171-185.	1.6	1
183	Quantitative FRET Microscopy Reveals a Crucial Role of Cytoskeleton in Promoting PI(4,5)P2 Confinement. International Journal of Molecular Sciences, 2021, 22, 11727.	4.1	1
184	The protection of the mountain ecosystems of the Southern Central Andes: tensions between Aymara herding practices and conservation policies. Eco Mont, 2020, 13, 22-30.	0.1	1
185	Bofedal response to climate variability, local management, and water extraction: A case study of Chucuyo, Northern Chile. Journal of Mountain Science, 2022, 19, 241-252.	2.0	1
186	Toxic violence in marine sacrificial zones: Developing blue justice through marine democracy in Chile. Environment and Planning C: Politics and Space, 2022, 40, 1492-1514.	1.9	1
187	Resonance Energy Transfer in Biophysics: Formalisms and Application to Membrane Model Systems. Springer Series on Fluorescence, 2007, , 299-322.	0.8	0
188	Structural characterization of pulmonary surfactant protein SP-B in model membranes by fluorescence spectroscopy. Chemistry and Physics of Lipids, 2007, 149, S12-S13.	3.2	0
189	Interactions of Ceramide and Sphingomyelin Quantified in Mixtures with an Unsaturated Phosphatidylcholine. Biophysical Journal, 2009, 96, 355a-356a.	0.5	Ο
190	Lipid Raft Composition Modulates Sphingomyelinase Activity and Ceramide-Induced Membrane Physical Alterations. Biophysical Journal, 2010, 98, 205a.	0.5	0
191	LFampin Derived Antimicrobial Peptide: Biophysical Characterization and Biological Implications of Composition and Structure. Biophysical Journal, 2010, 98, 84a.	0.5	Ο
192	High Affinity Immobilization of Giant Unilamellar Vesicles (GUVs) Induces Redistribution of Lipid Domains. Biophysical Journal, 2012, 102, 295a.	0.5	0
193	The Apoptotic Bile Acid DCA has Preference for Association to Liquid Disordered Lipid Domains and Inhibits the Rigidifying Effect of Cholesterol in Membranes. Biophysical Journal, 2013, 104, 586a.	O.5	Ο
194	Physiological Calcium Concentrations Induce PI(4,5)P2 Clustering: PI(4,5)P2 as a Lipidic Calcium Sensor. Biophysical Journal, 2013, 104, 372a.	0.5	0
195	Förster Resonance Energy Transfer as a Tool for Quantification of Protein–Lipid Selectivity. Methods in Molecular Biology, 2013, 974, 219-232.	0.9	Ο
196	Fluorescence and FRET in Membranes. , 2013, , 779-784.		0
197	<i>Andean Waterways: Resource Politics in Highland Peru</i> . Mattias Borg Rasmussen. Seattle: University of Washington Press, 2015, 232 pp. \$30.00, paper. ISBN 978-0-295-99493-2 Journal of Anthropological Research, 2016, 72, 374-375.	0.1	0
198	Fluorescence Resonance Energy Transfer to Characterize Cholesterol-Induced Domains. , 0, , 489-502.		0

#	Article	IF	CITATIONS
199	On the foundations of fluorescence: The work of Robert W. Cowgill. Archives of Biochemistry and Biophysics, 2022, , 109270.	3.0	0
200	Impact of Ca2+-Induced PI(4,5)P2 Clusters on PH-YFP Organization and Protein-Protein Interactions. Biomolecules, 2022, 12, 912.	4.0	0