Christian Huck

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8623166/publications.pdf

Version: 2024-02-01

29 3,785 17 29
papers citations h-index g-index

29 29 29 4817 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Electron-beam lithography of cinnamate polythiophene films: conductive nanorods for electronic applications. Chemical Science, 2022, 13, 7880-7885.	7.4	3
2	Present and Future of Surface-Enhanced Raman Scattering. ACS Nano, 2020, 14, 28-117.	14.6	2,153
3	Deposition-Dependent Morphology and Infrared Vibrational Spectra of Brominated Tetraazaperopyrene Layers. Journal of Physical Chemistry C, 2020, 124, 769-779.	3.1	2
4	Interface properties and dopability of an organic semiconductor: TAPP-Br variable as molecule but inert in the condensed phase. Journal of Materials Chemistry C, 2020, 8, 9898-9908.	5 . 5	1
5	Electron-Beam Irradiation of Cinnamate Films Affords Nanoscale Patterned Substrates for Use in Devices and as Scaffolds in Tissue Engineering. ACS Applied Nano Materials, 2020, 3, 7365-7370.	5.0	2
6	AFM-IR and IR-SNOM for the Characterization of Small Molecule Organic Semiconductors. Journal of Physical Chemistry C, 2020, 124, 5331-5344.	3.1	29
7	Self-Organized Nanorod Arrays for Large-Area Surface-Enhanced Infrared Absorption. ACS Applied Materials & Samp; Interfaces, 2020, 12, 11155-11162.	8.0	19
8	Resonant Plasmonic Nanoslits Enable in Vitro Observation of Single-Monolayer Collagen-Peptide Dynamics. ACS Sensors, 2019, 4, 1966-1972.	7.8	16
9	Plasmon Standing Waves by Oxidation of Si(553)–Au. Journal of Physical Chemistry C, 2019, 123, 9400-9406.	3.1	13
10	How adsorbates alter the metallic behavior of quasi-1D electron systems of the Si(5 5 3)-Au surface. Journal of Physics Condensed Matter, 2019, 31, 195001.	1.8	14
11	Chemical Identification of Single Ultrafine Particles Using Surface-Enhanced Infrared Absorption. Physical Review Applied, 2019, 11, .	3.8	11
12	Experimental verification of agglomeration effects in infrared spectra on micron-sized particles. Astronomy and Astrophysics, 2018, 619, A110.	5.1	7
13	Impact of Metal-Optical Properties on Surface-Enhanced Infrared Absorption. Journal of Physical Chemistry C, 2018, 122, 15678-15687.	3.1	14
14	Chemical Identification of Individual Fine Dust Particles with Resonant Plasmonic Enhancement of Nanoslits in the Infrared. ACS Photonics, 2017, 4, 560-566.	6.6	21
15	Nanoantenna-Enhanced Infrared Spectroscopic Chemical Imaging. ACS Sensors, 2017, 2, 655-662.	7.8	19
16	Surface-Enhanced Infrared Spectroscopy Using Resonant Nanoantennas. Chemical Reviews, 2017, 117, 5110-5145.	47.7	457
17	Wavelength Scaling in Antenna-Enhanced Infrared Spectroscopy: Toward the Far-IR and THz Region. ACS Photonics, 2017, 4, 45-51.	6.6	28
18	Strong coupling between phonon-polaritons and plasmonic nanorods. Optics Express, 2016, 24, 25528.	3.4	39

#	Article	IF	CITATIONS
19	Plasmonic Light Scattering and Infrared Vibrational Signal Enhancement. ACS Symposium Series, 2016, , 1-19.	0.5	3
20	How Intrinsic Phonons Manifest in Infrared Plasmonic Resonances of Crystalline Lead Nanowires. Journal of Physical Chemistry C, 2016, 120, 19302-19307.	3.1	3
21	Porous Gold Nanowires: Plasmonic Response and Surfaceâ€Enhanced Infrared Absorption. Advanced Optical Materials, 2016, 4, 1838-1845.	7.3	22
22	Gold Nanoantennas on a Pedestal for Plasmonic Enhancement in the Infrared. ACS Photonics, 2015, 2, 497-505.	6.6	76
23	Plasmonic Enhancement of Infrared Vibrational Signals: Nanoslits versus Nanorods. ACS Photonics, 2015, 2, 1489-1497.	6.6	95
24	Importance of Plasmonic Scattering for an Optimal Enhancement of Vibrational Absorption in SEIRA with Linear Metallic Antennas. Journal of Physical Chemistry C, 2015, 119, 26652-26662.	3.1	75
25	Impact of the plasmonic near- and far-field resonance-energy shift on the enhancement of infrared vibrational signals. Physical Chemistry Chemical Physics, 2015, 17, 21169-21175.	2.8	61
26	Surface-Enhanced Infrared Spectroscopy Using Nanometer-Sized Gaps. ACS Nano, 2014, 8, 4908-4914.	14.6	192
27	Optical Nanoantennas for Multiband Surface-Enhanced Infrared and Raman Spectroscopy. ACS Nano, 2013, 7, 3522-3531.	14.6	201
28	Experimental Verification of the Spectral Shift between Near- and Far-Field Peak Intensities of Plasmonic Infrared Nanoantennas. Physical Review Letters, 2013, 110, 203902.	7.8	144
29	Infrared Optical Properties of Nanoantenna Dimers with Photochemically Narrowed Gaps in the 5 nm Regime. ACS Nano, 2012, 6, 7326-7332.	14.6	65