

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8622382/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	THE FIVE-HUNDRED-METER APERTURE SPHERICAL RADIO TELESCOPE (FAST) PROJECT. International Journal of Modern Physics D, 2011, 20, 989-1024.	2.1	616
2	Large‣cale Structure of the Molecular Gas in Taurus Revealed by High Linear Dynamic Range Spectral Line Mapping. Astrophysical Journal, 2008, 680, 428-445.	4.5	364
3	The COMPLETE Survey of Star-Forming Regions: Phase I Data. Astronomical Journal, 2006, 131, 2921-2933.	4.7	227
4	THE RELATION BETWEEN GAS AND DUST IN THE TAURUS MOLECULAR CLOUD. Astrophysical Journal, 2010, 721, 686-708.	4.5	191
5	FAST in Space: Considerations for a Multibeam, Multipurpose Survey Using China's 500-m Aperture Spherical Radio Telescope (FAST). IEEE Microwave Magazine, 2018, 19, 112-119.	0.8	174
6	The fundamental performance of FAST with 19-beam receiver at L band. Research in Astronomy and Astrophysics, 2020, 20, 064.	1.7	157
7	Commissioning progress of the FAST. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	5.1	150
8	<i>HERSCHEL</i> MEASUREMENTS OF MOLECULAR OXYGEN IN ORION. Astrophysical Journal, 2011, 737, 96.	4.5	138
9	A bimodal burst energy distribution of a repeating fast radio burst source. Nature, 2021, 598, 267-271.	27.8	129
10	THE MAGNETIC FIELD IN TAURUS PROBED BY INFRARED POLARIZATION. Astrophysical Journal, 2011, 741, 21.	4.5	128
11	HiNarrow Selfâ€Absorption in Dark Clouds. Astrophysical Journal, 2003, 585, 823-839.	4.5	122
12	HiNarrow Selfâ€Absorption in Dark Clouds: Correlations with Molecular Gas and Implications for Cloud Evolution and Star Formation. Astrophysical Journal, 2005, 622, 938-958.	4.5	110
13	C ⁺ detection of warm dark gas in diffuse clouds. Astronomy and Astrophysics, 2010, 521, L17.	5.1	108
14	EVOLUTION OF OH AND CO-DARK MOLECULAR GAS FRACTION ACROSS A MOLECULAR CLOUD BOUNDARY IN TAURUS. Astrophysical Journal, 2016, 819, 22.	4.5	104
15	No pulsed radio emission during a bursting phase of a Galactic magnetar. Nature, 2020, 587, 63-65.	27.8	101
16	A repeating fast radio burst associated with a persistent radio source. Nature, 2022, 606, 873-877.	27.8	98
17	The Five College Radio Astronomy Observatory CO Mapping Survey of the Taurus Molecular Cloud. Astrophysical Journal, Supplement Series, 2008, 177, 341-361.	7.7	96

Dili

18Multi-line detection of O₂toward<i>ik/i>Ophiuchi A. Astronomy and Astrophysics, 2012,
541, A73.5.184

#	Article	IF	CITATIONS
19	Quasi-Periodic Pulsations in Solar and Stellar Flares: A Review of Underpinning Physical Mechanisms and Their Predicted Observational Signatures. Space Science Reviews, 2021, 217, 1.	8.1	81
20	First Results from BISTRO: A SCUBA-2 Polarimeter Survey of the Gould Belt. Astrophysical Journal, 2017, 842, 66.	4.5	79
21	ICÂ348-SMM2E: a Class 0 proto-brown dwarf candidate forming as a scaled-down version of low-mass stars. Monthly Notices of the Royal Astronomical Society, 2014, 444, 833-845.	4.4	74
22	The Fiveâ€hundredâ€meter Aperture Spherical Radio Telescope project. Radio Science, 2016, 51, 1060-1064.	1.6	73
23	The Transition from Atomic to Molecular Hydrogen in Interstellar Clouds: 21 cm Signature of the Evolution of Cold Atomic Hydrogen in Dense Clouds. Astrophysical Journal, 2007, 654, 273-289.	4.5	69
24	Pulsar science with the Five hundred metre Aperture Spherical Telescope. Astronomy and Astrophysics, 2009, 505, 919-926.	5.1	64
25	GAS EMISSIONS IN PLANCK COLD DUST CLUMPS—A SURVEY OF THE <i>J</i> = 1-0 TRANSITIONS OF ¹² CO, ¹³ CO, AND C ¹⁸ O. Astrophysical Journal, 2012, 756, 76.	4.5	63
26	HIGH-RESOLUTION SUBMILLIMETER MULTILINE OBSERVATIONS OF G19.61 – 0.23: SMALL-SCALE CHEMISTRY. Astrophysical Journal, 2010, 711, 399-416.	4.5	60
27	MASSIVE QUIESCENT CORES IN ORION: DYNAMICAL STATE REVEALED BY HIGH-RESOLUTION AMMONIA MAPS. Astrophysical Journal Letters, 2013, 768, L5.	8.3	59
28	A Holistic Perspective on the Dynamics of G035.39-00.33: The Interplay between Gas and Magnetic Fields. Astrophysical Journal, 2018, 859, 151.	4.5	57
29	Frequency-dependent polarization of repeating fast radio bursts—implications for their origin. Science, 2022, 375, 1266-1270.	12.6	55
30	The Gravitational-wave physics II: Progress. Science China: Physics, Mechanics and Astronomy, 2021, 64, 1.	5.1	54
31	Magnetic Fields toward Ophiuchus-B Derived from SCUBA-2 Polarization Measurements. Astrophysical Journal, 2018, 861, 65.	4.5	51
32	The TOP-SCOPE Survey of <i>Planck</i> Galactic Cold Clumps: Survey Overview and Results of an Exemplar Source, PGCC G26.53+0.17. Astrophysical Journal, Supplement Series, 2018, 234, 28.	7.7	50
33	Dust–Gas Scaling Relations and OH Abundance in the Galactic ISM. Astrophysical Journal, 2018, 862, 49.	4.5	49
34	Massive Quiescent Cores in Orion. I. Temperature Structure. Astrophysical Journal, 2003, 587, 262-277.	4.5	47
35	A First Look at BISTRO Observations of the ϕOph-A core. Astrophysical Journal, 2018, 859, 4.	4.5	46
36	ATOMS: ALMA Three-millimeter Observations of Massive Star-forming regions $\hat{a} \in 1$. Survey description and a first look at G9.62+0.19. Monthly Notices of the Royal Astronomical Society, 2020, 496, 2790-2820.	4.4	45

#	Article	IF	CITATIONS
37	Where is OH and Does It Trace the Dark Molecular Gas (DMG)?. Astrophysical Journal, Supplement Series, 2018, 235, 1.	7.7	42
38	JCMT BISTRO Survey: Magnetic Fields within the Hub-filament Structure in IC 5146. Astrophysical Journal, 2019, 876, 42.	4.5	42
39	Discovery of a Gamma-Ray Black Widow Pulsar by GPU-accelerated Einstein@Home. Astrophysical Journal Letters, 2020, 902, L46.	8.3	42
40	Astrochemical Properties of Planck Cold Clumps. Astrophysical Journal, Supplement Series, 2017, 228, 12.	7.7	41
41	ALMA Reveals Sequential High-mass Star Formation in the G9.62+0.19 Complex. Astrophysical Journal, 2017, 849, 25.	4.5	41
42	Dust polarized emission observations of NGC 6334. Astronomy and Astrophysics, 2021, 647, A78.	5.1	41
43	¹³ CO CORES IN THE TAURUS MOLECULAR CLOUD. Astrophysical Journal, 2012, 760, 147.	4.5	40
44	[CII] observations of H ₂ molecular layers in transition clouds. Astronomy and Astrophysics, 2010, 521, L18.	5.1	39
45	OUTFLOWS AND BUBBLES IN TAURUS: STAR-FORMATION FEEDBACK SUFFICIENT TO MAINTAIN TURBULENCE. Astrophysical Journal, Supplement Series, 2015, 219, 20.	7.7	39
46	Nearly all Massive Quiescent Disk Galaxies Have a Surprisingly Large Atomic Gas Reservoir. Astrophysical Journal Letters, 2019, 884, L52.	8.3	39
47	The JCMT BISTRO Survey: Magnetic Fields Associated with a Network of Filaments in NGC 1333. Astrophysical Journal, 2020, 899, 28.	4.5	39
48	STAR FORMATION LAWS IN BOTH GALACTIC MASSIVE CLUMPS AND EXTERNAL GALAXIES: EXTENSIVE STUDY WITH DUST CONINUUM, HCN (4-3), AND CS (7-6). Astrophysical Journal, 2016, 829, 59.	4.5	38
49	CLOUD STRUCTURE OF GALACTIC OB CLUSTER-FORMING REGIONS FROM COMBINING GROUND- AND SPACE-BASED BOLOMETRIC OBSERVATIONS. Astrophysical Journal, 2016, 828, 32.	4.5	38
50	Discovery of two new pulsars in 47ÂTucanae (NGC 104). Monthly Notices of the Royal Astronomical Society: Letters, 2016, 459, L26-L30.	3.3	38
51	The JCMT BISTRO Survey: The Magnetic Field in the Starless Core <i>Ï</i> Ophiuchus C. Astrophysical Journal, 2019, 877, 43.	4.5	38
52	The first pulsar discovered by FAST. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	5.1	38
53	The JCMT BISTRO Survey: The Magnetic Field of the Barnard 1 Star-forming Region. Astrophysical Journal, 2019, 877, 88.	4.5	37
54	FAST Globular Cluster Pulsar Survey: Twenty-four Pulsars Discovered in 15 Globular Clusters. Astrophysical Journal Letters, 2021, 915, L28.	8.3	37

#	Article	IF	CITATIONS
55	Preface: Planning the scientific applications of the Five-hundred-meter Aperture Spherical radio Telescope. Research in Astronomy and Astrophysics, 2019, 19, 016.	1.7	36
56	CHARACTERIZATION OF MOLECULAR OUTFLOWS IN THE SUBSTELLAR DOMAIN. Astrophysical Journal, 2014, 795, 70.	4.5	35
57	Evidence for large grains in the star-forming filament OMC 2/3. Monthly Notices of the Royal Astronomical Society, 2014, 444, 2303-2312.	4.4	34
58	MOLECULAR HYDROGEN EMISSION FROM THE BOUNDARIES OF THE TAURUS MOLECULAR CLOUD. Astrophysical Journal, 2010, 715, 1370-1382.	4.5	33
59	Cloud Structure of Three Galactic Infrared Dark Star-forming Regions from Combining Ground-Âand Space-based Bolometric Observations. Astrophysical Journal, 2017, 840, 22.	4.5	33
60	Tentative Detection of Molecular Oxygen in the ϕOphiuchi Cloud. Astrophysical Journal, 2002, 576, 814-831.	4.5	33
61	<i>HERSCHEL</i> SEARCH FOR O ₂ TOWARD THE ORION BAR. Astrophysical Journal, 2012, 752, 26.	4.5	32
62	A sample of [CÂII] clouds tracing dense clouds in weak FUV fields observed by <i>Herschel</i> . Astronomy and Astrophysics, 2010, 521, L19.	5.1	31
63	IS THE TAURUS B213 REGION A TRUE FILAMENT?: OBSERVATIONS OF MULTIPLE CYANOACETYLENE TRANSITIONS. Astrophysical Journal, 2012, 756, 12.	4.5	31
64	DISCOVERY OF AN EXTREMELY WIDE-ANGLE BIPOLAR OUTFLOW IN AFGL 5142. Astrophysical Journal, 2016, 824, 31.	4.5	31
65	PLANCK COLD CLUMPS IN THE λ ORIONIS COMPLEX. I. DISCOVERY OF AN EXTREMELY YOUNG CLASS 0 PROTOSTELLAR OBJECT AND A PROTO-BROWN DWARF CANDIDATE IN THE BRIGHT-RIMMED CLUMP PGCC G192.32–11.88. Astrophysical Journal, Supplement Series, 2016, 222, 7.	7.7	31
66	A Fast Radio Burst Discovered in FAST Drift Scan Survey. Astrophysical Journal Letters, 2020, 895, L6.	8.3	31
67	CRAFTS for Fast Radio Bursts: Extending the Dispersion–Fluence Relation with New FRBs Detected by FAST. Astrophysical Journal Letters, 2021, 909, L8.	8.3	31
68	Intensity distribution function and statistical properties of fast radio bursts. Research in Astronomy and Astrophysics, 2017, 17, 6.	1.7	30
69	Massive Quiescent Cores in Orion. II. Core Mass Function. Astrophysical Journal, 2007, 655, 351-363.	4.5	28
70	An Improved Technique for Measurement of Cold H <scp>i</scp> in Molecular Cloud Cores. Astrophysical Journal, 2008, 689, 276-289.	4.5	28
71	Distance to the SNR CTB109/AXP 1E 2259+586 by H <scp>i</scp> absorption and self-absorption. Monthly Notices of the Royal Astronomical Society: Letters, 2010, 404, L1-L5.	3.3	28
72	PSR J1926-0652: A Pulsar with Interesting Emission Properties Discovered at FAST. Astrophysical Journal, 2019, 877, 55.	4.5	28

#	Article	IF	CITATIONS
73	Evidence for three-dimensional spin–velocity alignment in a pulsar. Nature Astronomy, 2021, 5, 788-795.	10.1	28
74	First SETI Observations with China's Five-hundred-meter Aperture Spherical Radio Telescope (FAST). Astrophysical Journal, 2020, 891, 174.	4.5	27
75	SiO and CH3OH mega-masers in NGC 1068. Nature Communications, 2014, 5, 5449.	12.8	26
76	GAS KINEMATICS AND STAR FORMATION IN THE FILAMENTARY IRDC G34.43+0.24. Astrophysical Journal, 2016, 819, 117.	4.5	26
77	Pulsar candidate selection using ensemble networks for FAST drift-scan survey. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	5.1	26
78	An in-depth investigation of 11 pulsars discovered by FAST. Monthly Notices of the Royal Astronomical Society, 2020, 495, 3515-3530.	4.4	26
79	FAST discovery of an extremely radio-faint millisecond pulsar from the Fermi-LAT unassociated source 3FGL J0318.1+0252. Science China: Physics, Mechanics and Astronomy, 2021, 64, 1.	5.1	25
80	Physical properties of CO-dark molecular gas traced by C ⁺ . Astronomy and Astrophysics, 2016, 593, A42.	5.1	24
81	Status and perspectives of the CRAFTS extra-galactic HI survey. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	5.1	24
82	A Search for 6.7 GH[CLC]z[/CLC] Methanol Masers in OH Megamaser Galaxies at 0.11 < [CLC][ITAL]z[/ITAL][/CLC] < 0.27. Astronomical Journal, 2003, 125, 1177-1181.	4.7	23
83	SULFUR-BEARING MOLECULES IN MASSIVE STAR-FORMING REGIONS: OBSERVATIONS OF OCS, CS, H ₂ S, AND SO. Astrophysical Journal, 2015, 802, 40.	4.5	23
84	Pulsar candidate classification using generative adversary networks. Monthly Notices of the Royal Astronomical Society, 2019, 490, 5424-5439.	4.4	23
85	ATOMS: ALMA three-millimeter observations of massive star-forming regions – III. Catalogues of candidate hot molecular cores and hyper/ultra compact H <scp>ii</scp> regions. Monthly Notices of the Royal Astronomical Society, 2021, 505, 2801-2818.	4.4	23
86	Planck Cold Clumps in the <i>λ</i> Orionis Complex. II. Environmental Effects on Core Formation. Astrophysical Journal, Supplement Series, 2018, 236, 51.	7.7	22
87	SCOPE: SCUBA-2 Continuum Observations of Pre-protostellar Evolution – survey description and compact source catalogue. Monthly Notices of the Royal Astronomical Society, 2019, 485, 2895-2908.	4.4	22
88	The FAST Discovery of an Eclipsing Binary Millisecond Pulsar in the Globular Cluster M92 (NGCÂ6341). Astrophysical Journal Letters, 2020, 892, L6.	8.3	22
89	ALMA Survey of Orion Planck Galactic Cold Clumps (ALMASOP). II. Survey Overview: A First Look at 1.3 mm Continuum Maps and Molecular Outflows. Astrophysical Journal, Supplement Series, 2020, 251, 20.	7.7	22
90	Dichotomy in the Dynamical Status of Massive Cores in Orion. Astrophysical Journal, 2008, 688, L87-L90.	4.5	21

....

#	ARTICLE	IF	CHATIONS
91	Widespread Presence of Glycolaldehyde and Ethylene Glycol around Sagittarius B2. Astrophysical Journal, 2017, 849, 115.	4.5	21
92	Physical properties and chemical composition of the cores in the California molecular cloud. Astronomy and Astrophysics, 2018, 620, A163.	5.1	21
93	The ASKAP EMU Early Science Project: radio continuum survey of the Small Magellanic Cloud. Monthly Notices of the Royal Astronomical Society, 2019, 490, 1202-1219.	4.4	21
94	Discovery and Timing of Pulsars in the Globular Cluster M13 with FAST. Astrophysical Journal, 2020, 892, 43.	4.5	21
95	The JCMT BISTRO Survey: Revealing the Diverse Magnetic Field Morphologies in Taurus Dense Cores with Sensitive Submillimeter Polarimetry. Astrophysical Journal Letters, 2021, 912, L27.	8.3	21
96	An early transition to magnetic supercriticality in star formation. Nature, 2022, 601, 49-52.	27.8	21
97	<i>Herschel</i> and SCUBA-2 observations of dust emission in a sample of <i>Planck</i> cold clumps. Astronomy and Astrophysics, 2018, 612, A71.	5.1	20
98	ATOMS: ALMA three-millimeter observations of massive star-forming regions – II. Compact objects in ACA observations and star formation scaling relations. Monthly Notices of the Royal Astronomical Society, 2020, 496, 2821-2835.	4.4	20
99	DISTRIBUTION OF WATER VAPOR IN MOLECULAR CLOUDS. Astrophysical Journal, 2011, 727, 13.	4.5	19
100	A NEW METHOD FOR CONSTRAINING MOLECULAR CLOUD THICKNESS: A STUDY OF TAURUS, PERSEUS, AND OPHIUCHUS. Astrophysical Journal, 2015, 811, 71.	4.5	19
101	CH AS A MOLECULAR GAS TRACER AND C-SHOCK TRACER ACROSS A MOLECULAR CLOUD BOUNDARY IN TAURUS. Astrophysical Journal, 2016, 833, 90.	4.5	19
102	A fast radio burst in the direction of the Virgo Cluster. Monthly Notices of the Royal Astronomical Society, 2019, 490, 1-8.	4.4	19
103	The JCMT BISTRO Survey: The Distribution of Magnetic Field Strengths toward the OMC-1 Region. Astrophysical Journal, 2021, 913, 85.	4.5	19
104	ATOMS: ALMA Three-millimeter Observations of Massive Star-forming regions – XI. From inflow to infall in hub-filament systems. Monthly Notices of the Royal Astronomical Society, 2022, 514, 6038-6052.	4.4	19
105	Studies of Turbulence Dissipation in the Taurus Molecular Cloud with Core Velocity Dispersion. Astrophysical Journal, 2018, 864, 116.	4.5	18
106	Temporal Scattering, Depolarization, and Persistent Radio Emission from Magnetized Inhomogeneous Environments near Repeating Fast Radio Burst Sources. Astrophysical Journal Letters, 2022, 928, L16.	8.3	18
107	ALMA Observations of Vibrationally Excited HC ₃ N Lines Toward Orion KL. Astrophysical Journal, 2017, 837, 49.	4.5	17
108	Fast radio bursts: do repeaters and non-repeaters originate in statistically similar ensembles?. Monthly Notices of the Royal Astronomical Society, 2020, 500, 3275-3280.	4.4	17

#	Article	IF	CITATIONS
109	The TMRT K band observations towards 26 infrared dark clouds: NH3, CCS, and HC3N. Science China: Physics, Mechanics and Astronomy, 2021, 64, 1.	5.1	17
110	FAST early pulsar discoveries: Effelsberg follow-up. Monthly Notices of the Royal Astronomical Society, 2021, 508, 300-314.	4.4	17
111	ATOMS: ALMA Three-millimeter Observations of Massive Star-forming regions – V. Hierarchical fragmentation and gas dynamics in IRDC G034.43+00.24. Monthly Notices of the Royal Astronomical Society, 2022, 510, 5009-5022.	4.4	17
112	ALMA Observations Reveal No Preferred Outflow-filament and Outflow-magnetic Field Orientations in Protoclusters. Astrophysical Journal, 2020, 890, 44.	4.5	16
113	ALMA Survey of Orion Planck Galactic Cold Clumps (ALMASOP): Detection of Extremely High-density Compact Structure of Prestellar Cores and Multiple Substructures Within. Astrophysical Journal Letters, 2021, 907, L15.	8.3	16
114	Observations of Magnetic Fields Surrounding LkHl \pm 101 Taken by the BISTRO Survey with JCMT-POL-2. Astrophysical Journal, 2021, 908, 10.	4.5	16
115	Energy and Waiting Time Distributions of FRB 121102 Observed by FAST. Astrophysical Journal Letters, 2021, 920, L23.	8.3	16
116	ALMA Observations of NGC 6334S. II. Subsonic and Transonic Narrow Filaments in a High-mass Star Formation Cloud. Astrophysical Journal, 2022, 926, 165.	4.5	16
117	B-fields in Star-forming Region Observations (BISTRO): Magnetic Fields in the Filamentary Structures of Serpens Main. Astrophysical Journal, 2022, 926, 163.	4.5	16
118	The Large Dispersion and Scattering of FRB 20190520B Are Dominated by the Host Galaxy. Astrophysical Journal, 2022, 931, 87.	4.5	16
119	Sulfur-bearing Molecules in Orion KL. Astrophysical Journal, 2019, 885, 82.	4.5	15
120	From Haloes to Galaxies. II. The Fundamental Relations in Star Formation and Quenching. Astrophysical Journal, 2021, 907, 114.	4.5	15
121	Molecular Cloud Cores with a High Deuterium Fraction: Nobeyama Single-pointing Survey. Astrophysical Journal, Supplement Series, 2020, 249, 33.	7.7	15
122	Detecting radio afterglows of gamma-ray bursts with FAST. Research in Astronomy and Astrophysics, 2015, 15, 237-251.	1.7	14
123	OH Survey along Sightlines of Galactic Observations of Terahertz C+. Astrophysical Journal, 2017, 839, 8.	4.5	14
124	Observations of Water Vapor Outflow from NML Cygnus. Astrophysical Journal, 2004, 610, 427-435.	4.5	14
125	Opportunities to search for extraterrestrial intelligence with the FAST. Research in Astronomy and Astrophysics, 2020, 20, 078.	1.7	14
126	Similar Scale-invariant Behaviors between Soft Gamma-Ray Repeaters and an Extreme Epoch from FRB 121102. Astrophysical Journal, 2021, 920, 153.	4.5	14

#	Article	IF	CITATIONS
127	Large-scale Spectroscopic Mapping of the ϕOphiuchi Molecular Cloud Complex. I. The C ₂ H-to-N ₂ H ⁺ Ratio as a Signpost of Cloud Characteristics. Astrophysical Journal, 2017, 836, 194.	4.5	13
128	Catching the Birth of a Dark Molecular Cloud for the First Time. Astrophysical Journal, 2018, 867, 13.	4.5	13
129	Probing the cold magnetised Universe with SPICA-POL (B-BOP). Publications of the Astronomical Society of Australia, 2019, 36, .	3.4	13
130	A Single-pulse Study of PSR J1022+1001 Using the FAST Radio Telescope. Astrophysical Journal, 2021, 908, 105.	4.5	13
131	The JCMT BISTRO Survey: An 850/450 μm Polarization Study of NGC 2071IR in Orion B. Astrophysical Journal, 2021, 918, 85.	4.5	13
132	A New Method for Determining the Dust Temperature Distribution in Starâ€forming Regions. Astrophysical Journal, 1999, 522, 897-903.	4.5	13
133	ALMA ACA and Nobeyama Observations of Two Orion Cores in Deuterated Molecular Lines. Astrophysical Journal, 2020, 895, 119.	4.5	13
134	The Chemical Structure of Young High-mass Star-forming Clumps. II. Parsec-scale CO Depletion and Deuterium Fraction of HCO ⁺ . Astrophysical Journal, 2020, 901, 145.	4.5	13
135	The Five-hundred-meter Aperture Spherical radio Telescope project and its early science opportunities. Proceedings of the International Astronomical Union, 2012, 8, 325-330.	0.0	12
136	Similarity of PSR J1906+0746 to PSR J0737–3039: a Candidate of a New Double Pulsar System?. Astrophysical Journal, 2017, 835, 185.	4.5	12
137	The M31/M33 tidal interaction: a hydrodynamic simulation of the extended gas distribution. Monthly Notices of the Royal Astronomical Society, 2020, 493, 5636-5647.	4.4	12
138	Mass and Environment as Drivers of Galaxy Evolution. IV. On the Quenching of Massive Central Disk Galaxies in the Local Universe. Astrophysical Journal, 2021, 911, 57.	4.5	12
139	FOLLOW-UP OBSERVATIONS TOWARD PLANCK COLD CLUMPS WITH GROUND-BASED RADIO TELESCOPES. Publications of the Korean Astronomical Society, 2015, 30, 79-82.	0.0	12
140	The mass distribution of Galactic double neutron stars: constraints on the gravitational-wave sources like GW170817. Monthly Notices of the Royal Astronomical Society, 2019, 488, 5020-5028.	4.4	11
141	Detecting exoplanets with FAST?. Research in Astronomy and Astrophysics, 2019, 19, 023.	1.7	11
142	Unusual Emission Variations Near the Eclipse of Black Widow Pulsar PSR J1720â^'0533. Astrophysical Journal Letters, 2021, 922, L13.	8.3	11
143	The five-hundred-meter aperture spherical radio telescope (FAST) project. IOP Conference Series: Materials Science and Engineering, 2013, 44, 012022.	0.6	10
144	Radio afterglows and host galaxies of gamma-ray bursts. Monthly Notices of the Royal Astronomical Society, 2015, 451, 1815-1823.	4.4	10

#	Article	IF	CITATIONS
145	Blind search for 21-cm absorption systems using a new generation of Chinese radio telescopes. Research in Astronomy and Astrophysics, 2017, 17, 049.	1.7	10
146	The TOP-SCOPE Survey of PGCCs: PMO and SCUBA-2 Observations of 64 PGCCs in the Second Galactic Quadrant. Astrophysical Journal, Supplement Series, 2018, 236, 49.	7.7	10
147	Predictions for the FAST telescope's CRAFTS extragalactic H <scp>i</scp> survey. Monthly Notices of the Royal Astronomical Society, 2020, 500, 1741-1754.	4.4	10
148	A Low-mass Cold and Quiescent Core Population in a Massive Star Protocluster. Astrophysical Journal Letters, 2021, 912, L7.	8.3	10
149	ATOMS: ALMA Three-millimeter Observations of Massive Star-forming regions – VIII. A search for hot cores by using C2H5CN, CH3OCHO, and CH3OH lines. Monthly Notices of the Royal Astronomical Society, 2022, 511, 3463-3476.	4.4	10
150	Long and Short Fast Radio Bursts Are Different from Repeating and Nonrepeating Transients. Astrophysical Journal, 2021, 923, 230.	4.5	10
151	A Single-pulse Study of the Subpulse Drifter PSR J1631+1252 Discovered at FAST. Astrophysical Journal, 2022, 929, 71.	4.5	10
152	Compressed Magnetic Field in the Magnetically Regulated Global Collapsing Clump of G9.62+0.19. Astrophysical Journal Letters, 2018, 869, L5.	8.3	9
153	Carbon-chain molecules in molecular outflows and Lupus I region – new producing region and new forming mechanism. Monthly Notices of the Royal Astronomical Society, 2019, 488, 495-511.	4.4	9
154	The Classifications of Double Neutron Stars and their Correlations with the Binary Orbital Parameters. Publications of the Astronomical Society of the Pacific, 2019, 131, 064201.	3.1	9
155	Supermassive binary black hole evolution can be traced by a small SKA pulsar timing array. Physical Review D, 2020, 102, .	4.7	9
156	Revealing the CO X-factor in Dark Molecular Gas through Sensitive ALMA Absorption Observations. Astrophysical Journal Letters, 2020, 889, L4.	8.3	9
157	Mapping observations of complex organic molecules around Sagittarius B2 with the ARO 12 m telescope. Monthly Notices of the Royal Astronomical Society, 2020, 492, 556-565.	4.4	9
158	A Single Pulse Study of a Millisecond Pulsar PSR J0621+1002. Astrophysical Journal, 2021, 913, 67.	4.5	9
159	An ALMA study of outflow parameters of protoclusters: outflow feedback to maintain the turbulence. Monthly Notices of the Royal Astronomical Society, 2021, 507, 4316-4334.	4.4	9
160	A broad-band radio study of PSRÂJ0250+5854: the slowest spinning radio pulsar known. Monthly Notices of the Royal Astronomical Society, 2021, 508, 1102-1114.	4.4	9
161	Unveiling the Importance of Magnetic Fields in the Evolution of Dense Clumps Formed at the Waist of Bipolar H ii Regions: A Case Study of Sh 2-201 with JCMT SCUBA-2/POL-2. Astrophysical Journal, 2020, 897, 90.	4.5	9
162	The Two Emission States of PSR B1534+12. Astrophysical Journal Letters, 2020, 902, L13.	8.3	9

#	Article	IF	CITATIONS
163	On the Circular Polarization of Repeating Fast Radio Bursts. Astrophysical Journal, 2021, 920, 46.	4.5	9
164	EXTREMELY ENERGETIC OUTFLOW AND DECELERATED EXPANSION IN W49N. Astrophysical Journal, 2015, 810, 147.	4.5	8
165	Machine learning for nanohertz gravitational wave detection and parameter estimation with pulsar timing array. Science China: Physics, Mechanics and Astronomy, 2020, 63, 1.	5.1	8
166	H <scp>i</scp> absorption towards radio active galactic nuclei of different accretion modes. Monthly Notices of the Royal Astronomical Society, 2020, 494, 5161-5177.	4.4	8
167	Toward a direct measurement of the cosmic acceleration: roadmap and forecast on FAST. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 054-054.	5.4	8
168	Periodic and Phase-locked Modulation in PSR B1929+10 Observed with FAST. Astrophysical Journal, 2021, 909, 170.	4.5	8
169	QUANTIFYING DARK GAS. Publications of the Korean Astronomical Society, 2015, 30, 75-78.	0.0	8
170	OH Evolution in Molecular Clouds. Astrophysical Journal, Supplement Series, 2021, 252, 1.	7.7	8
171	An Arecibo follow-up study of seven pulsars discovered by Five-hundred-meter Aperture Spherical radio Telescope (FAST). Research in Astronomy and Astrophysics, 2021, 21, 251.	1.7	8
172	Emission Variation of a Long-period Pulsar Discovered by the Five-hundred-meter Aperture Spherical Radio Telescope (FAST). Astrophysical Journal, 2022, 929, 171.	4.5	8
173	Deep Simultaneous Limits on Optical Emission from FRB 20190520B by 24.4 fps Observations with Tomo-e Gozen. Astrophysical Journal, 2022, 931, 109.	4.5	8
174	The Five-hundred-meter Aperture Spherical radio Telescope (FAST) project. , 2015, , .		7
175	MASSIVE QUIESCENT CORES IN ORION. VI. THE INTERNAL STRUCTURES AND A CANDIDATE OF TRANSITING CORE IN NGC 2024 FILAMENT. Astrophysical Journal, 2016, 824, 52.	4.5	7
176	A novel deorientation method in PolSAR data processing. Remote Sensing Letters, 2016, 7, 1083-1092.	1.4	7
177	The Redshift Dependence of the Radio Flux of Gamma-Ray Bursts and Their Host Galaxies. Astrophysical Journal, 2018, 865, 82.	4.5	7
178	The interstellar medium: the key component in galactic evolution and modern cosmology. Research in Astronomy and Astrophysics, 2019, 19, 017.	1.7	7
179	Constraints on individual supermassive binary black holes using observations of PSR J1909–3744. Research in Astronomy and Astrophysics, 2019, 19, 178.	1.7	7
180	Parkes Transient Events. I. Database of Single Pulses, Initial Results, and Missing Fast Radio Bursts. Astrophysical Journal, Supplement Series, 2020, 249, 14.	7.7	7

#	Article	IF	CITATIONS
181	A pilot search for extragalactic OH absorption with FAST. Monthly Notices of the Royal Astronomical Society, 2020, 499, 3085-3093.	4.4	7
182	Recovering the 21-cm signal from simulated FAST intensity maps. Monthly Notices of the Royal Astronomical Society, 2021, 504, 5231-5243.	4.4	7
183	Convergent filaments contracting towards an intermediate-mass pre-stellar core. Monthly Notices of the Royal Astronomical Society, 2021, 505, 5183-5191.	4.4	7
184	Applying saliency-map analysis in searches for pulsars and fast radio bursts. Astronomy and Astrophysics, 2020, 642, A26.	5.1	7
185	Hyperfine group ratio: a recipe for deriving kinetic temperature from the ammonia inversion lines. Monthly Notices of the Royal Astronomical Society, 2020, 499, 4432-4444.	4.4	7
186	First Data Release of the ESO-ARO Public Survey SAMPLING—SMT "All-sky―Mapping of Planck Interstellar Nebulae in the Galaxy. Research Notes of the AAS, 2018, 2, 2.	0.7	7
187	Electromagnetic response to high-frequency gravitational waves having additional polarization states: distinguishing and probing tensor-mode, vector-mode and scalar-mode gravitons. European Physical Journal C, 2020, 80, 1.	3.9	7
188	New continuum and polarization observations of the Cygnus Loop with FAST I. Data processing and verification. Research in Astronomy and Astrophysics, 2021, 21, 282.	1.7	7
189	MASSIVE QUIESCENT CORES IN ORION. V. THE INTERNAL STRUCTURES AND PHYSICAL AND CHEMICAL PROPERTIES OF TWO EXTREMELY DENSE CORES. Astrophysical Journal, 2014, 788, 172.	4.5	6
190	Wide-bandwidth drift-scan pulsar surveys of globular clusters: application to early science observations with FAST. Research in Astronomy and Astrophysics, 2016, 16, 151.	1.7	6
191	A FPGA-based Fast Converging Digital Adaptive Filter for Real-time RFI Mitigation on Ground Based Radio Telescopes. Publications of the Astronomical Society of the Pacific, 2018, 130, 025002.	3.1	6
192	Flux density measurements for 32 pulsars in the 20 cm observing band. Research in Astronomy and Astrophysics, 2019, 19, 103.	1.7	6
193	Comparative study of gamma-ray emission from molecular clouds and star-forming galaxies. Astronomy and Astrophysics, 2019, 621, A70.	5.1	6
194	Molecular Oxygen in the Nearest QSO Mrk 231. Astrophysical Journal, 2020, 889, 129.	4.5	6
195	How are gamma-ray burst radio afterglows populated?. Monthly Notices of the Royal Astronomical Society, 2021, 503, 3262-3278.	4.4	6
196	Carbon-chain molecule survey toward four low-mass molecular outflow sources. Astronomy and Astrophysics, 2021, 648, A83.	5.1	6
197	Statistical tests of young radio pulsars with/without supernova remnants: implying two origins of neutron stars. Monthly Notices of the Royal Astronomical Society, 2021, 508, 279-286.	4.4	6
198	Radio frequency interference mitigation using pseudoinverse learning autoencoders. Research in Astronomy and Astrophysics, 2020, 20, 114.	1.7	6

#	Article	IF	CITATIONS
199	Luminosity distribution of fast radio bursts from CHIME/FRB Catalog 1 by means of the updated Macquart relation. Astrophysics and Space Science, 2022, 367, .	1.4	6
200	Expectations of maser studies with FAST. Proceedings of the International Astronomical Union, 2012, 8, 350-353.	0.0	5
201	FAST low frequency pulsar survey. Proceedings of the International Astronomical Union, 2012, 8, 577-579.	0.0	5
202	Pilot Hi survey of Planck Galactic Cold Clumps with FAST. Research in Astronomy and Astrophysics, 2020, 20, 077.	1.7	5
203	Resolution-dependent subsonic non-thermal line dispersion revealed by ALMA. Research in Astronomy and Astrophysics, 2021, 21, 024.	1.7	5
204	A Search for Cloud Cores Affected by Shocked Carbon Chain Chemistry in L1251. Astrophysical Journal, 2021, 912, 148.	4.5	5
205	Molecular Cloud Cores with High Deuterium Fractions: Nobeyama Mapping Survey. Astrophysical Journal, Supplement Series, 2021, 256, 25.	7.7	5
206	HAWC+/SOFIA Polarimetry in L1688: Relative Orientation of Magnetic Field and Elongated Cloud Structure. Astrophysical Journal, 2021, 918, 39.	4.5	5
207	Wideband Monitoring Observations of PSR J1803–3002A in the Globular Cluster NGC 6522. Astrophysical Journal Letters, 2020, 905, L8.	8.3	5
208	The Nearby Evolved Stars Survey II: Constructing a volume-limited sample and first results from the James Clerk Maxwell Telescope. Monthly Notices of the Royal Astronomical Society, 2022, 512, 1091-1110.	4.4	5
209	A GPU based single-pulse search pipeline (GSP) with database and its application to the Commensal Radio Astronomy FAST Survey (CRAFTS). Research in Astronomy and Astrophysics, 2021, 21, 314.	1.7	5
210	Detection of strong scattering close to the eclipse region of PSR B1957+20. Monthly Notices of the Royal Astronomical Society, 2022, 513, 1794-1800.	4.4	5
211	The potential of FAST in detecting celestial hydroxyl masers and related science topics. Research in Astronomy and Astrophysics, 2019, 19, 022.	1.7	4
212	Filament intersections and cold dense cores in Orion A North. Monthly Notices of the Royal Astronomical Society, 2020, 497, 793-808.	4.4	4
213	Independent Core Rotation in Massive Filaments in Orion. Astrophysical Journal Letters, 2020, 894, L20.	8.3	4
214	From Haloes to Galaxies. III. The Gas Cycle of Local Galaxy Populations. Astrophysical Journal, 2021, 915, 94.	4.5	4
215	Revisiting pulsar velocities using Gaia Data Release 2. Research in Astronomy and Astrophysics, 2021, 21, 141.	1.7	4
216	Planck Galactic Cold Clumps at High Galactic Latitude—a Study with CO Lines. Astrophysical Journal, 2021. 920. 103.	4.5	4

#	Article	IF	CITATIONS
217	Ammonia Emission in Various Star-forming Environments: A Pilot Study of Planck Galactic Cold Clumps. Astrophysical Journal, Supplement Series, 2022, 258, 17.	7.7	4
218	A FAST survey of H†I narrow-line self-absorptions in <i>Planck</i> Galactic cold clumps guided by HC ₃ N. Astronomy and Astrophysics, 2022, 658, A140.	5.1	4
219	ALMA Survey of Orion Planck Galactic Cold Clumps (ALMASOP): How Do Dense Core Properties Affect the Multiplicity of Protostars?. Astrophysical Journal, 2022, 931, 158.	4.5	4
220	Water abundance in four of the brightest water sources in the southern sky. Research in Astronomy and Astrophysics, 2016, 16, 003.	1.7	3
221	FAST A+: A Cost-Effective Plan for Expanding FAST. , 2019, , .		3
222	Wide Bandwidth Observations of Pulsars C, D, and J in 47 Tucanae. Astrophysical Journal Letters, 2019, 885, L37.	8.3	3
223	Tracing the Formation of Molecular Clouds in a Low-metallicity Galaxy: An H i Narrow Self-absorption Survey of the Large Magellanic Cloud. Astrophysical Journal, 2019, 887, 242.	4.5	3
224	Rotation of Two Micron All Sky Survey Clumps in Molecular Clouds. Astrophysical Journal, 2020, 898, 122.	4.5	3
225	Statistical properties of fast radio bursts elucidate their origins: magnetars are favored over gamma-ray bursts. Research in Astronomy and Astrophysics, 2021, 21, 211.	1.7	3
226	An Eclipsing Black Widow Pulsar in NGC 6712. Astrophysical Journal, 2021, 921, 120.	4.5	3
227	Physical publicly verifiable randomness from pulsars. Astronomy and Computing, 2022, 38, 100549.	1.7	3
228	Cold Gas in Massive Galaxies as a Critical Test of Black Hole Feedback Models. Astrophysical Journal, 2022, 927, 189.	4.5	3
229	Description of a RFI mitigation pipeline for the FAST 19-beam receiver. Astronomy and Computing, 2022, 39, 100568.	1.7	3
230	Chemical Variations Across the TMC-1 Boundary: Molecular Tracers from the Translucent Phase to the Dense Phase. Astrophysical Journal, 2022, 928, 175.	4.5	3
231	Categorize radio interference using component and temporal analysis. Monthly Notices of the Royal Astronomical Society, 2022, 513, 4787-4801.	4.4	3
232	350 μm map of the Ophiuchus molecular cloud: core mass function. Science China: Physics, Mechanics and Astronomy, 2015, 58, 1-11.	5.1	2
233	Planck Galactic Cold Clumps in Two Regions: The First Quadrant and the Anticenter Direction Region. Astrophysical Journal, Supplement Series, 2020, 247, 29.	7.7	2
234	Observational Features of Exoplanetary Synchrotron Radio Bursts. Astrophysical Journal, 2020, 895, 22.	4.5	2

#	Article	IF	CITATIONS
235	Probing the Emission States of PSR J1107â^'5907. Astrophysical Journal, 2020, 889, 6.	4.5	2
236	Studying infall in infrared dark clouds with multiple HCO ⁺ transitions. Research in Astronomy and Astrophysics, 2021, 21, 208.	1.7	2
237	Numerical Simulation and Completeness Survey of Bubbles in the Taurus and Perseus Molecular Clouds. Astrophysical Journal, 2019, 885, 124.	4.5	2
238	Toward Eurasian SubMillimeter Telescopes: the Concept of Multicolor SubTHz MKID-Array Demo Camera MUSICAM and its Instrumental Testing. , 2020, , .		2
239	Velocity Anisotropy in Self-gravitating Molecular Clouds. II. Observation. Astrophysical Journal, 2022, 928, 132.	4.5	2
240	Nobeyama Survey of Inward Motions toward Cores in Orion Identified by SCUBA-2. Astrophysical Journal, 2022, 931, 33.	4.5	2
241	The Relation Between Dust and Gas in the Taurus Molecular Cloud. EAS Publications Series, 2011, 52, 157-160.	0.3	1
242	Galactic Observations of Terahertz C ⁺ (GOT C+): [CII] Detection of Warm "Dark Gas―in the ISM. EAS Publications Series, 2011, 52, 161-164.	0.3	1
243	Gravitational wave GW170817: A new-born sub-millisecond pulsar and the properties of coalescing double neutron stars. New Astronomy, 2019, 70, 51-56.	1.8	1
244	The Simulation of Orbit Decay of Double Neutron Star System PSR J1906+0746 by the Gravitational Wave Radiation. Astronomy Reports, 2019, 63, 1090-1094.	0.9	1
245	Simulation of chirp mass distribution of neutron star and black hole merger events for gravitational-wave radiation. Physical Review D, 2020, 101, .	4.7	1
246	Precise Measurements of CH Maser Emission and Its Abundance in Translucent Clouds. Astrophysical Journal, Supplement Series, 2021, 257, 47.	7.7	1
247	The Potential of Detecting Radio-flaring Ultracool Dwarfs at L band in the FAST Drift-scan Survey. Research in Astronomy and Astrophysics, 2022, 22, 065013.	1.7	1
248	Molecular Cores in Taurus: Evolution and Dynamics. Proceedings of the International Astronomical Union, 2012, 8, 252-252.	0.0	0
249	Feedback of outflows in the Taurus Molecular Cloud. Proceedings of the International Astronomical Union, 2012, 8, 47-47.	0.0	0
250	Physical properties of Planck Cold Dust Clumps. EAS Publications Series, 2015, 75-76, 277-280.	0.3	0
251	Simple Hydrides (OH and CH) Trace the Dark Molecular Gas. Proceedings of the International Astronomical Union, 2018, 14, 261-264.	0.0	0
252	Collapsing index: a new method to identify star-forming cores based on ALMA images. Research in Astronomy and Astrophysics, 2021, 21, 026.	1.7	0

#	Article	IF	CITATIONS
253	Simulation of the gravitational wave frequency distribution of neutron star-black hole mergers. Chinese Physics B, 0, , .	1.4	0
254	Big Data Challenges of FAST. Lecture Notes in Computer Science, 2019, , 6-9.	1.3	0
255	A commentary of "Consistency radio bursts in the Milky Way†10 remarkable discoveries from 2020 in Nature. Fundamental Research, 2022, , .	3.3	Ο
256	快速射电暴脉冲ç"究迳a¥é«~̃统计性时代. Chinese Science Bulletin, 2022, , .	0.7	0