Amanda G Fisher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8622192/publications.pdf Version: 2024-02-01

AMANDA C. FISHED

#	Article	IF	CITATIONS
1	Cohesin-dependence of neuronal gene expression relates to chromatin loop length. ELife, 2022, 11, .	6.0	40
2	Epigenetic changes induced by in utero dietary challenge result in phenotypic variability in successive generations of mice. Nature Communications, 2022, 13, 2464.	12.8	13
3	The order and logic of CD4 versus CD8 lineage choice and differentiation in mouse thymus. Nature Communications, 2021, 12, 99.	12.8	21
4	Risk Factors Associated with a Second Primary Lung Cancer in Patients with an Initial Primary Lung Cancer. Clinical Lung Cancer, 2021, 22, e842-e850.	2.6	9
5	Neuronal genes deregulated in Cornelia de Lange Syndrome respond to removal and re-expression of cohesin. Nature Communications, 2021, 12, 2919.	12.8	18
6	Reprogramming lineage identity through cell–cell fusion. Current Opinion in Genetics and Development, 2021, 70, 15-23.	3.3	9
7	Illuminating Epigenetics and Inheritance in the Immune System with Bioluminescence. Trends in Immunology, 2020, 41, 994-1005.	6.8	10
8	Identifying proteins bound to native mitotic ESC chromosomes reveals chromatin repressors are important for compaction. Nature Communications, 2020, 11, 4118.	12.8	26
9	Feedforward regulation of Myc coordinates lineage-specific with housekeeping gene expression during B cell progenitor cell differentiation. PLoS Biology, 2019, 17, e2006506.	5.6	8
10	Neuronatin deletion causes postnatal growth restriction and adult obesity in 129S2/Sv mice. Molecular Metabolism, 2018, 18, 97-106.	6.5	22
11	Control of inducible gene expression links cohesin to hematopoietic progenitor self-renewal and differentiation. Nature Immunology, 2018, 19, 932-941.	14.5	175
12	Allele-specific analysis of cell fusion-mediated pluripotent reprograming reveals distinct and predictive susceptibilities of human X-linked genes to reactivation. Genome Biology, 2017, 18, 2.	8.8	14
13	Visualizing Changes in Cdkn1c Expression Links Early-Life Adversity to Imprint Mis-regulation in Adults. Cell Reports, 2017, 18, 1090-1099.	6.4	43
14	Reconciling Epigenetic Memory and Transcriptional Responsiveness. Cell Systems, 2017, 4, 373-374.	6.2	0
15	Human X chromosome inactivation and reactivation: implications for cell reprogramming and disease. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160358.	4.0	35
16	An efficient method for generation of bi-allelic null mutant mouse embryonic stem cells and its application for investigating epigenetic modifiers. Nucleic Acids Research, 2017, 45, e174-e174.	14.5	7
17	A high-resolution map of transcriptional repression. ELife, 2017, 6, .	6.0	47
18	MicroRNAs of the miR-290–295 Family Maintain Bivalency in Mouse Embryonic Stem Cells. Stem Cell Reports, 2016, 6, 635-642.	4.8	24

Amanda G Fisher

#	Article	IF	CITATIONS
19	Reprogramming of Somatic Cells Towards Pluripotency by Cell Fusion. Methods in Molecular Biology, 2016, 1480, 289-299.	0.9	5
20	Ordered chromatin changes and human X chromosome reactivation by cell fusion-mediated pluripotent reprogramming. Nature Communications, 2016, 7, 12354.	12.8	19
21	A microfluidic toolbox for cell fusion. Journal of Chemical Technology and Biotechnology, 2016, 91, 16-24.	3.2	14
22	Cohesin's role in pluripotency and reprogramming. Cell Cycle, 2016, 15, 324-330.	2.6	7
23	Initiation and maintenance of pluripotency gene expression in the absence of cohesin. Genes and Development, 2015, 29, 23-38.	5.9	32
24	Spatial enhancer clustering and regulation of enhancer-proximal genes by cohesin. Genome Research, 2015, 25, 504-513.	5.5	149
25	Jarid2 Coordinates Nanog Expression and PCP/Wnt Signaling Required for Efficient ESC Differentiation and Early Embryo Development. Cell Reports, 2015, 12, 573-586.	6.4	43
26	microRNA-mediated regulation of mTOR complex components facilitates discrimination between activation and anergy in CD4 T cells. Journal of Experimental Medicine, 2014, 211, 2281-2295.	8.5	57
27	Getting rid of DNA methylation. Trends in Cell Biology, 2014, 24, 136-143.	7.9	66
28	Epigenetic memory and parliamentary privilege combine to evoke discussions on inheritance. Development (Cambridge), 2012, 139, 3891-3896.	2.5	8
29	Chromatin states in pluripotent, differentiated, and reprogrammed cells. Current Opinion in Genetics and Development, 2011, 21, 140-146.	3.3	145
30	Fresh powder on Waddington's slopes. EMBO Reports, 2010, 11, 490-492.	4.5	4
31	ESCs Require PRC2 to Direct the Successful Reprogramming of Differentiated Cells toward Pluripotency. Cell Stem Cell, 2010, 6, 547-556.	11.1	162
32	Heterokaryon-Based Reprogramming of Human B Lymphocytes for Pluripotency Requires Oct4 but Not Sox2. PLoS Genetics, 2008, 4, e1000170.	3.5	115
33	Gene silencing, cell fate and nuclear organisation. Current Opinion in Genetics and Development, 2002, 12, 193-197.	3.3	84
34	Cellular identity and lineage choice. Nature Reviews Immunology, 2002, 2, 977-982.	22.7	90
35	Nonequivalent nuclear location of immunoglobulin alleles in B lymphocytes. Nature Immunology, 2001, 2, 848-854.	14.5	179
36	Expression of α- and β-globin genes occurs within different nuclear domains in haemopoietic cells. Nature Cell Biology, 2001, 3, 602-606.	10.3	139

Amanda G Fisher

#	Article	IF	CITATIONS
37	Different doses of agonistic ligand drive the maturation of functional CD4 and CD8 T cells from immature precursors. European Journal of Immunology, 2000, 30, 371-381.	2.9	12
38	Selection-induced gene expression in thymocytes. Genetical Research, 1997, 70, 79-89.	0.9	1
39	The mouse Smcx gene exhibits developmental and tissue specific variation in degree of escape from X inactivation. Human Molecular Genetics, 1996, 5, 1355-1360.	2.9	51